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Abstract In this paper, we investigate the relationship between the plane curves and slant
helices in R3. Moreover, we show how could be obtained to a slant helix from a plane curve.
Finally, we give some slant helix examples generated by plane curves in Euclidean 3-space.

1 Introduction

In [3], A slant helix in Euclidean space R3 was defined by the property that the principal normal
makes a constant angle with a fixed direction. Moreover, Izumiya and Takeuchi showed that γ is
a slant helix in R3 if and only if the geodesic curvature of the principal normal of a space curve
γ is a constant function.

In [5], Kula and Yayli have studied spherical images of tangent indicatrix and binormal indi-
catrix of a slant helix and they showed that the spherical images are spherical helix.

In [4], Kula, Ekmekci, Yayli and Ilarslan have studied the relationship between the plane
curves and slant helices in R3. They obtained that the differential equations which are character-
izations of a slant helix.

In this paper we consider the relationship between the plane curves and slant helices in R3.
Moreover, we get slant helix from plane curve. Also, we give some slant helix examples in
Euclidean 3-space.

2 Preliminaries

We now recall some basic concept on classical geometry of space curves and the definition of
slant helix in R3. A curve γ̃ : I ⊂ R → R3, with unit speed, is a space curve. T (s) = γ̃′(s) is
a unit tangent vector of γ̃ at s. We define the curvature of γ̃ by κ = ∥γ̃′′∥. If κ(s) ̸= 0, then the
unit principal normal vector N(s) of the curve γ̃ at s is given by γ̃′′(s) = κ(s)N(s). The unit
vector B(s) = T (s)∧N(s) is called the unit binormal vector of γ̃ at s. For the derivatives of the
Frenet frame the Serret-Frenet formula hold:

T ′(s) = κ(s)N(s),

N ′(s) = −κ(s)T (s) + τ(s)B(s), (2.1)

B′(s) = −τ(s)N(s),

where τ(s) is the torsion of the curve γ̃ at s.

Definition 2.1. A curve γ̃ with κ(s) ̸= 0 is called a slant helix if the principal normal vector line
of γ̃ make a constant angle with a fixed direction [3].

Theorem 2.2. γ̃ is a slant helix if and only if the geodesic curvature of the spherical image of
the principal normal indicatrix (N) of γ̃

κg(s) =

(
κ2

ν(κ2 + τ 2)
3
2

( τ
κ

)′)
(s) (2.2)

is a constant function and ν = ∥γ̃′∥. Also, axis of the slant helix is

a⃗ = ± τ sin θ
(κ2 + τ 2)

1
2
T + cos θN ± κ sin θ

(κ2 + τ 2)
1
2
B (2.3)
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[3].

Theorem 2.3. Let γ̃ : I → R3 be a space curve and β : I → R3 be a space curve such that
β′ = γ′

∥γ′∥ .
γ̃ is a slant helix if and only if β is a slant helix.

Proof. If we use that

∥γ′∥κγ = κβ ,

∥γ′∥τγ = τβ .

and by simple calculation, we show that β is a slant helix and thus the proof of theorem 2.3 is
completed.

Now we can give the following theorem.

Theorem 2.4. Curves γ̃ and β have the same axis.

Proof. Let γ̃ be a slant helix with Frenet frame {Tγ̃ , Nγ̃ , Bγ̃}, curvature κγ̃ and torsion τγ̃ . β is a
slant helix with Frenet frame {Tβ , Nβ , Bβ}, curvature κβ and torsion τβ . By simple calculation,
we get

a⃗β = ± τβ sin θ
(κ2

β + τ 2
β)

1
2
Tβ + cos θNβ ± κβ sin θ

(κ2
β + τ 2

β)
1
2
Bβ

= a⃗γ̃ .

Thus the proof of theorem 2.4 is completed.

Definition 2.5. The epitrochoid is traced by a point P attached at a distance h to the center of a
circle of radius r2 rolling along another circle of radius r1 and its equation is

γ(t) = ((r1 + r2) sin t− h sin((
r1 + r2

r2
)t),−(r1 + r2) cos t+ h cos((

r1 + r2

r2
)t)) (2.4)

[6].

Definition 2.6. The epicycloid is traced by a point P attached at a distance r2 to the center of a
circle of radius r2 rolling along another circle of radius r1 and its equation is

γ(t) = ((r1 + r2) sin t− r2 sin((
r1 + r2

r2
)t),−(r1 + r2) cos t+ r2 cos((

r1 + r2

r2
)t)) (2.5)

[6].

Definition 2.7. In definition 2.5 if we choose r1 = r2, then we get special case of epitrochoid
curve. So we call this curve as limacon curve.

γ(t) = ((2r1 + 2h cos t) cos t, (2r1 + 2h cos t) sin t) (2.6)

[6].

Definition 2.8. If we choose r1 = r2 in equation (2.5), then the epicycloid curve is called a
cardioid curve with equation

γ(t) = (2r1 cos t− r1 cos(2t), 2r1 sin t− r1 sin(2t)). (2.7)

Definition 2.9. If we choose r1 = 2r2 in equation (2.5), then the epicycloid curve is called a
nephroid curve with equation

γ(t) = (3r2 cos t− r2 cos(3t), 3r2 sin t− r2 sin(3t)). (2.8)
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3 Plane curves and slant helix

For a space curve, if the torsion always vanishes, then the curve is contained in a plane. In this
case we denote the curve γ instead of γ̃ and the curvature κp instead of κ. Let γ̃ be a space curve
with Frenet frame {T,N,B} and with curvatures κ, τ in R3. The curve γ is given by

γ = γ̃ − ⟨γ̃, a⃗⟩⃗a, (3.1)

where a⃗ is a constant vector.

Theorem 3.1. Under the above notation, γ is a plane curve. Moreover, Frenet frame of the curve
γ are

t⃗ =
1√

1 − ⟨T, a⃗⟩2
(T − ⟨T, a⃗⟩⃗a)

n⃗ =
1√

1 − ⟨T, a⃗⟩2
(−⟨N, a⃗⟩B + ⟨B, a⃗⟩N) (3.2)

and curvature of the curve γ is

κp =
κ
√

1 − ⟨T, a⃗⟩2 − ⟨N, a⃗⟩2√
1 − ⟨T, a⃗⟩2

. (3.3)

Proof. Differentiating the equation (3.1), we get

γ′ = νT − ν⟨T, a⃗⟩⃗a
γ′′ = ν′T + ν2κN − ν′⟨T, a⃗⟩⃗a− ν2κ⟨N, a⃗⟩⃗a. (3.4)

and
∥γ′∥2 = ν2(1 − ⟨T, a⃗⟩2). (3.5)

Where ν = ∥γ̃′∥. Thus tangent vector of the curve γ is found as

t⃗ =
1√

1 − ⟨T, a⃗⟩2
(T − ⟨T, a⃗⟩⃗a). (3.6)

We can calculate that

γ′ ∧ γ′′ = ν3κ(B − ⟨N, a⃗⟩(T ∧ a⃗) + ⟨T, a⃗⟩(N ∧ a⃗)) (3.7)

and
∥γ′ ∧ γ′′∥ = ν3κ

√
1 − ⟨T, a⃗⟩2 − ⟨N, a⃗⟩2. (3.8)

By using (3.7) and (3.8), we obtain that principal binormal vector of the curve γ is

b⃗ =
1

1 − ⟨N, a⃗⟩2 − ⟨T, a⃗⟩2 (B − ⟨N, a⃗⟩(T ∧ a⃗) + ⟨T, a⃗⟩(N ∧ a⃗)).

Differentiating the equation (3.4), we get

γ′′′ = (ν′′ − ν3κ2)T + (3ν′νκ+ ν2κ′)N + ν2κτB

(ν′′⟨T, a⃗⟩+ 3ν′νκ⟨N, a⃗⟩+ ν2κ′⟨N, a⃗⟩ − ν3κ2⟨T, a⃗⟩+ ν3κτ⟨B, a⃗⟩)⃗a.

Also

det(γ′, γ′′, γ′′′) = ν6κ2τ [1 − ⟨T, a⃗⟩2 − ⟨N, a⃗⟩2 − ⟨B, a⃗⟩2]

= 0.

Then we know that
a⃗ = ⟨T, a⃗⟩T + ⟨N, a⃗⟩N + ⟨B, a⃗⟩B. (3.9)
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By using (3.9), we get

T ∧ a⃗ = ⟨N, a⃗⟩B − ⟨B, a⃗⟩N
N ∧ a⃗ = −⟨T, a⃗⟩B + ⟨B, a⃗⟩T (3.10)

B ∧ a⃗ = ⟨T, a⃗⟩N − ⟨N, a⃗⟩T.

Also by using (3.9) and (3.11), we obtain that

b⃗ = a⃗.

If we calculate n⃗ = b⃗ ∧ t⃗, The principal normal vector is found as

n⃗ = b⃗ ∧ t⃗ =
1√

1 − ⟨T, a⃗⟩2
(−⟨N, a⃗⟩B + ⟨B, a⃗⟩N).

Finally

κp =
∥γ′ ∧ γ′′∥
∥γ′∥3

=
κ
√

1 − ⟨T, a⃗⟩2 − ⟨N, a⃗⟩2√
1 − ⟨T, a⃗⟩2

and

τp =
det(γ′, γ′′, γ′′′)

∥γ′ ∧ γ′′∥2 = 0,

which means that γ is a plane curve.

Corollary 3.2. If space curve is a unit speed curves in theorem 3.1,

∥γ′∥ ≤ 1.

Corollary 3.3. Principal normal vector of the plane curve γ, defined by (3.1), is perpendicular
to tangent vector of the space curve γ̃, i.e.

⟨n⃗, T ⟩ = 0.

Let γ : I ⊂ R → R3 be a plane curve.

γ̃ = γ − (tan θ
∫ t

t0

⟨γ′, γ′′⟩
∥γ′′∥

du)⃗a+ c⃗ (3.11)

is a space curve. Where θ is a constant and a⃗, c⃗ are constant vectors with ⟨γ′(u), a⃗⟩ = 0 and
∥a⃗∥ = 1.

Theorem 3.4. Under the above notation, if −∥γ′′∥
√

1−∥γ′∥2

⟨γ′,γ′′⟩ = tan θ and ∥γ′∥ < 1, then γ̃ is a
unit speed slant helix.

Proof. Suppose that γ is a plane curve with Frenet frame {t⃗, n⃗} and with curvature κp. In this
case, we will show that ⟨N, a⃗⟩ = cos θ.

Differentiating the equation (3.11), we get

γ̃′ = ∥γ′∥t⃗− tan θ(
⟨γ′, γ′′⟩
∥γ′′∥

)⃗a

γ̃′′ = ∥γ′∥′t⃗+ ∥γ′∥2κpn⃗− ∥γ′∥∥γ′∥′√
1 − ∥γ′∥2

a⃗. (3.12)

Since

tan θ = −∥γ′′∥
√

1 − ∥γ′∥2

⟨γ′, γ′′⟩
, (3.13)
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we can write √
1 − ∥γ′∥2 = − tan θ⟨γ′, γ′′⟩

∥γ′′∥
. (3.14)

By using equation (3.14) in equation (3.12), we obtain

γ̃′′ = ∥γ′∥′t⃗+ ∥γ′∥2κpn⃗+ cot θ∥γ′′∥a⃗.

Then

∥γ̃′∥ =

√
∥γ′∥2 + tan2 θ

⟨γ′, γ′′⟩2

∥γ′′∥2

=

√
∥γ′∥2 +

∥γ′′∥2(1 − ∥γ′∥2)

⟨γ′, γ′′⟩2
⟨γ′, γ′′⟩2

∥γ′′∥2

= 1

and
T = ∥γ′∥t⃗+

√
1 − ∥γ′∥2a⃗. (3.15)

Also

∥γ̃′′∥ =
√
(∥γ′∥′)2 + ∥γ′∥4κ2

p + cot2 θ∥γ′′∥2

=
∥γ′′∥
sin θ

.

So
N =

sin θ
∥γ′′∥

(∥γ′∥′t⃗+ ∥γ′∥2κpn⃗+ cot θ∥γ′′∥a⃗) (3.16)

and

B =
sin θ
∥γ′′∥

(−∥γ′∥2
√

1 − ∥γ′∥2κpt⃗+(∥γ′∥′
√

1 − ∥γ′∥2−cot θ∥γ′∥∥γ′′∥)n⃗+∥γ′∥3κpa⃗). (3.17)

Moreover

κ =
∥γ′′∥
sin θ

τ =

√
1 − ∥γ′∥2

cos θ
and

κg = cot θ. (3.18)

Consequently

⟨N, a⃗⟩ = sin θ
∥γ′′∥

cot θ∥γ′′∥ = cos θ, (3.19)

which means that γ̃ is a slant helix.

Theorem 3.5. Let γ̃ be a slant helix. The spherical image of the tangent indicatrix (T ) of γ̃ is a
spherical helix [5].

Corollary 3.6. We denote the curvatures of (T ) of γ̃ generated by plane curve γ by κ1, τ1.

κ1 =
sin θ√

∥γ′∥2 − cos2 θ
(3.20)

and
τ1 =

cos θ√
∥γ′∥2 − cos2 θ

. (3.21)

We can calculate that
τ1

κ1
= cot θ.

cot θ is a constant.
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Theorem 3.7. Let γ̃ be a slant helix. The spherical image of the binormal indicatrix (B) of γ̃ is
a spherical helix [5].

Corollary 3.8. We denote the curvatures of (B) of γ̃ generated by plane curve γ by κ2, τ2.

κ2 =
sin θ√

1 − ∥γ′∥2
(3.22)

and

τ2 =
cos θ√

1 − ∥γ′∥2
. (3.23)

We can calculate that
τ2

κ2
= cot θ.

cot θ is a constant.

Lemma 3.9. Let γ : I → R3 be an epitrochoid curve with

γ(t) = ((r1 + r2) sin t− h sin((
r1 + r2

r2
)t),−(r1 + r2) cos t+ h cos((

r1 + r2

r2
)t), 0). (3.24)

For the curve γ, equation (3.13) is constant if and only if r1 + 2r2 = 1 and h = r2
2

r1+r2
.

Proof. From (3.11), if we calculate

tan θ = −∥γ′′∥
√

1 − ∥γ′∥2

⟨γ′, γ′′⟩
,

since tan θ is a constant, we find that r1 + 2r2 = 1 and h = r2
2

r1+r2
. Moreover, we obtain that

tan θ = − 2
√

r2(r1+r2)

r1
is a constant.

Conversely, let r1 + 2r2 = 1 and h = r2
2

r1+r2
, then tan θ is constant for the curve γ. Here

0 < r1 < 1, 0 < h < r2 < 1
2 .

As a result of lemma 3.9 we can give the following theorem.

Theorem 3.10. Let γ : I → R3 be an epitrochoid curve with

γ(t) = ((r1 + r2) sin t− h sin((
r1 + r2

r2
)t),−(r1 + r2) cos t+ h cos((

r1 + r2

r2
)t), 0),

where r1 + 2r2 = 1 and h = r2
2

r1+r2
. Space curve γ̃ generated by the epitrochoid curve is a slant

helix.

For r1 + 2r2 = 1 and h = r2
2

r1+r2
, slant helix γ̃ generated by the epitrochoid curve is

γ̃(t) = ((r1 + r2) sin t− r2
2

r1 + r2
sin((

r1 + r2

r2
)t), (r1 + r2) cos t+

r2
2

r1 + r2
cos((

r1 + r2

r2
)t),

− 4r2

r1

√
r2(r1 + r2) sin((

r1

2r2
)t))

and it is on hyperboloid of one sheet with equation

x2

r2
1

(r1+r2)2

+
y2

r2
1

(r1+r2)2

− z2

4r2
r1+r2

= 1. (3.25)
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Figure 1. The epitrochoid curve and the slant helix generated by epitrochoid for r1 = 16
34 ,

r2 =
9

34 .

Example 3.11. For r1 =
16
34 , r2 =

9
34 and h = 81

250 , the equation of curve γ is

γ(t) = (
25
34

sin t− 81
850

sin((
25
9
)t),−25

34
cos t+

81
850

cos((
25
9
)t), 0)

and it is rendered in figure 9
If we calculate tan θ, we find as tan θ = − 15

8 i.e. γ satisfies equation (3.13). Therefore, space
curve generated by the epitrochoid is a slant helix, which is rendered in figure 9 and its equation
is

γ̃(t) = (
25
34

sin t− 81
850

sin((
25
9
)t),−25

34
cos t+

81
850

cos((
25
9
)t),−135

136
sin((

8
9
)t)).

Moreover, the geodesic curvature of the principal normal indicatrix (N) of γ̃ is cot θ = − 8
15

Corollary 3.12. Frenet Frame {T,N,B}, curvature κ and torsion τ of slant helix γ̃ generated
by the epitrochoid curve are

T (t) = ((r1 + r2) cos t− r2 cos((
r1 + r2

r2
)t), (r1 + r2) sin t− r2 sin((

r1 + r2

r2
)t),

− 2
√
r2(r1 + r2) cos(

r1

2r2
t)),

N(t) = (
√
r2(r1 + r2) csc(

r1

2r2
t)(− sin t+ sin((

r1 + r2

r2
)t)),√

r2(r1 + r2) csc(
r1

2r2
t)(cos t− cos((

r1 + r2

r2
)t)), r1),

B(t) = ((r1 + r2) sin t+ r2 sin((
r1 + r2

r2
)t),−(r1 + r2) cos t− r2 cos((

r1 + r2

r2
)t),

2
√
r2(r1 + r2) sin(

r1

2r2
t)),

κ(t) =

√
r2(r1 + r2)

r2
sin(

r1

2r2
t),

τ(t) =

√
r2(r1 + r2)

r2
cos(

r1

2r2
t).

4 Applications

Let n = r1
r2

,

(i) If n is an integer, then the curve is closed, and has n cusps.

(ii) If n is a rational number, say n = p
q expressed in simplest terms, then the curve has p cusps.
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(iii) If n is an irrational number, then the curve never closes.

(i) For n = 1 (r1 = 1
3 , r2 = 1

3 ), Since n is an integer, epitrochoid is simple closed curve.
This epitrochoid is special case of limacon curve and also it is speed vector of cardioid curve.
Slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve.
Spherical indicatricies of the slant helix lie on the unit sphere and they are also closed curves,
which is rendered in Figure 2, respectively.

(ii) For n = 2 (r1 = 1
2 , r2 = 1

4 ), Since n is an integer, epitrochoid is simple closed curve and
also it is speed vector of nephroid curve. Slant helix generated by the epitrochoid curve is on
hyperboloid of one sheet and closed curve. Spherical indicatricies of the slant helix lie on the
unit sphere and they are also closed curves, which is rendered in Figure 3, respectively.

(iii) For n = 3 (r1 = 3
5 , r2 = 1

5 ), Since n is an integer, epitrochoid is simple closed curve.
Slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve.
Spherical indicatricies of the slant helix lie on the unit sphere and they are also closed curves,
which is rendered in Figure 4, respectively.

(iv) For n = 4 (r1 = 4
6 , r2 = 1

6 ), Since n is an integer, epitrochoid is simple closed curve.
Slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve.
Spherical indicatricies of the slant helix lie on the unit sphere and they are also closed curves,
which is rendered in Figure 5, respectively.

(v) For n = 5 (r1 = 5
7 , r2 = 1

5 ), Since n is an integer, epitrochoid is simple closed curve.
Slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve.
Spherical indicatricies of the slant helix lie on the unit sphere and they are also closed curves,
which is rendered in Figure 6, respectively.

(vi) For n = 1
2 (r1 =

1
5 , r2 =

2
5 ), Since n is an rational, epitrochoid is closed curve. Slant helix

generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve. Spherical
indicatricies of the slant helix lie on the unit sphere and they are also closed curves, which is
rendered in Figure 7, respectively.

(vii) For n = 1
3 (r1 = 1

7 , r2 = 3
7 ), Since n is an rational. epitrochoid is closed curve,

slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve.
Spherical indicatricies of the slant helix lie on the unit sphere and they are also closed curves,
which is rendered in Figure 8, respectively.

(viii) For n = 1
4 (r1 = 1

9 , r2 = 4
9 ), Since n is an rational. epitrochoid is closed curve,

slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and closed curve.
Spherical indicatricies of the slant helix lie on the unit sphere and they are also closed curves,
which is rendered in Figure 9, respectively.

(ix) For n = 2
√

5−4
3−

√
5

(r1 =
√

5 − 2, r2 = 3−
√

5
2 ), Since n is an irrational number, epitrochoid

never closes, slant helix generated by the epitrochoid curve is on hyperboloid of one sheet and
spherical indicatricies of the slant helix lie on the unit sphere, which is rendered in Figure 10,
respectively.

Figure 2. For n = 1, the epitrochoid, the slant helix generated by the epitrochoid curve and its
spherical indicatricies (T,N,B) on unit sphere.
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Figure 3. For n = 2, the epitrochoid, the slant helix generated by the epitrochoid curve and its
spherical indicatricies (T,N,B) on unit sphere.
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-0.5

0.5

Figure 4. For n = 3, the epitrochoid, the slant helix generated by the epitrochoid curve and its
spherical indicatricies (T,N,B) on unit sphere.
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0.5

Figure 5. For n = 4, the epitrochoid, the slant helix generated by the epitrochoid curve and its
spherical indicatricies (T,N,B) on unit sphere.
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Figure 6. For n = 5, the epitrochoid, the slant helix generated by the epitrochoid curve and its
spherical indicatricies (T,N,B) on unit sphere.



Slant Helices Generated by Plane Curves in Euclidean 3-space 173

-0.5 0.5

-0.5

0.5

Figure 7. For n = 1
2 , the epitrochoid, the slant helix generated by the epitrochoid curve and its

spherical indicatricies (T,N,B) on unit sphere.
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Figure 8. For n = 1
3 , the epitrochoid, the slant helix generated by the epitrochoid curve and its

spherical indicatricies (T,N,B) on unit sphere.
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Figure 9. For n = 1
4 , the epitrochoid, the slant helix generated by the epitrochoid curve and its

spherical indicatricies (T,N,B) on unit sphere.
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Figure 10. For n = 2
√

5−4
3−

√
5

, the epitrochoid, the slant helix generated by the epitrochoid curve
and its spherical indicatricies (T,N,B) on unit sphere.
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