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Abstract. In this study, we gave an alternative kinematic model for two smooth submanifolds
M and N both on another and inside of another, along given any two curves which are tangent
to each other on M and N at every moment , which the motion accepted that these curves are
trajectories of the instantaneous rotation centers at the contact points of these submanifolds and
we gave some remarks for the kinematic model at every moments by using Bishop frame. In
addition, we established the relationships between Bishop curvatures of the moving and fixed
pole curves.

1 Introduction

R.Müller generalized 1-parameter motions in an n-dimensional Euclidean space which is given
by the equation Y = AX + C and investigated axoid surfaces[7]. K. Nomizu defined the 1-
parameter motion model along the pole curves on the tangent plane of the sphere, by using
parallel vector fields and obtained some results of the motion in the cases that the motion is only
sliding or only rolling [9]. H.H.Hacısalihoğlu investigated 1-parameter homothetic motion and
obtained some important results in an n-dimensional Euclidean space[5]. B.Karakaş adapted K.
Nomizu’s motion model to the homothetic motion, again by defining parallel vector fields along
the curves[3]. Y. Tuncer, Y. Yaylı and M. K. Sağel showed that a smooth manifold M can be
rolling, sliding and spining on (or in side of) another smooth manifold N along not only special
curves but also any regular curves (which are the pole curves of the homothetic motion) on M
and N by using Frenet vectors, curvatures and torsions[13].

In this study, our aim is to show that a smooth manifold M can be rolling, sliding and spining
on (or in side of) another smooth manifold N along not only special curves but also any regular
curves (which are the pole curves of the homothetic motion) on M and N , by using Bishop
frames, curvatures and the other special orthonormal frames along these curves and obtain the
equation of this motion. Consequently, we will have obtained the equation of the homothetic
motion of M on N along the pole curves.

The homothetic motion of the smooth submanifold M on (or in side of) another N in a
3-dimensional Euclidean space is generated by the transformation

F : M → N

X(s) → Y (s) = hAX(s) + C
(1.1)

where A is a proper orthogonal 3 × 3 matrix, X and C are 3 × 1 vectors and h 6= 0 is a
homothetic scale. The elements of A, C and h are continuously differentiable functions of the
time-dependent parameter s and the elements ofX are the coordinates of a point onM according
to the Euclidean coordinate system {x1, x2, x3}. We take B as hA with differentiating (1.1) and
we obtain

dY

ds
= B

dX

ds
+
dB

ds
X +

dC

ds
(1.2)

where dB
ds X+ dC

ds ,B dX
ds and dY

ds are called sliding velocity, relative velocity and absolute velocity
of the point X . We called X is a center of the instantaneous rotation if its sliding velocity is
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vanished. If X is a center of the instantaneous rotation then X is a pole point at the time s of the
motion F given in (1.1) [5, 13, 14, 15]. Since det(dBds ) 6= 0 then every homothetic motion in E3

is a regular motion[5]. Let X(s) be a regular curve on M which is defined on closed interval
I ⊂ IR so that all of its points are the pole points. In this case, we called

X(s) = −[dB
ds

]−1[
dC

ds
]

and

Y (s) = −B[dB
ds

]−1[
dC

ds
] + C

are the moving and fixed pole curves, respectively, where the matrix B[dBds ]
−1 is as follows.

−B [
dB

ds
]−1 =

(
(
dh

ds
A+ h

dA

ds

)
h−1A−1 =

dh

ds
h−1I3︸ ︷︷ ︸+ dA

ds
A−1︸ ︷︷ ︸

ϕ S

We called ϕ and S are sliding part and rolling part of the motion F , respectively. For S 6= 0, there
is a uniquely determined vector W (s) such that S(U) is equal to the cross product W (s)∧U for
every vector U ∈ IR3. The vector W (s) is called the angular velocity vector of the point X(s)
at instant s. If W (s) is normal to N at Y (s) then we have a spinning at instant s. If W (s) is
tangent to N at Y (s) then we say that motion is a rolling with sliding , if ϕ = 0 and S 6= 0 then
F is a pure rolling motion, if ϕ 6= 0 and S = 0 then F is a pure sliding motion[3, 5, 9, 15]. Since
the motion F is a homothetic motion then it contains sliding part absolutely.

The ability to "ride" along a three-dimensional space curve and illustrate the properties of
the curve, such as curvature and torsion, would be a great asset for mathematicians. The classic
Serret-Frenet frame provides such ability,however the Serret-Frenet frame is not defined for all
points along every curve. A new frame is needed for the kind of mathematical analysis that is
typically done with the computer graphics.

Denote by {T (s), N(s), B(s)} the moving Frenet-Serret frame along the curve α(s) in the
space E3. For an arbitrary curve α(s) with first and second curvature, κ(s) and τ(s) in the space
E3, the following Frenet-Serret formulae are given in [4] written under matrix form T ′ (s)

N ′ (s)

B′ (s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0


 T (s)

N (s)

B (s)



where

〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0,

〈T, T 〉 = 〈N,N〉 = 〈B,B〉 = 1.

Here, curvature functions are defined by

κ (s) = ‖α′′(s)‖ , and τ (s) =
det(α′(s), α′′(s), α′′′(s))

‖α′′(s)‖2 .

The Relatively Parallel Adapted Frame or Bishop Frame could provide the desired means to
ride along any given space curve.The Bishop Frame has many properties that make it ideal for
mathematical research. Another area about interested in the Bishop Frame is so-called Normal
Development, or the graph of the twisting motion of the Bishop Frame. This information with
the initial position and the orientation of the the Bishop Frame provide all of the information
which is necessary to define the curve.

The Bishop frame may have the applications in the area of Biology and Computer Graphics.
For example, it may be possible to compute the information about the shape of the sequences of
DNA using a curve defined by the Bishop frame. The Bishop frame may also provide a new way
to control virtual cameras in computer animations[2, 10, 11].
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The Bishop frame or parallel transport frame is an alternative approach to define a moving
frame that is well defined even when the curve is vanished the second derivative. We can trans-
port by parallel an orthonormal frame along a curve simply by parallel transporting each com-
ponent of the frame. The parallel transport frame is based on the observation that, while T (s)
for a given curve model is unique, we may choose any convenient arbitrary basis {N1(s), N2(s)}
for the remainder of the frame, so long as it is in the normal plane perpendicular to T (s) at each
point. If the derivatives of {N1(s), N2(s)} depend only on T (s) and not each other, we can
make N1(s) and N2(s) vary smoothly throughout the path regardless of the curvature.

In addition, suppose that the curve α is an arclength-parametrized C2 curve and we have C1

unit vector fields N1 and N2 = T∧ N1 along the curve α so that

〈T,N1〉 = 〈T,N2〉 = 〈N1, N2〉 = 0,

i.e., T , N1, N2 will be a smoothly varying right-handed orthonormal frame as we move along
the curve ( to this point, the Frenet frame would work just fine if the curve were C3 with κ 6= 0).
But now we want to impose the extra condition that 〈N ′1, N2〉 = 0.We say that the unit first
normal vector field N1 is parallel along the curve α. This means that the change of N1 is only in
the direction of T . A Bishop frame can be defined even when a Frenet frame can not (e.g., when
there are points with κ = 0). Therefore, we have the alternative frame equations T ′ (s)

N ′1 (s)

N ′2 (s)

 =

 0 k1 (s) k2 (s)

−k1 (s) 0 0
−k2 (s) 0 0


 T (s)

N1 (s)

N2 (s)

 (1.3)

where κ (s) =
√
k2

1 + k2
2 , δ (s) = arctan

(
k2
k1

)
, τ (s) = −dδ(s)ds so that k1 (s) and k2 (s)

effectively correspond to a cartesian coordinate system for the polar coordinates (κ (s),δ (s)),
with δ (s) = −

∫
τ (s) ds. The orientation of the parallel transport frame includes an arbitrary

choice of the integration constant δ0, which disappears from τ (and hence from the Frenet frame)
due to the differentiation [2, 10].

Let us consider the smooth manifolds M and N which are tangent (inside or outside) to
each other, X(s) on M and Y (s) on N be the moving and fixed regular pole curves and the
tangent planes of M and N (along X(s) and Y (s)) coincide at the contact points. We shall take
a rectangular coordinate system in E3. Let e1, e2 and e3 be the unit vectors(1, 0, 0) , (0, 1, 0) and
(0, 0, 1) respectively. We denote ξ = ξ(s) and η = η(s) as the normal vector fields of M and N
along the curves X(s) and Y (s), respectively. In addition, we denote the systems {T,N1, N2}
and

{
T ,N1, N2

}
as the Bishop vector fields of the curves X(s) and Y (s), respectively. Since

the homothetic motion F : M → N consists of rolling then W (s) is tangent to both X(s) on M
and Y (s) on N at every moments[11]. Since ξ and η have same or opposite directions depending
on the orientation of M and N, we have Bξ = εhη at the contact points, where ε is the sign such
that; if ε = +1 then M moves inside of N along the pole curves, if ε = −1 then M moves out
side of N along the pole curves.

Suppose that {b1 = b1(s), b2 = b2(s)} and {a1 = a1(s), a2 = a2(s)} be orthonormal systems
along the regular pole curves X(s) and Y (s) respectively, and let b1, b2 and a1, a2 transform to
each another as b1 = hB−1a1 and b2 = hB−1a2, respectively. Hence {b1, b2, ξ} and {a1, a2, η}
will be the moving and fixed orthonormal systems for (X) = X(s) and (Y ) = Y (s), respec-
tively. Since (X) is the pole curve, we can write the equation dY

ds = B dX
ds by using (1.2). Let the

parameter s be arc-length parameter for the curve (X). Thus we can write dY
ds = hAT and then

we obtain

h =

∥∥∥∥dYds
∥∥∥∥

furthermore the tangent vector of (Y ) will be T = 1
h
dY
ds .

On the other hand, since ξ ∈ Sp {N1, N2} then we can write

ξ(s) = cosψ(s)N1(s) + sinψ(s)N2(s) (1.4)
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We must construct the frames {b1, b2, ξ} and {a1, a2, η} for determining the orthogonal matrix
A in (1.1). During this operations, we used the frames {T, ξΛT, ξ} and

{
T , ηΛT , η

}
which are

called Darboux frames along (X) and (Y ) at contact points on M and N , respectively. We can
easily find the orthogonal matrices Q, P and R which transform {T,N1, N2} to {T, ξΛT, ξ},
{e1, e2, e3} to {T,N1, N2} and {T, ξΛT, ξ} to {b1, b2, ξ} by using (1.4), respectively. The matrix
A1 = PTQTRT transforms b1 to e1, b2 to e2 and ξ to e3. We obtain that the skew symmetric
matrix w1 =

dAT
1

ds A1 is

w1=



0
ρ′ + εk1 sinψ
−εk2 cosψ


εk1 cos ρ cosψ
+εk2 sinψ cos ρ
+ψ′ sin ρ


−ρ′ − εk1 sinψ
+εk2 cosψ

0


−εk1 sin ρ cosψ
−εk2 sinψ sin ρ
+ψ′ cos ρ


−


εk1 cos ρ cosψ
+εk2 sinψ cos ρ
+ψ′ sin ρ

 −


−εk1 sin ρ cosψ
−εk2 sinψ sin ρ
+ψ′ cos ρ

 0


(1.5)

where k1 = k1 (s) and k2 = k2 (s) are the Bishop curvatures of the pole curve (X) and ρ = ρ (s)
is the rotation angle of {b1, b2} according to {T, ξΛT}..

Corollary 1.1. The vector fields b1 and b2 are the parallel vector fields along curve (X) accord-
ing to the connection of M if and only if

ρ′ + ε (k1 sinψ − k2 cosψ) = 0

is satisfied.

Proof. Let ∇ be Levi Civita connection and SM be the shape operator of M . We can write b1 as
follows by using the matrices R and P .

b1 = cos ρT + sin ρ sinψN1 − sin ρ cosψN2

Using the Gauss equation

∇T b1 = ∇T b1 + 〈SM (T ), b1〉 ξ

and after routine calculations, we obtain

∇T b1 = −{ρ′ + k1 sinψ − k2 cosψ} {sin ρT − sinψ cos ρN1 + cosψ cos ρN2}

It is easily to see that ∇T b1 = 0 if and only if ρ′ + k1 sinψ − k2 cosψ = 0. Hence, b1 is
a parallel vector field along curve (X) according to the connection of M if and only if ρ′ +
k1 sinψ− k2 cosψ = 0 is satisfied. Similarly, we can easily proof that b2 is a parallel vector field
along curve (X) according to the connection of M if and only if ρ′ + k1 sinψ − k2 cosψ = 0 is
satisfied, too.

On the other hand, since

η(s) = cosψ (s)N1(s) + sinψ (t)N2(s) (1.6)

then we can easily find the orthogonal matrices Q, P and R by using (1.6) which transform{
T ,N1, N2

}
to
{
T , ηΛT , η

}
, {e1, e2, e3} to

{
T ,N1, N2

}
and

{
T , ηΛT , η

}
to {a1, a2, η}, re-

spectively. The matrix A2 = P
T
Q
T
R
T

transforms a1 to e1, a2 to e2 and η to e3. We obtain that
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the skew symmetric matrix w2 =
dAT

2
ds A2 is

w2 =



0
ρ′ + k1 sinψ
−k2 cosψ


k1 cos ρ cosψ
+k2 sinψ cos ρ
+ψ
′
sin ρ


−ρ′ − k1 sinψ
+k2 cosψ

0


−k1 sin ρ cosψ
−k2 sinψ sin ρ
+ψ
′
cos ρ


−


k1 cos ρ cosψ
+k2 sinψ cos ρ
+ψ
′
sin ρ

 −


−k1 sin ρ cosψ
−k2 sinψ sin ρ
+ψ
′
cos ρ

 0


(1.7)

where k1 = k1 (s) and k2 = k2 (s) are the Bishop curvatures of the pole curve (Y ) and ρ = ρ (s)
is the rotation angle of {a1, a2} according to

{
T , ηΛT

}
.

Corollary 1.2. The vector fields a1 and a2 are the parallel vector fields along curve (Y ) accord-
ing to the connection of N if and only if

ρ′ + k1 sinψ − k2 cosψ = 0

is satisfied.

Proof. We can proof similarly to corollary 1.1.
Therefore, we obtain the matrix A using A1 and A2 as A = A2A

T
1 so that A transforms b1 to

a1, b2 to a2 and ξ to εη, respectively. The skew-symmetric matrix S = dA
ds A

T is an instantaneous
rotation matrix and S represents a linear ishomorphism as TY (t)N −→ Sp {η}. We can find
the matrix S by using (1.5) and (1.7) as S = A2 (−w2 + w1)AT2 . Consequently the matrix S
determines an unique vector w ∈ Sp {a1, a2, η} as follows.

w = u1a1 + u2a2 + u3η (1.8)

where

u1 = −
(
k1 cosψ + k2 sinψ

)
sin ρ+ ψ

′
cos ρ+ {ε (k1 cosψ + k2 sinψ) sin ρ− ψ′ cos ρ}

u2 = −
(
k1 cosψ + k2 sinψ

)
cos ρ− ψ′ sin ρ+ {ε (k1 cosψ + k2 sinψ) cos ρ+ ψ′ sin ρ}

u3 = ρ′ + k1 sinψ − k2 cosψ − ρ′ − εk1 sinψ + εk2 cosψ

Thus, we obtained the main condition for two moving smooth submanifolds on (or inside of)
another, along the regular pole curves. So, we prove the following theorem.

Theorem 1.3. F is rolling with sliding motion defined as hAb1 = a1, hAb2 = a2 and hAξ = εη
along the regular pole curves if and only if

ρ′ + k1 sinψ − k2 cosψ − ρ′ − εk1 sinψ + εk2 cosψ = 0

This condition shows that any smooth submanifolds can be rolling with sliding, pure sliding
or sliding with spining on (or inside of) another along the pole curves which are tangent to each
other at every moment. This is possible by choosing one of ρ and ρ as a constant even if we face
hard integrals. In addition, ρ and ρ show that how we must define the vector fields a1, a2 and b1,
b2 along the pole curves according to what we desire a homothetic motion. We can also find the
geodesic and normal curvatures and geodesic torsions of M and N in the Bishop means, along
the curves (X) and (Y ) as follows. The curvatures of M along (X) are

κg = k1 sinψ − k2 cosψ , κξ = k1 cosψ + k2 sinψ , τg = ψ′ (1.9)

and the curvatures of N along (Y ) are

κg = k1 sinψ − k2 cosψ , κη = k1 cosψ + k2 sinψ , τg = ψ
′

(1.10)
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Hence we restore (1.8) as follows.

u1 = −κη sin ρ+ τg cos ρ+ εκξ sin ρ− τg cos ρ (1.11)

u2 = −κη cos ρ− τg sin ρ+ εκξ cos ρ+ τg sin ρ

u3 = ρ′ − ρ′ + κg − εκg

If M is rolling on (or inside of) N along the curves (X) and (Y ) then ρ′ − ρ′ + κg − εκg = 0. If
b1, b2, a1 and a2 are the parallel vector fields then the motion is rolling with sliding automatically.
In the same conditions, the following equalities are satisfied at the points that the motion is pure
sliding.

κξ = εκη cos
(∫

(εκg − κg) ds+ c

)
+ ετg sin

(∫
(εκg − κg) ds+ c

)
τg = −κη sin

(∫
(εκg − κg) ds+ c

)
+ τg cos

(∫
(εκg − κg) ds+ c

)
where c is a constant. In this case, u1 = u2 = u3 = 0. In the case, b1, b2, a1, a2 are not the
parallel vector fields and κ2

ξ + τ 2
g 6= 0 and κ2

η + τ 2
g 6= 0 then

ρ− ρ = arccos

(
εκξκη + τgτg

κ2
η + τ 2

g

)
or

ρ− ρ = arcsin

(
εκξτg − κητg
κ2
η + τ 2

g

)
ρ′−ρ′+κg− εκg 6= 0 and κ2

ξ+ τ 2
g = κ2

η+ τ 2
g are satisfied at the points that the motion is sliding

with spining. If the curves (X) and (Y ) are both the principal curves and geodesics of M and N
then τg = τg = κg = κg = 0 and also ψ and ψ are constants.

If M is any manifold in E3 and N is a plane then angular velocity vector at the contact points
will be as follows

w =
{
−
(
k1 cosψ + k2 sinψ

)
sin ρ+ {ε (k1 cosψ + k2 sinψ) sin ρ− ψ′ cos ρ}

}
a1

−
{(
k1 cosψ + k2 sinψ

)
cos ρ− {ε (k1 cosψ + k2 sinψ) cos ρ+ ψ′ sin ρ}

}
a2

+
{
ρ′ + k1 sinψ − k2 cosψ − ρ′ − εk1 sinψ + εk2 cosψ

}
η

In this case, F is a rolling with sliding if and only if

ρ− ρ =
(
k2 cosψ − k1 sinψ

)
s+ ε

∫
(k1 sinψ − k2 cosψ) ds+ c

is satisfied, where c, ψ, k1 and k2 are constants. We can restate (??) as follows by using (1.9)
and (1.10).

w = {−κη sin ρ+ εκξ sin ρ− τg cos ρ} a1 + {−κη cos ρ+ εκξ cos ρ+ τg sin ρ} a2

+
{
ρ′ − ρ′ + κg − εκg

}
η

Thus, F is a rolling with sliding if and only if

ρ− ρ = sκg − ε
∫
κgds+ c

is satisfied, where c, and κg are constants, too.

Corollary 1.4. If (X) and (Y ) are geodesics of M and N, respectively, then F is a rolling with
sliding motion if and only if ρ′ − ρ′ =constant.
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Theorem 1.5. Let M and N be two submanifolds and (X) and (Y ) be the smooth curves on M
and N, respectively, which are satisfied given condition in theorem 1.3 and be tangent to each
other at the contact points. Then we can find a unique homothetic motion F of M on (or inside
of) N along the pole curves (X) and (Y ).

Theorem 1.6. Let SM and SN be the shape operators of M and N along the curves (X) and
(Y ) respectively. If

h−1SM

(
dX

ds

)
= SN

(
dY

ds

)
then F is sliding motion without rolling.

Proof. We can write the following equations along the curves (X) and (Y ), respectively.

SM

(
dX

ds

)
=
dξ

ds
and SN

(
dY

ds

)
=
dη

ds

By differentiating (1.4) and by using (1.3), we obtain

dξ

ds
= −{εκξ cos ρ+ τg sin ρ} b1 − {−εκξ sin ρ+ τg cos ρ} b2

since b1 = hB−1a1, b2 = hB−1a2 and ξ = εhB−1η,

h−1B

(
dξ

ds

)
= −{εκξ cos ρ+ τg sin ρ} a1 − {−εκξ sin ρ+ τg cos ρ} a2

by differentiating (1.6) and by using (1.3), we obtain

dη

ds
= −{ κη cos ρ+ τg sin ρ} a1 − {− κη sin ρ+ τg cos ρ} a2

Since h−1B
(
dξ
ds

)
= dη

ds , we can write

εκξ cos ρ+ τg sin ρ = κη cos ρ+ τg sin ρ (1.12)

and
εκξ sin ρ+ τg cos ρ = κη sin ρ+ τg cos ρ. (1.13)

we substitute (1.12) and (1.13) in (1.11) and from (1.8), we obtain that F is sliding motion
without rolling.

Corollary 1.7. If F is rolling with sliding motion then the shape operators of M and N satisfy

the following inequality.

h−1SM

(
dX

ds

)
6= SN

(
dY

ds

)
Corollary 1.8. Let (X) and (Y ) be the smooth curves on M and N such the curves not passing
through the flat points of M and N . In this case M is sliding and rolling on (or inside of) N
along these curves. M is sliding without rolling (or inside of) N at the flat-contact points.

All of the corollaries, theorems and the things we said in this study are consistent with[3]
and [13]. If h = 1 then this study gives us a one parameter kinematic model for the smooth
submanifolds in Euclidean 3-space. In this case, the notions rolling with sliding and sliding with
spining transform to pure rolling and pure spining, respectively.

Example 1.9. (For ε = −1): Let X(s) = (sin(s), 0, cos(s)), s ∈ [0, 1] be a unit speed curve
on φ(u, v) = (sin v sinu, sin v cosu, cos v) and Y (s) = (sin(s),−s, cos(s)− 2) is any curve on
x2 + (z + 2)2

= 1. The Bishop trihedron of the curve (X) is

T = (cos(s), 0,− sin(s)) , N1 = (− sin(s), 0,− cos(s)) , N2 = (0, 1, 0)
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and since δ = 0 then the curvatures of the curve (X) are

k1 = 1, k2 = 0,

the unit normal vector field of sphere is

ξ(s) = (sin(s), 0, cos(s))

with the angle ψ = π. The Bishop trihedron of the curve (Y ) is

T =

(
1√
2

cos(s),− 1√
2
,− 1√

2
sin(s)

)

N1 =

({
1√
2

sin
( 1

2s
)

cos(s)
− cos

( 1
2s
)

sin(s)

}
,

1√
2

sin
(

1
2
s

)
,

{
− 1√

2
sin
( 1

2s
)

sin(s)
− cos

( 1
2s
)

cos(s)

})

N2 =

({
1√
2

cos
( 1

2s
)

cos(s)
+ sin

( 1
2s
)

sin(s)

}
,

1√
2

cos
(

1
2
s

)
,

{
sin
( 1

2s
)

cos(s)
− 1√

2
cos
( 1

2s
)

sin(s)

})
and the curvatures of the curve (Y ) are

k1 =
1
2

cos(
1
2
s), k2 =

1
2

sin(
1
2
s)

with δ = 1
2s. The unit normal vector field of cyclinder is

η(s) = − (sin(s), 0, cos(s))

with the angle ψ = 1
2s. Since

∥∥dY
ds

∥∥ = √2 then the homothetic scale is h =
√

2 and we calculate
the orthogonal matrix A = [aij ] and so the matrix B in (1.1) is B =

√
2A where aij are

a11 =

√
2− 2
8

cos(3s) +
√

2
4

cos(2s) +
2−
√

2
8

cos(s) +
√

2
4

a12 =

√
2− 2
4

cos(2s) +
√

2 + 2
4

a13 =
2−
√

2
8

sin(3s)−
√

2
4

sin(2s) +
2−
√

2
8

sin(s)

a21 =

√
2

4
cos(2s)−

√
2

2
cos(s)−

√
2

4

a22 =

√
2

2
cos(s)

a23 =

√
2

2
sin(s)−

√
2

4
sin(2s)

a31 =
2−
√

2
8

sin(3s)−
√

2
4

sin(2s) +
2 + 3

√
2

8
sin(s)

a32 =
2−
√

2
4

sin(2s)

a33 =
2−
√

2
8

cos(3s)−
√

2
4

cos(2s) +
6 +
√

2
8

cos(s) +
√

2
4

and the matrix C is

C =


1−
√

2
2 sin(2s) + sin(s)

sin(s)− s(
1−
√

2
)

cos2(s) + cos(s)− 3
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Figure 1. Sphere is rolling without sliding on the cylinder along the curves (X) and (Y ).

Since (X) is the solution of the equation d
dsBX+ d

dsC = 0 then (X) is a pole curve as a moving
curve and (Y ) is a fixed pole curve on the sphere and the cylinder x2+(z + 2)2

= 1, respectively.
Unit normal vectors ξ and η are the opposite direction and linear dependent at the contact points,
thus the signature is ε = −1. The components of the anti-symmetric matrix S = [sij ] are

s11 = s22 = s33 = 0

s21 = −s12 =

√
2− 2
8

sin(2s)−
√

2
4

sin(s)

s31 = −s13 =

√
2

4
cos(s) +

√
2

4

s32 = −s23 =
2−
√

2
8

cos(2s) +
√

2
4

cos(s)− 1
4

with respect to the standart base of IR3 and so the angular velocity vector is

W =
1
2
a1 +

1
2
a2

with respect to the base {a1, a2, η} , where the vector fields a1 and a2 are

a1 =

(√
2

2
cos(s),−

√
2

2
,−
√

2
2

sin(s)

)

a2 =

(
2−
√

2
4

cos(2s)− 2 +
√

2
4

,−
√

2
2

cos(s),
√

2− 2
4

sin(2s)

)
Since h is a constant and W lies on the tangent plane at the contact points then the sphere is
rolling without sliding on the cylinder along the curves (X) and (Y ).

Example 1.10. (For ε = 1): Let X(s) = (sin(s), 0, cos(s)− 1) , s ∈ [0, π] is the unit speed
curve on φ(u, v) = (sin v sinu, sin v cosu, cos v − 1) and Y (s) = (2 sin(s),−s, 2 cos(s)− 2) is
any curve on x2 + (z + 2)2

= 4. The Bishop trihedron of the curve (X) is

T = (sin(s), 0,− cos(s)) , N1 = (− sin(s), 0,− cos(s)) , N2 = (0, 1, 0)

and since δ = 0 then the curvatures of the curve (X) are

k1 = 1, k2 = 0,

the unit normal vector field of sphere is

ξ(s) = (sin(s), 0, cos(s))
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with the angle ψ = π. The Bishop trihedron of the curve (Y ) is

T =

(
2
√

5
5

cos(s),
−
√

5
5

,
−2
√

5
5

sin(s)

)

N1 =


√

5
5 sin

(
s
√

5
5

)
cos(s)

− cos
(
s
√

5
5

)
sin(s)

 ,
2
√

5
5

sin

(
s
√

5
5

)
,

 −
√

5
5 sin

(
s
√

5
5

)
sin(s)

− cos
(
s
√

5
5

)
cos(s)




N2 =


√

5
5 cos

(
s
√

5
5

)
cos(s)

+ sin
(
s
√

5
5

)
sin(s)

 ,
2
√

5
5

cos

(
s
√

5
5

)
,

 sin
(
s
√

5
5

)
cos(s)

−
√

5
5 cos

(
s
√

5
5

)
sin(s)




and the curvatures of the curve (Y ) are

k1 =
2
√

5
5

cos

(
s
√

5
5

)
, k2 =

2
√

5
5

sin

(
s
√

5
5

)

with δ =
(√

5
5 s
)
. The unit normal vector field of cyclinder is

η(s) = (sin(s), 0, cos(s))

with the angle ψ = s
√

5
5 . Since

∥∥dY
ds

∥∥ =
√

5 then the homothetic scale is h =
√

5 and we
calculate the orthogonal matrix A = [aij ] and so the matrix B in (1.1) is B =

√
5A where aij

are

a11 =
2
√

5
5

cos2(s)− cos

(
s
√

5
5

)
sin2(s) +

√
5

10
sin

(
2s
√

5
5

)
sin(2s)

a12 =
−
√

5
5

cos

(
2s
√

5
5

)
cos(s)− sin

(
2s
√

5
5

)
sin(s)

a13 =

√
5

5
sin

(
2s
√

5
5

)
cos2(s)−

(
1
2

cos

(
2s
√

5
5

)
+

√
5

5

)
sin(2s)

a21 =

√
5

5

{
2 sin

(
2s
√

5
5

)
sin(s)− cos(s)

}

a22 =
−2
√

5
5

cos

(
2s
√

5
5

)

a23 =

√
5

5

{
2 sin

(
2s
√

5
5

)
cos(s) + sin(s)

}

a31 = −
√

5
5

sin

(
2s
√

5
5

)
sin2(s)−

(√
5

5
+

1
2

cos

(
2s
√

5
5

))
sin(2s)

a32 = −
√

5
5

cos

(
2s
√

5
5

)
sin(s)− sin

(
2s
√

5
5

)
cos(s)

a33 =
2
√

5
5

sin2(s)− cos

(
2s
√

5
5

)
cos2(s)−

√
5

10
sin

(
2s
√

5
5

)
sin(2s)

and the matrix C is

C =


(1− cos(s))

{(√
5 cos

(
2s
√

5
5

)
+ 2
)

sin(s)− sin
(

2s
√

5
5

)
cos(s)

}
2 (cos(s)− 1) sin

(
2s
√

5
5

)
− sin(s)− s

(1− cos(s))
{(

10−2
√

5
5 + 2

√
5 cos2

(
s
√

5
5

))
cos(s) + sin

(
2s
√

5
5

)
sin(s)

}
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Figure 2. Sphere is rolling without sliding inside of the cylinder along the curves (X) and (Y ).

Since (X) is the solution of the equation d
dsBX+ d

dsC = 0 then (X) is a pole curve as a moving
curve and (Y ) is a fixed pole curve on the sphere φ(u, v) and the cylinder x2 + (z + 2)2

= 1,
respectively. The unit normal vectors ξ and η are the same direction and linear dependent at
the contact points, thus the signature is ε = 1. The components of the anti-symmetric matrix
S = [sij ] are

s11 = s22 = s33 = 0

s21 = −s12 =
3
5

sin

(
2s
√

5
5

)
cos(s) +

√
5

5
cos

(
2s
√

5
5

)
sin(s)

s31 = −s13 =
2
√

5
5

cos(2s)− cos

(
2s
√

5
5

)(
1− 8

5
cos2(s)

)

s32 = −s23 =
−
√

5
5

cos(s)− 4
5

cos

(
2s
√

5
5

)
cos(s) +

2
√

5
5

sin

(
2s
√

5
5

)
sin(s)

with respect to the standart base of IR3 and so the angular velocity vector is

W =

√
5

5
a1 −

5 +
√

5
5

a2

with respect to the base {a1, a2, η} , where the vector fields a1 and a2 are

a1 =

(
2
√

5
5

cos(s),−
√

5
5
,−2
√

5
5

sin(s)

)

a2 =

 −
√

5
5 cos(s) cos

(
2s
√

5
5

)
− sin

(
2s
√

5
5

)
sin(s)

 ,−2
√

5
5

cos

(
2s
√

5
5

)
,


√

5
5 sin(s) cos

(
2s
√

5
5

)
− sin

(
2s
√

5
5

)
cos(s)




Since h is a constant and W lies on the tangent plane at the contact points then the sphere is
rolling without sliding inside of the cylinder along the curves (X) and (Y ).
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