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Abstract. For certain Frechet space F consisting of complex valued C∞ functions defined
on I = (0,∞) and characterized by their asymptotic behavior near the boundaries, we show that
:

(i) The Pseudo differential operator (−x−1D)(α−β), (α−β) ∈ R,D = d
dx , is an automorphism

(in the topological sense) on F .

(ii) (−x−1D)(α−β) is almost an inverse of the Hankel type transform hα,β in the sense that
hα,β ◦ (x−1D)(α−β)(ϕ) = h◦(ϕ),for all ϕ ∈ F and (α− β) ∈ R

(iii) (−x−1D)(α−β) has a Fourier-Bessel type series representation on a subspace Fb ⊂ F and
also on its dual F ′

b.

1 Introduction

The theory of pseudo differential operators has been developed by many researchers in India
and abroad. In recent years pseudo differential operators involving Hankel transform, Hankel
convolution, Bessel operators etc. has been studied by many mathematicians. It is the purpose
of this paper to give the Fourier-Bessel type series representation of the pseudo differential type
operator (−x−1D)(α−β).

We denote by F the space of all C∞- complex valued functions ϕ(x) defined on I = (0,∞) ,
such that

ϕ(x) =
k∑

i=0

aix
2i +O(x2k) (1.1)

near the origin and is rapidly decreasing as x→ ∞.

For (α− β) > −1/2, we define a (α− β)th order Hankel-type transform hα,β on F by

Φ(y) = [hα,βϕ(x)](y) =

∫ ∞

0
ϕ(x)Jα,β(xy)dm(x) (1.2)

where

dm(x) = m′(x)dx =
[
2α−βΓ(3α+ β)

]−1
x4αdx,

Jα,β(x) = 2α−βΓ(3α+ β)x−(α−β)Jα−β(x),
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and Jα−β(x) is the Bessel-type function of order (α − β). The inversion formula for (1.2) is
given by [1, 3, 4],

ϕ(x) =

∫ ∞

0
Φ(y)Jα,β(xy)dm(y). (1.3)

In the present paper we will show that for every real (α− β):

(i) The pseudo differentialâĂŞtype operator (−x−1D)(α−β) is a topological automorphism on
F .

(ii) The Hankel-type transform hα,β is also an automorphism on F .

(iii) On F ,(−x−1D)(α−β) is almost an inverse of hα,β in the sense that
[hα,β ◦ (−x−1D)(α−β)](ϕ) = h ◦ (ϕ), ϕ ∈ F .

(iv) On a certain subspace Fb ⊂ F and on its dual F ′
b, (−x−1D)(α−β) has Fourier-Bessel type

series representation.

All automorphisms are topological automorphisms in the sequel.

2 Notations and Terminology

For any real number (α − β) ̸= −1/2, Fα,β is the space of all C∞- complex valued functions
ϕ(x) defined on I such that

ρα,βm,k(ϕ) = Supx∈I

∣∣xm △k
α,β,x ϕ(x)

∣∣ <∞ (2.1)

For each m, k = 0, 1, 2 . . . where △α,β,x= D2 + x−1(4α)D.
We can easily note that Fα,β is a Frechet space. Its topology is generated by the countable family
of separating seminorms

{
ρα,βm,k

}
m,k=0,1,2

.

By Lee [3, Theorem 2.1(i), page 429], we have Fα,β = Fa,b = F (as a set) for each (α −
β), (a − b)(̸= −1/2) ∈ R. Thus for each (α − β)(̸= −1/2) , we have a topology Tα−β on
F generated by the countable family of seminorms ρα,βm,k. Hence (F, Tα−β) is a Frechet space.
When (α−β) = −1/2, F−1/2 ̸= F , since the factor x−1(4α)D in △α,β,x responsible for the even
nature of ϕ(x) ∈ Fα,β(x) near the origin, vanishes. For example e−x ∈ F−1/2 but e−x /∈ Fα,β .
Following Zemanian [7, 8] we define Hankel-type transform hα,β with (α− β) ≥ −1/2 by

Ψ(y) =
[
hα,βψ(x)

]
(y) =

∫ ∞

0
ψ(x)(xy)α+βJα−β(xy)dx (2.2)

It can be easily proved that hα,β is an automorphism on the space Hα,β that consists of complex
valued C∞ functions defined on I and satisfies the relation

ρα,βm,k(ψ) = Supx∈I

∣∣xm(x−1D)k
[
x2β−1ψ(x)

]∣∣ <∞ (2.3)

for each m, k = 0, 1, 2 . . . where D = d/dx.
Now we will need following theorem which is an important result for the development of our
theory.

Theorem 2.1. Let (α− β), (a− b) ̸= −1/2; a, b are real numbers. Then

(i) The operation ϕ→ x2αϕ is an homeomorphism from F onto Hα,β

(ii)
(
x−1D

)n : F → F is an automorphism of F .

(iii) (F, Ta−b) and (F, Tα−β) are equivalent topological spaces.

(iv) hα,β(ϕ) = (−1)n
[
hα,β,n

(
x−1D

)n]
(ϕ), ϕ ∈ F, (α− β) ≥ −1/2, n = 0, 1, 2 . . . .
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Notation: In view of Theorem 2.1((i),(ii)), we will always write x2αϕ = ϕ(x) ∈ Hα,β for ϕ ∈ F
and drop the suffix, (α − β) from Tα−β . So henceforth the topological linear space (F, T ) will
be denoted by F .

Proof of Theorem 2.1:(i)We use induction on n and noting that

△α,β,x= x2(x−1D)2 + 2(3α+ β)(x−1D) (2.4)

It can be proved that

△n
α,β,x= x2n(x−1D)2n + a1x

2(n−1)(x−1D)2n−1 + · · ·+ an(x
−1D)n (2.5)

where ai are the constants depending on α− β. Now ϕ ∈ F if and only if ϕ ∈ Hα,β (see remark
II of Lee [3]) and taking a0 = 1, it follows from (2.5) that

ρα,βm,k(ϕ) ≤
2k∑
i=k

a2k−iρ
α,β
m+2(i−k),i(ϕ) (2.6)

Proving the continuity of the inverse operation ϕ → x2β−1ϕ. By using open mapping theorem
[6, page.172], F being Frechet space, we complete the proof.
(ii) Letϕj be a sequence tending to zero in F . Then ϕj → 0 inHα,β for arbitrary (α−β) ̸= −1/2.
Hence

ρα,βm,k

[
(x−1D)nϕj(x)

]
≤

2k∑
i=k

a2k−iρ
α,β
m+2(i−k),i+n

ϕj → 0, as j → ∞(by(2.6))

Now it remains to be shown that (x−1D)n is bijective. It is enough to prove this for n = 1. So,
let x−1Dϕ1(x) = x−1Dϕ2(x) for ϕ1, ϕ2 ∈ F . Hence ϕ1(x)− ϕ2(x) = constant. But ϕ1(x)and
ϕ2(x) are of rapid descent as x→ ∞ ⇒ ϕ1 = ϕ2(x). Now let ψ ∈ F , then ϕ(x) = −

∫∞
x
tψ(t)dt,

defined uniquely (since ψ is of rapid descent as x → ∞) in F , is such that x−1Dϕ(x) = ψ(x).
Thus we see that (x−1D)n is a continuous bijection on F. The space F being a Frechet space, the
Open Mapping Theorem shows that(x−1D)n is a bicontinuous bijection on (F, Tα−β) for each
(α− β) ∈ R− {1/2}.
(iii)Let α− β = a− b+ d, d ∈ R and ϕn be a sequence tending to zero in (F, Ta−b). Then

ρα,βm,k(ϕn) = Supx∈I

∣∣∣xm [
△a,b,x +2d(x−1D)

]k
ϕn(x)

∣∣∣ <∞

≤ Supx∈Ix
m

[∣∣∣∣∣
k∑

i=0

△k−i
a,b,x (2dx−1D)iϕn(x)

∣∣∣∣∣
+

k∑
i=0

∣∣(2dx−1D)k−i △i
a,b,x ϕn(x)

∣∣
+ terms of type

∣∣∣△i1
a,b,x (2dx−1D)i2 △i3

a,b,x . . . ϕn(x)
∣∣∣

and
∣∣∣(2dx−1D)j1 △j2

a,b,x (2dx−1D)j3 . . . ϕn(x)
∣∣∣]

(where i1 + i2 + i3 + · · · = j1 + j2 + j3 + · · · = k) → 0 as n→ ∞, for each m, k = 0, 1, 2, . . .
Since △i

a,b,x and (x−1D)i are continuous on (F, Ta−b).
This follows from integration by parts and induction on n.

Remark 2.2. It can be shown that on F

△k
α,β,x ◦(x−1D)n = (x−1D)n◦ △k

α,β−n,x

This proof follows by induction on k.



178 B.B.Waphare and S.G.Gajbhiv

Definition 2.3. In view of Theorem 2.1(iv), we define the Hankel-type transform hα,β formally
for any (α− β) ∈ R as

hα,β(ϕ) = hα,β,n ◦ (x−1D)nϕ, ϕ ∈ F (2.7)

where n is chosen such that α− β + n > −1/2.
This is well defined definition as (x−1D)n is an automorphism.

Definition 2.4. Let F ′ be the dual space of F .Then for f ∈ F ′ define the generalized Hankel-type
transform hα,βf = f̂ of f by

⟨hα,βf, hα,βϕ⟩ = ⟨f, ϕ⟩ , ϕ ∈ F, (α− β) ∈ R

Theorem 2.5. For (α− β) ∈ R, hα,β is an automorphism on F and hence on F ′.

Proof:Let ϕ(x) ∈ F . Then

hα,β(ϕ) = Φ(y) =

∫ ∞

0
(x−1D)2nϕ(x)Jα,β,2n(xy)dm(x) = y2β−1ha,b

(
ψ(x)

)
(y), (2.8)

where a− b = α− β + 2n > −1/2 and ψ(x) = x2aψ(x) = x2a(x−1D)2nϕ(x).
Let ϕn(x) → 0 in F ⇒ ψm(x) → 0 in Ha,b

⇒ ha,b(ψm) → 0 in Ha,b

⇒ ha,b(ϕm) → 0 in F .
Now ha,b,the Hankel-type transform being bijective , (2.7) shows that hα,βis a bijection. Finally
by making use of the Open Mapping Theorem we can complete the proof.
Writing α = β = 0, in (2.7) and h0,0 = h0 in definition(2.1) we get

h0(ϕ) = hn ◦ (−x−1D)nϕ(x), ϕ ∈ F.

The above equation motivates us to propose the following definition.

Definition 2.6. For (α− β) ∈ R, define (−x−1D)α−β by

(−x−1D)α−β(ϕ) = h−1
α,β ◦ h0(ϕ), (2.9)

Then (−x−1D)α−β is clearly an automorphism on F for each real (α− β). From equation (2.9)
we get

(−x−1D)α−βϕ(x) =

∫ ∞

0
dm(y)Jα,β(xy)

∫ ∞

0
dmϕ(x)J0(xy) (2.10)

For distribution f ∈ F ′, define (−x−1D)α−β by⟨
(−x−1D)α−βf, ϕ

⟩
=

⟨
f, (−x−1D)α−βϕ

⟩
, ϕ ∈ F

Now we modify theorem 2.1 (ii) to give our main result.

Theorem 2.7. The pseudo differential operator (−x−1D)α−β is an automorphism on F and
hence on F ′ for each (α− β) ∈ R.

3 The Fourier-Bessel type Series expansion of (−x−1D)α−β

Equation (2.10) gives the integral representation of the operator (−x−1D)α−β . To get the
Fourier-Bessel type series expansion, we modify our leading function space F suitably as fol-
lows (similar to the ones as in Zemanian [7, 9]).
For b > 0, define

Fb = {ϕ ∈ F |ϕ = 0 for x > b} (3.1)

The topology of Fb is generated by a countable family of seminorms

ρα,βk (ϕ) = Sup0<x<b

∣∣△k
α,β,x ϕ(x)

∣∣ <∞ k = 0, 1, 2 . . . (3.2)

Clearly all the topologies obtained by choosing different (α− β)’s are equivalent.
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Remark 3.1. Without loss of generality, we may take (α− β) > −1/2.

Definition 3.2. We define finite Hankel type transform hα,β by

Φ(z) = [hα,βϕ] (z) =

∫ b

0
ϕ(x)Jα,β(xz)dm(x) (3.3)

Then Φ(z) is an even entire function by Griffith Theorem [2, 9]. Let z = y + iw and Gb =
{Φ(z)|Φ(z)is an even entire function satisfying (3.4)} .

ηkb (Φ) = Supz∈C

∣∣∣e−b|w|z2kΦ(z)
∣∣∣ <∞ (3.4)

for k = 0, 1, 2 . . . . Then Gb is a linear topological space with ηkb as seminorms.
Both spaces Fb and Gb are Hausdorff locally convex topological linear spaces satisfying the
axiom of first countability. They are sequentially complete spaces.

Theorem 3.3. hα,β is an homeomorphism from Fb onto Gb.

Proof:Let ϕ ∈ Fb. Then

Φ(z) = hα,β,2m
[
(−x−1D)2mϕ(x)

]
m ∈ N

Hence

z2mΦ(z) =

∫ b

0
x4α+2m [

(−x−1D)2mϕ(x)
]
(xz)−(α−β)Jα−β+2m(xz)dz

From the asymptotic formula

Jα−β)(z) ∼
√

2/πz cos
(
z − (α− β)π

2
− π

4

)
|z| → ∞, |argz| < π

and from the fact that z−(α−β)Jα−β+m(z) is an entire function, it follows that for all x, z,∣∣∣e−b|w|(xz)−(α−β)Jα−β+2m(xz)
∣∣∣ < Cm(α−β) (a constant)

Thus
ηmb (Φ) ≤ Cm(α−β)b

2(m+3α+β)ρα,β0

[
(x−1D)2mϕ(x)

]
<∞ (3.5)

(x−1D)2m being an automorphism (also on Fb), (3.5) implies the continuity of hα,β . hα,β is
clearly injective. For any Φ(z) ∈ Gb, take

ϕ(x) =

∫ ∞

0
Φ(y)Jα,β(xz)dm(y)

Then it follows from Griffith Theorem [2] that ϕ is zero almost everywhere for x > b. Also

ρα,βk (ϕ) = Sup0<x<b

∣∣∣∣△k
α,β,x

∫ ∞

0
Φ(y)Jα,β(xz)dm(y)

∣∣∣∣
= Sup0<x<b

∣∣∣∣∫ ∞

0
Φ(y)(−1)ky4α+2k(xy)−(α−β)Jα−β(xy)dy

∣∣∣∣ <∞,

Since △k
α,β,x

[
(xy)−(α−β)Jα−β(xy)

]
= (−1)ky2k(xy)−(α−β)Jα−β(xy),Φ(y) is of rapid descent

as y → ∞, and
[
(xy)−(α−β)Jα−β(xy)

]
is bounded for 0 < y < ∞. Therefore, ϕ ∈ Fb. Hence

hα,β is surjective. Now the Open Mapping Theorem completes the proof.

Theorem 3.4. Let ϕ ∈ Fb. Then

ϕ(x) = lim
ϵ→0+

2
b2

∞∑
n=1

λϵ(x)

(
λn
x

)α−β
Jα−β(xλn)

J2
3α+β(bλn)

Φ(λn) (3.6)
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where the λn’s are the positive roots of Jα−β(bz) = 0 arranged in the ascending order and for
0 < ϵ < b/4,

λϵ(x) =


E
(

x
2ϵ

)
0 < x < 2ϵ

1 2ϵ ≤ x ≤ b− 2ϵ
1 − E

(
x−b+2ϵ

2ϵ

)
b− 2ϵ < x < b

0 x ≥ b

and

E(u) =

∫ u

0 e
1

x(x−1) dx∫ 1
0 e

1
x(x−1) dx

Proof: By following [5] proof can be completed. Theorem 3.4 gives the required Fourier-Bessel
type series expansion for the pseudo differential type operator (−x−1D)α−β , which we obtain
in the following.

Theorem 3.5 (The Fourier-Bessel type series). For ϕ ∈ Fb, we have

[
(−x−1D)α−β

]
ϕ(x) = lim

ϵ→0+

2
b2

∞∑
n=1

λϵ(x)

(
λn
x

)α−β
Jα−β(xλn)

J2
3α+β(bλn)

Φ0(λn) (3.7)

where
Φ0(y) = h0[ϕ(x)](y)

Proof: Equation (2.9) along with Theorem 3.4 gives the required proof.
Note that, ∣∣λ2α

n Φ0(λn)
∣∣ ≤ Ak(α−β)λ

2α−2k
n

Ak(α−β) constant and
Jα−β(xλn)

xα−βλ
1/2
n J2

3α+β(bλn)
is smooth and bounded on 0 < x < b, 0 < λn <∞.

Hence the truncation error

EN = lim
ϵ→0+

2
b2

∞∑
n=N+1

λϵ(x)

(
λn
x

)α−β
Jα−β(xλn)

J2
3α+β(bλn)

Φ0(λn)

has exponential decay for large N. This completes the proof.
Theorem 3.5 gives the Fourier-Bessel type series representation of the operator (−x−1D)α−β on
the testing function space Fb. We wish to investigate the nature of the Fourier-Bessel series for
the pseudo-differential type operator (−x−1D)α−β on the distribution space F ′

b.
The spaces F ′

b and G′
b are dual spaces of Fb and Gb respectively. They are assigned the weak

topologies generated by the seminorms

Pϕ(f) = | ⟨f, ϕ⟩ |, ϕ ∈ Fb, f ∈ F ′
b

and
Pϕ (hα,βf) = |⟨hα,βf, hα,βϕ⟩| , hα,βϕ ∈ Gb, hα,βf ∈ G′

b

respectively.Both the spaces are sequentially complete.

Definition 3.6. For f ∈ F ′
b, ϕ ∈ Fb, we define the generalized finite hankel-type transform hα,βf

by
⟨hα,βf, hα,βϕ⟩ = ⟨f, ϕ⟩ (3.8)

Theorem 3.7. For (α− β) ∈ R, hα,β is an homeomorphism from F ′
b onto G′

b.

Theorem 3.8. For every ϵ ∈ (0, b/4) and each f ∈ F ′
b, the function

f̂ϵ(y) =
⟨
f(x), y2β−1λϵ(x)m

′(y)Jα,β(xy)
⟩

(3.9)

where λϵ(x) is defined as in Theorem 3.4 is a smooth function of slow growth and defined a
regular generalized function in G′

b
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Proof: We note that (x−1D)kλϵ(x) is bounded on 0 < x < b for each k.Using (2.6), it is simple
to see that y2β−1λϵ(x)m′(y)Jα,β(xy) ∈ Fb. Hence (3.9) is well defined . The result of the proof
is similar to that of Zemanian [ Lemma 12]H.

Theorem 3.9. The finite Hankel-type transform hα,βf of a generalized function f ∈ F ′
b is the

distributional limit, as ϵ→ 0+ of the family f̂ϵ(z) defined by (3.9).

Proof: Proof is simple and hence omitted.

Theorem 3.10. Let f ∈ F ′
bandf̂ = hα,βf . Then in the sense of convergence in F ′

b, we have

f(x) = lim
N→∞

2
b2

N∑
n=1

x3α+β

√
λn

Jα−β(xλn)

J2
3α+β(bλn)

f̂(λn) (3.10)

Proof: The proof follows easily from Theorem 3.4 and 3.9.
Remark 3:For f ∈ F ′

b, such that either f is regular or suppf ⊂ [0, b], the limit of f̂ϵ(z) as
ϵ → 0+ exists as an ordinary function and is equivalent to the finite Hankel-type transform of f
[5].

A consequence of the above theorem is the following:

Theorem 3.11. Let f, g ∈ F ′
b. If (hα,βf)(λn) = (hα,βg)(λn), for n = 1, 2, 3 . . . then f = g and

hα,βf = hα,βg.

Definition 3.12. For f ∈ F ′
b, define (−x−1D)α−βf by⟨

(−x−1D)α−βf, ϕ
⟩
=

⟨
f, (−x−1D)α−βϕ

⟩
, ϕ ∈ Fb, (α− β) ∈ R (3.11)

From equations (2.9),(3.8) and (3.11), it follows that⟨
(−x−1D)α−βf, ϕ

⟩
=

⟨
f, (−x−1D)α−βϕ

⟩
=

⟨
h−1

0 hα,βf, ϕ
⟩
, f ∈ F ′

b, ϕ ∈ Fb

Hence
(−x−1D)α−βf = h−1

0 hα,βf on F ′
b (3.12)

Applying Theorem 3.10 to equation (3.12) we get

Theorem 3.13 (The Fourier-Bessel type series). Let f ∈ F ′
b and f̂ = hα,βf . Then in the sense of

convergence in F ′
b, we have

(−x−1D)α−βf(x) = lim
N→∞

2
b2

N∑
n=1

x√
λn

J0(xλn)

J2
1 (bλn)

f̂(λn). (3.13)
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