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Abstract In this paper, we use the fixed point method to investigate the Generalized Hyers-
Ulam-Rassias stability for a bi-cubic functional equation in 2-Banach spaces.

1 Introduction and preliminaries

In the middle of 1960s, S. Gähler [13],[14] introduced the concept of linear 2-normed spaces.
We recall some basic facts concerning 2-normed spaces and some preliminary results.

Definition 1.1. let X be a real linear space with dimX > 1 and ∥., .∥ : X × X −→ R be a
function satisfying the following properties:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent,

(ii) ∥x, y∥ = ∥y, x∥,

(iii) ∥λx, y∥ = |λ|∥x, y∥,

(iv) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥,

for all x, y, z ∈ X and λ ∈ R. Then the function ∥., .∥ is called a 2-norm on X and the pair
(X, ∥., .∥) is called a linear 2-normed space. Sometimes the condition (4) called the triangle
inequality.

Example 1.2. For x = (x1, x2), y = (y1, y2) ∈ E = R2, the Euclidean 2-norm ∥x, y∥E is defined
by

∥x, y∥E = |x1y2 − x2y1| .

Definition 1.3. A sequence {xk} in a 2-normed space X is called a convergent sequence if there
is an x ∈ X such that

lim
k→∞

∥xk − x, y∥ = 0,

for all y ∈ X . If {xk} converges to x, write xk −→ x with k −→ ∞ and call x the limit of {xk}.
In this case, we also write limk→∞ xk = x.

Definition 1.4. A sequence {xk} in a 2-normed space X is said to be a Cauchy sequence with
respect to the 2-norm if

lim
k,l→∞

∥xk − xl, y∥ = 0,

for all y ∈ X . If every Cauchy sequence in X converges to some x ∈ X, then X is said to be
complete with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach
space.

Now, we state the following results as lemma (See [21] for the details).

Lemma 1.5. Let X be a 2-normed space. Then,

(i)
∣∣∥x, z∥ − ∥y, z∥

∣∣ ≤ ∥x− y, z∥ for all x, y, z ∈ X ,

(ii) if ∥x, z∥ = 0 for all z ∈ X, then x = 0,
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(iii) for a convergent sequence xn in X ,

lim
n−→∞

∥xn, z∥ =
∥∥∥ lim
n−→∞

xn, z
∥∥∥

for all z ∈ X .

The stability problem of functional equations originated from the following question of Ulam
[27], [28] in 1940, concerning the stability of group homomorphisms: Let (G1, .) be a group and
let (G2, ∗) be a metric group with the metric d(., .). Given ϵ > 0, does there exist a δ > 0,
such that if a mapping h : G1 −→ G2 satisfies the inequality d

(
h(x.y), h(x) ∗ h(y)

)
< δ for

all x, y ∈ G1, then there exists a homomorphism H : G1 −→ G2 with d
(
h(x),H(x)

)
< ϵ for

all x ∈ G1? In the other words, under what condition does there exist a homomorphism near
an approximate homomorphism? The concept of stability for functional equation arises when
we replace the functional equation by an inequality which acts as a perturbation of the equation.
In 1941, D. H. Hyers [15] gave the first affirmative answer to the question of Ulam for Banach
spaces. Let f : E −→ E′ be a mapping between Banach spaces E and E′ such that

∥f(x+ y)− f(x)− f(y)∥ ≤ δ

for all x, y ∈ E and for some δ > 0. Then there exists a unique additive mapping T : E −→ E′

such that
∥f(x)− T (x)∥ ≤ δ

for all x ∈ E. Moreover if t −→ f(tx) is continuous in real t for each fixed x ∈ E, then T is
linear. The generalizations of this result have been published by Aoki [6] and Rassias [23] for
additive mappings and linear mappings, respectively. Since then several stability problems for
various functional equations have been investigated by many authors worldwide.

Hyers’s method used in [15], which is often called the direct method, has been applied for
studying the stability of various functional equations but this method sometimes does not work
[16]. Nevertheless, there are also other approaches proving the Hyers-Ulam stability, for exam-
ple: the method of invariant means [25], the method of based on sandwich theorems [17], the
method using the concept of shadowing [26] and the fixed point method.
In this work, we use the fixed point method which is the second most popular technique of prov-
ing the stability of functional equations. Although it was used for the first time by J. A. Baker
[7] who applied a variant of Banach’s fixed point theorem to obtain the Hyers-Ulam stability of a
functional equation in a single variable, most authors follow Radu’s approach [22] and make use
of a theorem of Diaz and Margolis [12]. In 1996, Isac and Th. M. Rassias [18] provide appli-
cations of stability theory of functional equations for the proof of new fixed point theorems with
applications. In 2003 L. Cǎdariu and V. Radu [8] noticed that a fixed point alternative method is
very essential for the solution of the Hyers-Ulam stability problem. Subsequently, this method
was applied to investigate the Hyers-Ulam-Rassias stability for Jensen functional equation, as
well as for the additive Cauchy functional equation [9] by considering a general control function
φ(x, y), with appropriate properties. The stability problem of various types of functional equa-
tions have been investigated by a number of authors by using the fixed point approach.
Before present the fixed point method, we need to some concepts.

Definition 1.6. [12] Let X be a set. A function d : X × X → [0,∞] is called a generalized
metric on X if d satisfies the following:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Then (X, d) is called a generalized metric space. (X, d) is called complete if every d-Cauchy
sequence in X is d-convergent.

Note that the distance between two points in a generalized metric space is permitted to be
infinity.

Example 1.7. Let X := C(R) "the space of the continuous functions on R" and let d : X2 −→
[0,∞] given by

d(x, y) := sup
t∈R

∣∣x(t)− y(t)
∣∣.
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Then, the pair
(
X, d

)
is a generalized complete metric space.

Definition 1.8. Let (X, d) be a generalized complete metric space. A mapping J : X → X
satisfies a Lipschitz condition with a constant L > 0 "Lipschitz constant" if

d
(
J(x), J(y)

)
≤ Ld(x, y)

for all x, y ∈ X. If L < 1, then J is called a strictly contractive operator.

We remark that the only difference between the generalized metric and the usual metric is
that the range of the former is permitted to include the infinity.
By these notions, B. Margolis and J. Diaz gave one of the fundamental results of the fixed point
theory. For the proof, we refer to [12].

Theorem 1.9. Let (X, d) be a generalized complete metric space and J : X → X be strictly
contractive mapping with the Lipshitz constant L. Then for each given element x ∈ X, either

d
(
Jnx, Jn+1x

)
= ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(i) d
(
Jnx, Jn+1x

)
< ∞, for all n ≥ n0;

(ii) the sequence
{
Jnx

}
converges to a fixed point y∗ of J;

(iii) y∗ is the unique fixed point of J in the set Y =
{
y ∈ X : d

(
Jn0(x), y

)
< ∞

}
;

(iv) d(y, y∗) ≤ 1
1−Ld

(
J(y), y

)
for all y ∈ Y .

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is related to symmetric bi-additive function. It is natural that this equation is called a quadratic
functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a
quadratic function. It is well known that a function f between two real vector spaces X and
Y is quadratic if and only if there exists a unique symmetric bi-additive function B such that
f(x) = B(x, x) for all x ∈ X (see [1],[20]). The bi-additive function B is given by

B(x, y) =
1
4
(
f(x+ y)− f(x− y)

)
The stability problem for the quadratic functional equation (1.1) was proved by Skof for func-
tions f : A −→ B, where A is normed space and B Banach space [24]. Cholewa [10] noticed
that the Theorem of Skof is still true if relevant domain A is replaced by an abelian group. In the
paper [11], Czerwik proved the stability of the equation (1.1).

Jun and Kim [19] introduced the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) (1.2)

and they established the general solution and the Hyers-Ulam stability for the functional equation
(1.2). They proved that a mapping f between two real vector spaces X and Y is a solution of (1.2)
if and only if there exists a unique mapping C : X ×X ×X −→ Y such that f(x) = C(x, x, x)
for all x ∈ X . Moreover, C is symmetric for each fixed one variable and is additive for fixed two
variables. The mapping C is given by

C(x, y, z) =
1
24

(
f(x+ y + z) + f(x− y − z)− f(x+ y − z)− f(x− y + z)

)
for all x, y, z ∈ X . Obviously, the function f(x) = cx3 satisfies the functional equation (1.2),
which is called a cubic functional equation.
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Let X , Y and Z be vector spaces on R or C. We say that a mapping f : X × Y −→ Z is
sextic if f satisfies one of the following functional equation

f(2x+ y, 2z + w) + f(2x− y, 2z + w) + f(2x+ y, 2z − w) + f(2x− y, 2z − w) =

4f(x+ y, z + w) + 4f(x+ y, z − w) + 24f(x+ y, z) + 4f(x− y, z + w) + 4f(x− y, z − w)

+24f(x− y, z) + 24f(x, z + w) + 24f(x, z − w) + 144f(x, z) (1.3)

for all x, y ∈ X and all z, w ∈ Y .
It easy to see that the function f : R × R −→ R defined by f(x, y) = x3y3 is a sextic mapping
which satisfying (1.3).

The purpose of this work is keep continuity of our previous works in [2], [3], [4] and [5].
Indeed, we prove the generalized Hyers-Ulam-Rassias stability of the functional equation (1.3)
in 2-Banach spaces by using the fixed point method.

2 Main results

Let X be a vector space, Y a 2-Banach space with dimY > 1. For convenience, we use the
following abbreviation for a given mapping f : X ×X −→ Y

Df (x, y, z, w) := f(2x+ y, 2z + w) + f(2x− y, 2z + w) + f(2x+ y, 2z − w)

+f(2x− y, 2z−w)− 4f(x+ y, z+w)− 4f(x+ y, z−w)− 24f(x+ y, z)− 4f(x− y, z+w)

−4f(x− y, z − w)− 24f(x− y, z)− 24f(x, z + w)− 24f(x, z − w)− 144f(x, z) (2.1)

for all x, y, z, w ∈ X .

Theorem 2.1. Let f : X×X −→ Y be a mapping for which there exists a function φ : X×X×
X ×X −→ [0,∞) satisfying

∥Df (x, y, z, w), t∥ ≤ φ(x, y, z, w), (2.2)

lim
n−→+∞

1
26nφ(2

nx, 2ny, 2nz, 2nw) = 0 (2.3)

and
φ(x, y, z, w) ≤ 64Lφ(

x

2
,
y

2
,
z

2
,
w

2
) (2.4)

for all x, y, z, w ∈ X, all t ∈ Y and for some 0 < L < 1. Then, there exists a unique sextic
mapping S : X ×X −→ Y satisfying (1.3) and

∥f(x, z)− S(x, z), t∥ ≤ 1
256(1 − L)

φ(x, 0, z, 0) (2.5)

for all x, z ∈ X and all t ∈ Y .

Proof. Let us consider the set M := {g : X ×X −→ Y } and introduce a generalized metric on
M as follows:

d(g, h) = inf {α ∈ [0,∞) : ∥g(x, z)− h(x, z), t∥ ≤ αφ(x, 0, z, 0)}

for all x, z ∈ X and all t ∈ Y where, as usual, inf∅ = +∞. It is easy to show that (M,d) is
complete (see for example [9]). Now, we consider the linear mapping J : M → M such that

Jg(x, z) :=
1
64

g(2x, 2z)
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for all g ∈ M and all x, z ∈ X . Given g, h ∈ M , let α ∈ [0,∞) be an arbitrary constant with
d(g, h) ≤ α, that is ∥ g(x, z)− h(x, z), t ∥≤ αφ(x, 0, z, 0) for all x, z ∈ X and all t ∈ Y . So we
have

∥Jg(x, z)− Jh(x, z), t∥ =
1
64

∥g(2x, 2z)− h(2x, 2z), t∥

≤ 1
64

αφ(2x, 0, 2z, 0) ≤ αLφ(x, 0, z, 0)

for all g ∈ M , all x, z ∈ X and all t ∈ Y .
Hence, we see that d(Jg, Jh) ≤ Ld(g, h) , for any g, h ∈ M . So J is a strictly contractive
operator. Putting y = 0 and w = 0 in (2.2), we have

∥ 1
64

f(2x, 2z)− f(x, z), t∥ ≤ 1
256

φ(x, 0, z, 0) (2.6)

for all x, z ∈ X and all t ∈ Y .
Thus, we get that

d(f, Jf) ≤ 1
256

for all f ∈ M . By Theorem 2.1, there exists a unique mapping S : X ×X −→ Y satisfying the
following:

(i) S is fixed point of J, that is, S(2x, 2z) = 64S(x, z) for all x, z ∈ X. The S is a unique fixed
point of J in the set B = {g ∈ M : d(f, g) < ∞} . This implies that S is a unique mapping
such that there exists
α ∈ (0,∞) such that

∥f(x, z)− S(x, z), t∥ ≤ αφ(x, 0, z, 0)

for all x, z ∈ Xand all t ∈ Y .

(ii) d(Jn, S) −→ 0 as n −→ ∞, which implies the equality

lim
n→+∞

Jnf(x, z) = lim
n→+∞

f(2nx, 2nz)

26n = S(x) (2.7)

for all x, z ∈ X .

(iii)

d(f, S) ≤ 1
1 − L

d(f, Jf) ≤ 1
256(1 − L)

φ(x, 0, z, 0),

which implies the inequality (2.5).

It follows from (2.2), (2.3) and (2.7), that

∥DS(x, y, z, w), t∥ = lim
n→+∞

1
26n ∥Df (2nx, 2ny, 2nz, 2nw), t∥

≤ lim
n→+∞

1
26nφ(2

nx, 2ny, 2nz, 2nw) = 0

for all x, y, z, w ∈ X and all t ∈ Y . Hence, S : X×X −→ Y is a sextic mapping, as desired.

Corollary 2.2. Let (X, ∥.∥X) be a normed space and (Y, ∥., .∥Y ) be a 2-Banach space. Let θ and
p be nonnegative real numbers with p < 6 and let f : X ×X −→ Y be a mapping fulfilling

∥Df (x, y, z, w), t∥Y ≤ θ (∥x∥pX + ∥y∥pX + ∥z∥pX + ∥w∥pX)

for all x, y, z, w ∈ X and all t ∈ Y . Then there exists a unique sextic mapping S : X ×X −→ Y
such that

∥f(x, z)− S(x, z), t∥Y ≤ θ

256 − 2p+2 (∥x∥pX + ∥z∥pX)

foe all x, z ∈ X and all t ∈ Y .
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Proof. We get the desired result from Theorem 2.1 by taking

φ(x, y, z, w) = θ (∥x∥pX + ∥y∥pX + ∥z∥pX + ∥w∥pX)

for all x, y, z, w ∈ X and choosing L = 2p−6.

Corollary 2.3. Let (X, ∥.∥X) be a normed space and (Y, ∥., .∥Y ) be a 2-Banach space. Let θ and
p be nonnegative real numbers with p < 3 and let f : X ×X −→ Y be a mapping fulfilling

∥Df (x, y, z, w), t∥Y ≤ θ (∥x∥pX .∥z∥pX + ∥y∥pX .∥w∥pX)

for all x, y, z, w ∈ X and all t ∈ Y . Then there exists a unique sextic mapping S : X ×X −→ Y
such that

∥f(x, z)− S(x, z), t∥Y ≤ θ

256 − 22p+2 (∥x∥pX .∥z∥pX)

foe all x, z ∈ X and all t ∈ Y .

Proof. We get the desired result from Theorem 2.1 by taking

φ(x, y, z, w) = θ (∥x∥pX .∥z∥pX + ∥y∥pX .∥w∥pX)

for all x, y, z, w ∈ X and choosing L = 22p−6.

Corollary 2.4. Let (X, ∥.∥X) be a normed space and (Y, ∥., .∥Y ) be a 2-Banach space. Let θ, p
and q be nonnegative real numbers with p + q < 6 and let f : X × X −→ Y be a mapping
fulfilling

∥Df (x, y, z, w), t∥Y ≤ θ (∥x∥pX .∥z∥qX + ∥y∥pX .∥w∥qX)

for all x, y, z, w ∈ X and all t ∈ Y . Then there exists a unique sextic mapping S : X ×X −→ Y
such that

∥f(x, z)− S(x, z), t∥Y ≤ θ

256 − 2p+q+2 (∥x∥pX .∥z∥qX)

foe all x, z ∈ X and all t ∈ Y .

Proof. We get the desired result from Theorem 2.1 by taking

φ(x, y, z, w) = θ (∥x∥pX .∥z∥qX + ∥y∥pX .∥w∥qX)

for all x, y, z, w ∈ X and choosing L = 2p+q−6.

In a similar way of the proof of Theorem 2.1 we can prove the following theorem

Theorem 2.5. Let f : X×X −→ Y be a mapping for which there exists a function φ : X×X×
X ×X −→ [0,∞) satisfying

∥Df (x, y, z, w), t∥ ≤ φ(x, y, z, w), (2.8)

lim
n→+∞

26nφ(
x

2n
,
y

2n
,
z

2n
,
w

2n
) = 0 (2.9)

and

φ(x, y, z, w) ≤ L

64
φ(2x, 2y, 2z, 2w) (2.10)

for all x, y, z, w ∈ X, all t ∈ Y and for some 0 < L < 1. Then, there exists a unique sextic
mapping S : X ×X −→ Y satisfying (1.3) and

∥f(x, z)− S(x, z), t∥ ≤ L

256(1 − L)
φ(x, 0, z, 0), (2.11)

for all x, z ∈ X and all t ∈ Y .
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Proof. Let (X, d) be the generalized metric space defined in the proof of Theorem 2.1.
Let us consider the linear mapping J : M → M such that

Jg(x, z) :=
1
64

g(2x, 2z)

for all g ∈ M and all x, z ∈ X. Putting y = 0 and w = 0 in (2.8), we have

∥f(2x, 2z)− 64f(x, z), t∥ ≤ 1
4
φ(x, 0, z, 0)

and so
∥f(x, z)− 64f(

x

2
,
z

2
), t∥ ≤ L

256
φ(x, 0, z, 0)

for all x, z ∈ X and all t ∈ Y . Hence, we get that

d(f, Jf) ≤ L

256

for all f ∈ M . The rest of the proof is similar to the proof of Theorem 2.1.

Remark 2.6. For the cases p > 6 , p > 3 and p + q > 6, we can obtain similar results to
Corollaries 2.2, 2.3 and 2.4, respectively.
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