A NOTE ON RIEMANN LIOUVILLE FRACTIONAL DERIVATIVE AND CONIC DOMAINS

FUAD. S. AL-SARARI and S .LATHA
Communicated by Ayman Badawi

MSC 2010 Classifications: 30C45.
Keywords and phrases: Analytic functions, Fractional derivative, Conic domains, Janowski functions, k-Starlike functions, k - Uniformaly convex functions.

Abstract

In this paper, we introduce a class $k-S P_{\alpha}[A, B]$ of analytic function in geometrical starlike of oval and petal type regions $\Delta_{k}(A, B)$ which unifies a number of classes studied earlier by Janowski, Kanas, Wisnowska, Shams etc. Thus our class includes k-uniformly Janowskl convex functions, k-uniformly Janowski starlike functions, k-uniformly convex functions, k-uniformly starlike functions, Janowski starlike and Janowski convex functions etc. We deduce sufficient condition for a function to be in $k-S P_{\alpha}[A, B]$ and also coefficient bound for functions of $k-S P_{\alpha}[A, B]$.

1 Introduction

Kanas and Wisniowska $[5,15]$ generalized the parabolic region $\Delta=\{w: \Re\{w\}>|w-1|\}$ introduced by Goodman [4] introducing $\Delta_{k} k \geq 0$ by

$$
\Delta_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\} .
$$

This domain represents the right half plane for $k=0$, hyperbola for $0<k<1$, a parabola for $k=1$ and ellipse for $k>1$.
The functions $p_{k}(z)$ play the role of extremal functions for these conic regions where

$$
p_{k}(z)=\left\{\begin{array}{l}
\frac{1+z}{1-z}, \quad k=0 \tag{1.1}\\
1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, \quad k=1 . \\
1+\frac{2}{1-k^{2}} \sinh ^{2}\left[\left(\frac{2}{\pi} \arccos k\right) \arctan h \sqrt{z}\right], \quad 0<k<1 . \\
1+\frac{2}{k^{2}-1} \sin \left[\frac{\pi}{2 R(t)} \int_{0}^{\frac{u(z)}{\sqrt{t}}} \frac{1}{\sqrt{1-x^{2}} \sqrt{1-(t x)^{2}}} d x\right]+\frac{1}{k^{2}-1}, \quad k>1,
\end{array}\right.
$$

where $u(z)=\frac{z-\sqrt{t}}{1-\sqrt{t x}}, t \in(0,1), z \in \mathcal{U}$ and z is chosen such that $k=\cosh \left(\frac{\pi R^{\prime}(t)}{4 R(t)}\right), R(t)$ is the Legendre's complete elliptic integral of the first kind and $R^{\prime}(t)$ is complementary integral $R(t)$. $p_{k}(z)=1+\delta_{k} z+\ldots .,[14]$ where

$$
\delta_{k}= \begin{cases}\frac{8(\arccos k)^{2}}{\pi^{2}\left(1-k^{2}\right)}, & 0 \leq k<1 \tag{1.2}\\ \frac{8}{\pi^{2}}, \quad k=1 . & \\ \frac{\pi^{2}}{4\left(k^{2}-1\right) \sqrt{ } t(1+t) R^{2}(t)}, & k>1 .\end{cases}
$$

It was Janowski [1] who introduced the circular domain by defining the following:
Definition 1.1. Let $P[A, B]$, where $-1 \leq B<A \leq 1$, denote the class of analytic function p defined on \mathcal{U} with the representation $p(z)=\frac{1+A w(\bar{z})}{1+B w(z)}, \quad z \in \mathcal{U}, w(0)=0,|w(z)|<1$. In terms of subordination $p \in P[A, B]$ if and only if $p(z) \prec \frac{1+A z}{1+B z}$.

Geometrically, a function $p(z) \in P[A, B]$ maps the opine unit onto the disk defined by the domain,

$$
\Delta[A, B]=\left\{w:\left|w-\frac{1-A B}{1-B^{2}}\right|<\frac{A-B}{1-B^{2}}\right\} .
$$

The class $P[A, B]$ is connected the class P of functions with positive real part by the relation,

$$
p(z) \in P \Leftrightarrow \frac{(A+1) p(z)-(A-1)}{(B+1) p(z)-(B-1)} \in P[A, B] .
$$

Now using the concepts of Janowski functions and the conic regions, we define the following.
Definition 1.2. A function p is said to be in the class $k-P[A, B]$, if and only if,

$$
p(z) \prec \frac{(A+1) p_{k}(z)-(A-1)}{(B+1) p_{k}(z)-(B-1)}, \quad k \geq 0,
$$

where $p_{k}(z)$ is defined by (1.1) and $-1 \leq B<A \leq 1$.
Geometrically, the function $p \in k-P[A, B]$ takes all values from the domain $\Delta_{k}[A, B]$, $-1 \leq B<A \leq 1, k \geq 0$ which is defined as

$$
\Delta_{k}[A, B]=\left\{w: \Re\left(\frac{(B-1) w(z)-(A-1)}{(B+1) w(z)-(A+1)}\right)>k\left|\frac{(B-1) w(z)-(A-1)}{(B+1) w(z)-(A+1)}-1\right|\right\}
$$

or equivalently

$$
\begin{aligned}
& \Delta_{k}[A, B]=\left\{u+i v:\left[\left(B^{2}-1\right)\left(u^{2}+v^{2}\right)-2(A B-1) u+\left(A^{2}-1\right)\right]^{2}\right. \\
> & \left.k^{2}\left[\left(-2(B+1)\left(u^{2}+v^{2}\right)+2(A+B+2) u-2(A+1)\right)^{2}+4(A-B)^{2} v^{2}\right]\right\} .
\end{aligned}
$$

The domain $\Delta_{k}[A, B]$ retains the conic domain Δ_{k} inside the circular region defined by $\Delta[A, B]$. the impact of $\Delta[A, B]$ on the conic domain Δ_{k} changes the original shape of the conic regions . The ends of hyperbola and parabola get closer to each other but never meet anywhere and the ellipse gets the oval shape. When $A \rightarrow 1, B \rightarrow-1$, the radius of the circular disk defined by $\Delta[A, B]$ tends to infinity, consequently the arms of hyperbola and parabola expand and the oval turns into ellipse . we see that $\Delta_{k}[1,-1]=\Delta_{k}$, the conic domain defined by Kanas and Wisniowska[15]. The authors in [$9, \ldots, 13$] studied classes which are related to conic region.

Let \mathcal{A} denote the class of functions of form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.3}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disk} \mathcal{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$, and \mathcal{S} denote the subclass of \mathcal{A} consisting of all function which are univalent in \mathcal{U}.
The fractional derivative of order α in the sense of Riemann Liouville is defined [2] by

$$
D_{z}^{\alpha} f(z)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\alpha}} d \zeta .0 \leq \alpha<1
$$

where f is an analytic function in a simply connected domain of the z-plane containing the origin and the multiplicity of $(z-\zeta)^{-\alpha}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$. Fractional derivative of higher order are defined by

$$
D_{z}^{\alpha+\beta} f(z)=\frac{d^{\beta}}{d z^{\beta}} D_{z}^{\alpha} f(z), \quad \beta \in \mathbb{N}_{0}
$$

Using the fractional derivative $D_{z}^{\alpha} f$ Owa and Srivastava [3] introduced the operator Ω^{α} : $\mathcal{A} \rightarrow \mathcal{A}$, which is known as an extension of fractional derivative and fractional integral as follows

$$
\begin{align*}
\Omega^{\alpha} f(z)= & \Gamma(2-\alpha) z^{\alpha} D_{z}^{\alpha} f(z), \quad \alpha \neq 2,3,4, \ldots \tag{1.4}\\
& =z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\alpha)}{\Gamma(n+1-\alpha)} a_{n} z^{k}
\end{align*}
$$

Now using the concepts of the fractional derivative and conic regions we define the following:

Definition 1.3. A function $f \in \mathcal{A}$ is said to be in the class $k-S P_{\alpha}[A, B], k \geq 0, \alpha \neq$ $2,3,4, \ldots,-1 \leq B<A \leq 1$, if and only if

$$
\begin{equation*}
\Re\left(\frac{(B-1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A-1)}{(B+1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A+1)}\right)>k\left|\frac{(B-1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A-1)}{(B+1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A+1)}-1\right|, \tag{1.5}
\end{equation*}
$$

where $\Omega^{\alpha} f(z)$ is defined by (1.4).
Or equivalently,

$$
\frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)} \in k-P[A, B]
$$

The following special cases are of interest
(i) $0-S P_{\alpha}[1,-1]=S P_{\alpha}$, the class introduced by Srivastava and Mishra in [??].
(ii) $k-S P_{0}[A, B]=k-S T[A, B]$ introduced by Khalida Inyat Noor and Sarfraz Nawaz Malik [8].
(iii) $k-S P_{1}[A, B]=k-U C V[A, B]$ introduced also by Khalida Inyat Noor and Sarfraz Nawaz Malik [8].
(iv) $k-S P_{0}[[1,-1]=k-S T$ the well-known class of k-uniformly starlike functions introduced by Kanas and Wisniowska [5].
(v) $k-S P_{1}[[1,-1]=k-U C V$ the well-known class of k-uniformly convex functions introduced by Kanas and Wisniowska [5].
(vi) $k-S P_{0}[1-2 \beta,-1]=S D(k, \beta)$, this class introduced by Shams [6].
(vii) $k-S P_{1}[1-2 \beta,-1]=K D(k, \beta)$, this class introduced by Shams [6].
(viii) $0-S P_{0}[A, B]=S^{*}[A, B]$, the well-known class of Janowski starlike functions introduced by Janowski [1].
(ix) $0-S P_{1}[A, B]=S^{*}[A, B]$, the well-known class of Janowski convex functions introduced by Janowski [1].
We need the following lemma to prove our main results.
Lemma 1.4. [8] Let $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in P[A, B]$. Then

$$
\left|c_{n}\right| \leq \frac{\left|\delta_{k}\right|(A-B)}{2}
$$

where δ_{k} is defined by (1.2).

2 Main results

Theorem 2.1. A function $f \in \mathcal{A}$ and of the form (1.3) is in the class $k-S P_{\alpha}[A, B]$, if it satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{2(k+1)(n-1)+|n(B+1)-(A+1)|\} \delta_{n}(\alpha)\left|a_{n}\right|<|B-A| \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{n}(\alpha)=\frac{\Gamma(n+1) \Gamma(2-\alpha)}{\Gamma(n+1-\alpha)} \tag{2.2}
\end{equation*}
$$

and

$$
-1 \leq B<A \leq 1, k \geq 0
$$

Proof. Assuming that (2.1) holds, then it suffices to show that

$$
k\left|\frac{(B-1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A-1)}{(B+1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A+1)}-1\right|-\Re\left[\frac{(B-1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A-1)}{(B+1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A+1)}-1\right]<1
$$

we get

$$
\begin{aligned}
& k\left|\frac{(B-1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A-1)}{(B+1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A+1)}-1\right|-\Re\left[\frac{(B-1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A-1)}{(B+1) \frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}-(A+1)}-1\right] \\
& \leq(k+1)\left|\frac{(B-1) z\left(\Omega^{\alpha} f(z)\right)^{\prime}-(A-1) \Omega^{\alpha} f(z)}{(B+1)\left(\Omega^{\alpha} f(z)\right)^{\prime}-(A+1) \Omega^{\alpha} f(z)}-1\right| \\
&=2(k+1)\left|\frac{\Omega^{\alpha} f(z)-z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{(B+1) z\left(\Omega^{\alpha} f(z)\right)^{\prime}-(A+1) \Omega^{\alpha} f(z)}\right| \\
&=2(k+1)\left|\frac{\sum_{n=2}^{\infty}(1-n) \delta_{n}(\alpha) a_{n} z^{n}}{(B-A) z+\sum_{n=2}^{\infty}[n(B+1)-(A+1)] \delta_{n}(\alpha) a_{n} z^{n}}\right| \\
& \quad \leq 2(k+1) \frac{\sum_{n=2}^{\infty}|1-n| \delta_{n}(\alpha)\left|a_{n}\right|}{|B-A|-\sum_{n=2}^{\infty}|n(B+1)-(A+1)| \delta_{n}(\alpha)\left|a_{n}\right|}
\end{aligned}
$$

The last expression is bounded above by 1 , then

$$
\sum_{n=2}^{\infty}\{2(k+1)(n-1)+|n(B+1)-(A+1)|\} \delta_{n}(\alpha)\left|a_{n}\right|<|B-A|
$$

and this completes the proof.
When $\alpha=0$, we have the following known result, proved by Khalida Inayat Noor and Sarfraz Nawaz Malik in [8].

Corollary 2.2. A function $f \in \mathcal{A}$ and form (1.3) in the class $k-S T[A, B]$, if it satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{2(k+1)(n-1)+|n(B+1)-(A-1)|\}\left|a_{n}\right|<|B-A| \tag{2.3}
\end{equation*}
$$

where $-1 \leq B<A \leq 1$ and $k \geq 0$.
For $\alpha=0, A=1$ and $B=-1$, we have following result due to Kanas and Wisniowska [5].
Corollary 2.3. A function $f \in \mathcal{A}$ and form (1.3) in the class $k-S T$, if it satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{n+k(n-1)\}\left|a_{n}\right|<1, \quad k \geq 0 \tag{2.4}
\end{equation*}
$$

For $\alpha=0, A=1-2 \beta$ and $B=-1$ with $0 \leq \beta<1$, we arrive at Shams et result in [6].
Corollary 2.4. A function $f \in \mathcal{A}$ and form (1.3) in the class $S D(k, \beta)$, if it satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{n(k+1)-(k+\beta)\}\left|a_{n}\right|<1-\beta \tag{2.5}
\end{equation*}
$$

where $0 \leq \beta<1$ and $k \geq 0$.
Also for $\alpha=0, A=1-2 \beta$ and $B=-1, \quad k=0$ with $0 \leq \beta<1$, then we get the wellknown Silverman's result [7].

Corollary 2.5. A function $f \in \mathcal{A}$ and form (1.3) in the class $S^{*}(\beta)$, if it satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}\{(n-\beta)\}\left|a_{n}\right|<1-\beta \tag{2.6}
\end{equation*}
$$

where $0 \leq \beta<1$.

Theorem 2.6. Let $f \in k-S P_{\alpha}[A, B]$ and is of the form (1.3). Then for $n \geq 2$.

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{\delta_{n}(\alpha)} \prod_{j=0}^{n-2} \frac{\left|\delta_{k}(A-B)-2 j B\right|}{2(j+1)} \tag{2.7}
\end{equation*}
$$

where δ_{k} is defined (1.2) and $\delta_{n}(\alpha)$ is defined by (2.2).
Proof. By the definition we have

$$
\begin{equation*}
\frac{z\left(\Omega^{\alpha} f(z)\right)^{\prime}}{\Omega^{\alpha} f(z)}=p(z) \tag{2.8}
\end{equation*}
$$

where

$$
p(z) \in P[A, B]
$$

Since $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$, and from (2.8), we have

$$
z+\sum_{n=2}^{\infty} n \delta_{n}(\alpha) a_{n} z^{n}=\left[z+\sum_{n=2}^{\infty} \delta_{n}(\alpha) a_{n} z^{n}\right]\left[1+\sum_{n=1}^{\infty} c_{n} z^{n}\right] .
$$

Equating coefficients of z^{n} on both sides, we have

$$
(n-1) \delta_{n}(\alpha) a_{n}=\sum_{j=1}^{n-1} \delta_{n-j}(\alpha) a_{n-j} c_{j}, \quad a_{1}=\delta_{1}(\alpha)=1
$$

This implies that

$$
\left|a_{n}\right| \leq \frac{1}{(n-1) \delta_{n}(\alpha)} \sum_{j=1}^{n-1} \delta_{n-j}(\alpha) a_{n-j} c_{j}, \quad a_{1}=\delta_{1}(\alpha)=1
$$

By Lemma 1.4, we get

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\left|\delta_{k}\right|(A-B)}{2(n-1) \delta_{n}(\alpha)} \sum_{j=1}^{n-1} \delta_{j}(\alpha)\left|a_{j}\right|, \quad a_{1}=\delta_{1}(\alpha)=1 \tag{2.9}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\frac{\left|\delta_{k}\right|(A-B)}{2(n-1) \delta_{n}(\alpha)} \sum_{j=1}^{n-1} \delta_{j}(\alpha)\left|a_{j}\right| \leq \frac{1}{\delta_{n}(\alpha)} \prod_{j=0}^{n-2} \frac{\left|\delta_{k}(A-B)-2 j B\right|}{2(j+1)} \tag{2.10}
\end{equation*}
$$

For this, we use the induction method.
For $n=2$: from (2.9), we have

$$
\left|a_{2}\right| \leq \frac{\left|\delta_{k}\right|(A-B)}{2}
$$

From (2.7), we have

$$
\left|a_{2}\right| \leq \frac{\left|\delta_{k}\right|(A-B)}{2}
$$

For $n=3$: from (2.9), we have

$$
\left|a_{3}\right| \leq \frac{\left|\delta_{k}\right|(A-B)}{\left.4 \delta_{3}(\alpha)\right)}\left[1+\frac{\left|\delta_{k}\right|(A-B)}{2}\right]
$$

From (2.7), we have

$$
\left|a_{3}\right| \leq \frac{1}{\delta_{3}(\alpha)} \frac{\left|\delta_{k}\right|(A-B)}{2} \frac{\left|\delta_{k}(A-B)-2 B\right|}{4}
$$

$$
\begin{aligned}
\left|a_{3}\right| & \leq \frac{1}{\delta_{3}(\alpha)} \frac{\left|\delta_{k}\right|(A-B)}{2} \frac{\left|\delta_{k}(A-B)+2 B\right|}{4} \\
& \leq \frac{\left|\delta_{k}\right|(A-B)}{2 \delta_{3}(\alpha)}\left[1+\frac{\left|\delta_{k}\right|(A-B)}{2}\right]
\end{aligned}
$$

Let the hypothesis be true for $n=m$. From (2.9), we have

$$
\left|a_{m}\right| \leq \frac{\left|\delta_{k}\right|(A-B)}{2(m-1) \delta_{m}(\alpha)} \sum_{j=1}^{m-1} \delta_{j}(\alpha)\left|a_{j}\right|, \quad a_{1}=\delta_{1}(\alpha)=1
$$

From (2.7), we have

$$
\begin{aligned}
\left|a_{m}\right| & \leq \frac{1}{\delta_{m}(\alpha)} \prod_{j=0}^{m-2} \frac{\left|\delta_{k}(A-B)-2 j B\right|}{2(j+1)} \\
& \leq \frac{1}{\delta_{m}(\alpha)} \prod_{j=0}^{m-2} \frac{\left|\delta_{k}\right|(A-B)+2 j}{2(j+1)}
\end{aligned}
$$

By the induction hypothesis, we have

$$
\frac{\left|\delta_{k}\right|(A-B)}{2(m-1) \delta_{m}(\alpha)} \sum_{j=1}^{m-1} \delta_{j}(\alpha)\left|a_{j}\right| \leq \frac{1}{\delta_{m}(\alpha)} \prod_{j=0}^{m-2} \frac{\left|\delta_{k}\right|(A-B)+2 j}{2(j+1)}
$$

Multiplying both sides by $\frac{\delta_{m}(\alpha)}{\delta_{m+1}(\alpha)} \frac{\left|\delta_{k}\right|(A-B)+2(m-1)}{2 m}$, we have

$$
\begin{aligned}
& \frac{1}{\delta_{m+1}(\alpha)} \prod_{j=0}^{m-1} \frac{\left|\delta_{k}\right|(A-B)+2 j}{2(j+1)} \geq \frac{\left|\delta_{k}\right|(A-B)}{2(m-1) \delta_{m}(\alpha)} \cdot \frac{\delta_{m}(\alpha)}{\delta_{m+1}(\alpha)} \frac{\left|\delta_{k}\right|(A-B)+2(m-1)}{2 m} \sum_{j=1}^{m-1} \delta_{j}(\alpha)\left|a_{j}\right| \\
& \quad=\frac{\left|\delta_{k}\right|(A-B)}{2 m \delta_{m+1}(\alpha)}\left[\frac{\left|\delta_{k}\right|(A-B)}{2(m-1)} \sum_{j=1}^{m-1} \delta_{j}(\alpha)\left|a_{j}\right|+\sum_{j=1}^{m-1} \delta_{j}(\alpha)\left|a_{j}\right|\right] \\
& \quad \geq \frac{\left|\delta_{k}\right|(A-B)}{2 m \delta_{m+1}(\alpha)}\left[\delta_{m}(\alpha)\left|a_{m}\right|+\sum_{j=1}^{m-1} \delta_{j}(\alpha)\left|a_{j}\right|\right] \\
& \quad=\frac{\left|\delta_{k}\right|(A-B)}{2 m \delta_{m+1}(\alpha)} \sum_{j=1}^{m} \delta_{j}(\alpha)\left|a_{j}\right|
\end{aligned}
$$

That is

$$
\frac{\left|\delta_{k}\right|(A-B)}{2 m \delta_{m+1}(\alpha)} \sum_{j=1}^{m} \delta_{m}(\alpha)\left|a_{j}\right| \leq \frac{1}{\delta_{m+1}(\alpha)} \prod_{j=0}^{m-1} \frac{\left|\delta_{k}\right|(A-B)+2 j}{2(j+1)}
$$

Which shows that inequality (2.10) is true for $n=m+1$. Hence the required result.
When $\alpha=0$ we get result introduced by Khalida Inayat Noor and Sarfraz Nawaz Malik in [8].
Corollary 2.7. Let $f \in k-S T[A, B]$ and is of the form (1.3). Then

$$
\left|a_{n}\right| \leq \prod_{j=0}^{n-2} \frac{\left|\delta_{k}(A-B)-2 j B\right|}{2(j+1)}, \quad-1 \leq B<A \leq 1, \quad n \geq 2
$$

For $\alpha=0, A=1 B=-1$ we arrive at Kanas and Wisniowska result in [5].
Corollary 2.8. Let $f \in k-S T$ and is of the form (1.3). Then

$$
\left|a_{n}\right| \leq \prod_{j=0}^{n-2} \frac{\left|\delta_{k}+j\right|}{(j+1)}, \quad n \geq 2
$$

Also for $\alpha=0, k=0 \delta_{k}=2$, we get result due to Janowski in [1].
Corollary 2.9. Let $f \in S^{*}[A, B]$ and is of the form (1.3). Then

$$
\left|a_{n}\right| \leq \prod_{j=0}^{n-2} \frac{|(A-B)-j B|}{(j+1)}, \quad-1 \leq B<A \leq 1, \quad n \geq 2
$$

References

[1] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28(1973) 297-326.
[2] Owa, S. (1978). On the distortion threorems, I, Kyyungpook Math. J 18(1), 374-408.
[3] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(5) (1987) 1057-1077.
[4] A. W. Goodman. Univalent Functions, Vols. I-II, Mariner Publishing Company, Florida, USA,(1983).
[5] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Roumaine Math. Pures Appl. 45(2000) 647-657.
[6] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci. 55(2004)2959-2961.
[7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer .Math. Soc. 51 (1975)109-116.
[8] K. L. Noor and S. N. Malik, On coefficient inequalities of functions associatd with conic domains, Comput. Math. Appl. 62(2011) 2209-2219.
[9] Fuad Al-Sarari and S.Latha, A note on coefficient inequalities for (j, i)-symmetrical functions with conic regions. Bull. Int. Math. Vit. Ins. 6, (2016), 77-87.
[10] Fuad Al-Sarari and S.Latha, A note on coefficient inequalities for symmetrical functions with conic regions, An. Univ. Oradea, fasc. Mat. 23(1), (2016), 67-75.
[11] Fuad Al-Sarari and S.Latha, A note on coefficient inequalities for certain classes of Ruscheweyh type analytic functions in conic regions.Mathematical Sciences Letters. 5 May (2016).
[12] Fuad Al-Sarari and S. Latha, On classes of functions related to conic regions and symmetric points, Palestine Journal of Mathematics. 4(2), (2015), 1-6.
[13] Fuad Al-Sarari and S.Latha, Conic regions and symmetric points. Int. J. Pure. Appl. Math, 97(3), (2014), 273-285.
[14] S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta. Math. Appl.Acta. Math. Univ. Comenian 74 (2) (2005)149-161.
[15] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. comput. Appl. Math. 105 (1999)327336.

Author information

FUAD. S. AL-SARARI, Department of Studies in Mathematics, Manasagangotri, University of Mysore, India. E-mail: alsrary@yahoo.com

S .LATHA, Department of Mathematics, Yuvaraja's College, University of Mysore, India.
E-mail: drlathe@gmail.com
Received: Januery 7, 2015.
Accepted: November 29, 2015

