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Abstract. Let G be a group. The permutability graph of cyclic subgroups of G, denoted by
Γc(G), is a graph with all the proper cyclic subgroups ofG as its vertices and two distinct vertices
in Γc(G) are adjacent if and only if the corresponding subgroups permute in G. In this paper,
we classify the finite groups whose permutability graph of cyclic subgroups belongs to one of
the following: bipartite, tree, star graph, triangle-free, complete bipartite, Pn, Cn, K4, K1,3-free,
unicyclic. We classify abelian groups whose permutability graph of cyclic subgroups are planar.
Also we investigate the connectedness, diameter, girth, totally disconnectedness, completeness
and regularity of these graphs.

1 Introduction

The properties of a group can be studied by assigning a suitable graph to it and by analyzing the
properties of the associated graphs using the tools of graph theory. The Cayley graph is a well
known example of a graph associated to a group, which have been studied extensively in the
literature (see, for example, [9, 14]). In the past twenty five years many authors have assigned
various graphs to study some specific properties of groups . For instance, see [1, 8, 12, 16].

Recall that two subgroups H and K of a group G are said to permute if HK = KH; equiv-
alently HK is a subgroup of G. In [2], Aschbacher defined a graph corresponding to a group G
and for a fixed prime p, having all the subgroups of order p as its vertices and two vertices are
adjacent if they permute. To study the transitivity of permutability of subgroups, Bianchi, Gillio
and Verardi in [3], defined a graph corresponding to a group G, called the permutability graph of
non-normal subgroups of G, having all the proper non-normal subgroups of G as its vertices and
two vertices are adjacent if they permute (see, also in [4, 10]). In [19], the authors considered
the generalized case of this graph, called the permutability graph of subgroups of G, denoted by
Γ(G), having the vertex set consisting of all proper subgroups of G and two vertices are adjacent
if they permute.

In [5, p.14], Ballester-Bolinches et al introduced a graph corresponding to a group G, having
all the cyclic subgroups of G as it vertices and two vertices are adjacent if they permute. In this
paper, as a particular case, we consider a graph, denoted by Γc(G) with vertex set consists of
all proper cyclic subgroups of G and two vertices are adjacent if they permute. We will call this
graph as the permutability graph of cyclic subgroups of G. By investigating the properties of
this graph, we study the permutability of cyclic subgroups of the corresponding group. Espe-
cially, Theorems 3.9, 3.14 and 4.6, Corollaries 3.10 and 3.11 in this paper are some of the main
applications for group theory.

Now we introduce some notion from graph theory that we will use in this article. Let G be
a simple graph with vertex set V (G) and edge set E(G). G is said to be complete if any two
of its vertices are adjacent. A complete graph with n vertices is denoted by Kn. G is bipartite
if V (G) is the union of two disjoint sets X and Y such that no two vertices in the same subset
are adjacent. Here X and Y are called a bipartition of G. A bipartite graph G with bipartition
X and Y is called complete bipartite if every vertex in X is adjacent with every vertex in Y . If
|X| = m and |Y | = n, then the corresponding graph is denoted by Km,n. In particular, K1,n
is called the star graph and K1,3 is called the claw graph. A graph is planar if it can be drawn
in a plane so that no two edges intersect except possibly at vertices. The degree of the vertex v
in G is the number of edges incident with v and is denoted by degG(v). A graph is said to be
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regular if degrees of all the vertices are same. A path joining two vertices u and v in G is a finite
sequence (u =)v0, v1, . . . , vn(= v) of distinct vertices, except, possibly, u and v such that ui is
adjacent with ui+1, for all i = 0, 1, . . . , n − 1. A path joining u and v is a cycle if u = v. The
length of a path or cycle is the number of edges in it. A path or cycle of length n is denoted by
Pn or Cn respectively. A graph with exactly one cycle is said to be unicyclic. A graph is a tree if
it has no cycles. The girth of a graph G is the length of the smallest cycle in it and is denoted by
girth(G).

A graph is said to be connected if every pair of distinct vertices can be joined by a path. The
distance between two vertices u and v in G, denoted by d(u, v), is the length of the shortest path
between them, and d(u, v) = 0 if u = v. If there exists no path between them, then we define
d(u, v) = ∞. The diameter of G, denoted by diam(G) is the maximum distance between any
two vertices in the graph. An isomorphism of graphs G1 and G2 is an edge-preserving bijection
between the vertex sets of G1 and G2. G is said to be H-free if G has no subgraph isomorphic
to H . Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs. Their union G1 ∪ G2 is a
graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2. Their join G1 + G2 is a graph consist of
G1 ∪G2 together with all the lines joining points of V1 to points of V2. For any connected graph
G, we write nG for the graph with n components each isomorphic to G. For basic graph theory
terminology, we refer to [11].

The dihedral group of order 2n, n ≥ 3 is defined by D2n = ⟨a, b | an = b2 = 1, ab =
ba−1⟩. For any integer n ≥ 2, the generalized Quaternion group of order 4n is given by Q4n =⟨
a, b | a2n = b4 = 1, an = b2 = 1, bab−1 = a−1

⟩
. The modular group of order pα, α ≥ 3 is given

by Mpα = ⟨a, b | apα−1
= bp = 1, bab−1 = ap

α−2+1⟩. For an integer n ≥ 1, Sn and An denotes
the symmetric group and alternating group of degree n acting on {1, 2, . . . , n} respectively. If
n is a any positive integer, then τ(n) denotes the number of positive divisors of n. We denote
the order of an element a ∈ Zn by ordn(a). The number of Sylow p-subgroups of a group G is
denoted by np(G); or simply by np if there is no ambiguity.

The rest of the paper is arranged as follows: In Section 2, we study some basic properties of
permutability graph of cyclic subgroups of groups.

Section 3 gives the classification of finite groups whose permutability graphs of cyclic sub-
groups are one of the following: bipartite, tree, star graph, triangle-free, complete bipartite,
Pn, Cn, K4, K1,3-free, unicyclic. We estimate the girth of the permutability graphs of cyclic
subgroups of finite groups. We also characterize the groups having totally disconnected per-
mutability graphs of cyclic subgroups.

In Section 4, we investigate connectedness, diameter, regularity, completeness of the per-
mutability graph of cyclic subgroups of a given group. Also we classify abelian groups whose
permutability graph of cyclic subgroups are planar. We characterize the groups Q8, S3 and A4
by using their permutability graph of cyclic subgroups. Moreover, we pose some open problems
in this section.

We recall the following theorem, which we will use in the subsequent sections.

Theorem 1.1. ([19, Corollary 5.1]) Let G be a finite group and p, q be distinct primes. Then

(i) Γ(G) is Cn if and only if n = 3 and G is either Zp4 or Z2 × Z2;

(ii) Γ(G) is Pn if and only if n = 1 and G is either Zp3 or Zpq;

(iii) Γ(G) is claw-free if and only if G is either Zpα (α = 2, 3, 4) or Zpq.

2 Some basic results

Note that the only groups having no proper cyclic subgroups are the trivial group, and the groups
of prime order, so it follows that, we can define Γc(G) only when the group G is not isomorphic
to either of these groups.

In this section, we study some basic properties about permutability graph of cyclic subgroups
of a given group. We start with the following result whose proof is immediate.

Lemma 2.1. Let G be a group. If G has r proper cyclic subgroups, which are permutes with
each other, then Γc(G) has Kr as a subgraph.
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Theorem 2.2. Let G1 and G2 be two groups. If G1 ∼= G2, then Γc(G1) ∼= Γc(G2).

Proof. Let f : G1 → G2 be a group isomorphism. Define a map ψ : V (Γc(G1)) → V (Γc(G2))
by ψ(H) = f(H), for every H ∈ V (Γc(G1)). Then it is easy to see that ψ is a graph isomor-
phism. 2

Remark 2.3. The converse of Theorem 2.2 is not true. For example, consider the non-isomorphic
groupsG1 = Zp5 , where p is a prime andG2 = Z3×Z3. HereG1 has subgroups Zpi , i = 1, 2, 3, 4
and G2 has proper cyclic subgroups ⟨(1, 0)⟩, ⟨(x, 1)⟩, x = 0, 1, 2. It follows that Γc(G1) ∼= K4 ∼=
Γc(G2).

Theorem 2.4. If G is a group and N is a subgroup of G, then Γc(N) is a subgraph of Γc(G).

3 Some classification related results for Γc(G)

The aim of this section is to classify the solvable groups whose permutability graphs of cyclic
subgroups are one of the following: bipartite, complete bipartite, tree, star graph, C3-free, Cn,
K4, Pn,K1,3-free, unicyclic. First we consider the finite groups and then we deal with the infinite
groups.

3.1 Finite abelian groups

Proposition 3.1. Let G be a finite abelian group and p, q be distinct primes. Then

(i) Γc(G) is C3-free if and only if G is either Zpα (α = 2, 3) or Zpq;

(ii) Γc(G) is bipartite if and only if it is C3-free;

(iii) Γc(G) is Cn if and only if n = 3 and G is either Zp4 or Z2 × Z2;

(iv) Γc(G) is Pn if and only if n = 1 and G is either Zp3 or Zpq;

(v) Γc(G) is K4 if and only if G is one of Zp5 , Zp2q, Z3 × Z3;

(vi) Γc(G) is claw-free if and only if G is one of Zpα (α = 2, 3, 4), Zpq, Z2 × Z2;

(vii) Γc(G) is unicyclic if and only if G is either Zp4 or Z2 × Z2.

Proof. Let |G| = pα1
1 pα2

2 . . . pαk

k , where pi’s are distinct primes and αi ≥ 1 for every i =
1, 2, . . . k. We divide the proof into two cases.
Case 1: If G is cyclic, then Γc(G) ∼= Γ(G). So in view of this fact and by the proof of [19,
Theorem 3.1], we have

Γc(G) ∼= Kr, (3.1)

where r is the number of proper subgroups ofG, which is given by r = (α1+1)(α2+1) · · · (αk+
1)− 2. It follows that Γc(G) ∼= K4 if and only if G is one of Zp5 or Zp2q. Furthermore, Γc(G) is
bipartite orC3-free if and only ifG is either Zpα (α = 2, 3) or Zpq. Note that the bipartiteness and
C3-freeness of permutability graphs of finite cyclic groups were proved in [20, Proposition 3.1
and corollary 3.1]. We repeated them here for the sake of completeness. Also by Theorem 1.1,
we have

(i) Γc(G) is Cn if and only if n = 3 and G ∼= Zp4 .

(ii) Γc(G) is Pn if and only if n = 1 and G is either Zp3 or Zpq.

(iii) Γc(G) is claw-free if and only if G is one of Zpα (α = 2, 3, 4), Zpq.

Case 2: If G is non-cyclic, then we have the following cases to consider:
Subcase 2a: k = 1. If α1 > 2, then G has a subgroup isomorphic to either Zp × Zp × Zp or
Zp2 × Zp, for some prime p. It is easy to see that these groups have at least five proper cyclic
subgroups, so they form K5 as a subgraph of Γc(G). If α1 = 2, then G ∼= Zp × Zp, for some
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prime p. But the number of nontrivial subgroups of Zp × Zp is p+ 1; they are ⟨(1, 0)⟩, ⟨(a, 1)⟩,
for each a ∈ {0, 1, 2, . . . , p− 1}. Thus, by Lemma 2.1,

Γc(G) ∼= Kp+1. (3.2)

Therefore, Γ(G1) contains C3 as a subgraph; it is C3 if and only if p = 2; it is K4 if and only if
p = 3; it is claw-free if and only if p = 2.
Subcase 2b: k > 1. If αi > 1 for some i, then G has a subgroup H isomorphic to Zpq × Zp, for
some distinct primes p and q. It is easy to see that H has at least five proper cyclic subgroups, so
they form K5 as a subgraph of Γc(G).

The proof follows by combining these cases. 2

3.2 Finite non-abelian groups

Proposition 3.2. Let G be a non-abelian of order pα, where p is a prime and α ≥ 3. Then Γc(G)
contains C3 and K1,3 as proper subgraphs; Γc(G) ∼= K4 if and only if G ∼= Q8.

Proof. We first prove this result when α = 3. According to the Burnside [7], up to isomorphism
there are only four non-abelian groups of order p3, where p is a prime, namely Q8, M8, Mpα and
(Zp × Zp)oZp, p > 2. If G ∼= Q8, then by [19, Theorem 4.3 ], we have

Γc(G) ∼= K4. (3.3)

If G ∼= M8, then H1 := ⟨a⟩, H2 := ⟨a2⟩, H3 := ⟨b⟩, H4 := ⟨ab⟩, H5 := ⟨a2b⟩ are proper cyclic
subgroups of G, so |V (Γc(G))| ≥ 5. Since H1, H2 are normal in G, they permutes with all the
subgroups of G. Thus, Γc(G) has C3 as a subgraph induced by the vertices H1, H2, H3; but it is
not K4 as it has five vertices. Also K1,3 is a subgraph of Γc(G) with bipartition X := {H1} and
Y := {H2, H3, H4}. If G ∼= Mpα , where p is a prime and p > 2, then H1 := ⟨a⟩, H2 := ⟨ab⟩,
H3 := ⟨ab2⟩, H4 := ⟨b⟩, H5 := ⟨ap⟩ are proper cyclic subgroups of G, so |V (Γc(G))| ≥ 5.
Here any two subgroups of G permutes, so K5 is a subgraph of Γc(G). If G ∼= (Zp × Zp)oZp,
then Zp × Zp is a subgroup of G and since p > 2, so by (3.2), Γc(G) contains K4 as a proper
subgraph. Clearly |V (Γc(G))| ≥ 5.

Now we prove this result when α ≥ 4. We need to consider the following two cases:
Case 1: G ∼= Q2α . Then G has two subgroups each isomorphic to Q8, so in the view of
(3.3), Γc(G) contains C3 and K1,3 as proper subgraphs. Also G has at least five proper cyclic
subgroups, so |V (Γc(G))| ≥ 5.
Case 2: G � Q2α . By [22, Proposition 1.3], the number of subgroups of order p of G is not
unique and so by [7, Theorem IV, p.129], G has at least three subgroups, say Hi, i = 1, 2, 3 of
order p; also it has a subgroup, say H of order p3. Suppose Γc(H) contains C3 and K1,3; also
|V (Γc(H))| ≥ 5, then Γc(G) also has the same. So by Propositions 3.1 and 3.2, the only cases
remains to check areH ∼= Zp3 orQ8. IfH ∼= Zp3 , then by (3.2), Γc(H) ∼= K2, soH together with
its subgroups forms C3 as a subgraph of Γc(G). The cyclic subgroups of H together with the
subgroups Hi’s make |V (Γc(G))| ≥ 5. By [7, Corollary of Theorem IV, p.129], G has a normal
subgroup of order p, without loss of generality, say H1. Then K1,3 is a subgraph of Γc(G) with
bipartition X := {H1} and Y := {H,H2,H3}. If H ∼= Q8, then by (3.3), Γc(H) ∼= K4. Also the
cyclic subgroups of H together with Hi’s also make |V (Γc(G))| ≥ 5.

The proof follows by combining all the above cases. 2

Proposition 3.3. Let G be the non-abelian group of order pq, where p, q are distinct primes and
p < q. Then Γc(G) ∼= K1,q.

Proof. We have G ∼= Zq o Zp. Here every subgroup of G is cyclic, so Γc(G) ∼= Γ(G). By the
proof of Theorem 4.4 in [19], we have

Γc(G) ∼= K1,q. (3.4)

This completes the proof. 2
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Consider the semi-direct product ZqotZpα = ⟨a, b|aq = bp
α

= 1, bab−1 = ai, ordq(i) = pt⟩,
where p and q are distinct primes with pt | (q−1), t ≥ 0. Then every semi-direct product ZqoZpα

is one of these types [6, Lemma 2.12]. In the future, when t = 1 we will suppress the subscript.

Proposition 3.4. Let G be a non-abelian group of order p2q, where p, q are distinct primes. Then
Γc(G) contains C3 as a proper subgraph; it is K1,3-free if and only if G ∼= A4; it has at least five
vertices.

Proof. Here we use the classification of groups of order p2q given in [7, p. 76-80]. We have the
following cases to consider:
Case 1: p < q:
Case 1a: p - (q− 1). By Sylow’s Theorem, it is easy to see that there is no non-abelian group in
this case.
Case 1b: p | (q − 1), but p2 - (q − 1). In this case, there are two non-abelian groups.

The first group is G1 := Zq o Zp2 = ⟨a, b | aq = bp
2
= 1, bab−1 = ai, ordq(i) = p⟩. It has

H1 := ⟨a⟩, H2 := ⟨abp⟩, H3 := ⟨b⟩, H4 := ⟨bp⟩, H5 := ⟨ab⟩ as its proper cyclic subgroups, so
|V (Γc(G1))| ≥ 5. Here H1 and H2 are normal in G, so they permutes with all the subgroups of
G; H4 is a subgroup of H3 and H5. So K4 is a subgraph of Γc(G1) induced by Hi, i = 1, 2, 3, 4.

The second group in this case is G2 := ⟨a, b, c | aq = bp = cp = 1, bab−1 = ai, ca = ac, cb =
bc, ordq(i) = p⟩. It has H1 := ⟨a⟩, H2 := ⟨b⟩, H3 := ⟨c⟩, H4 := ⟨bc⟩, H5 := ⟨ab⟩ as its proper
cyclic subgroups, so |V (Γc(G2))| ≥ 5. Here H3 permutes with all the subgroups of G2; H2, H3,
H4 permutes with each other. So C3 is a subgraph of Γc(G2) induced by the vertices H2, H3,
H4; and K1,3 is a subgraph of Γc(G2) with bipartition X := {H3} and Y := {H1,H2,H3}.
Case 1c: p2 | (q − 1). In this case, we have both groups G1 and G2 from Case 1b together with
the group G3 := Zqo2Zp = ⟨a, b | aq = bp

2
= 1, bab−1 = ai, ordq(i) = p2⟩. But in Case 1b, we

already dealt with G1 and G2. Now we consider G3. It has H1 := ⟨a⟩, H2 := ⟨b⟩, H3 := ⟨bp⟩,
H4 := ⟨ab⟩, H5 := ⟨a2b⟩ as its proper cyclic subgroups, so |V (Γc(G3))| ≥ 5. Since H1 is normal
in G3, it permutes with all the subgroups of G3; H3 is a subgroup of H2. So C3 is a subgraph of
Γc(G) induced by H1, H2, H3 and K1,3 is a subgraph of Γc(G3) with bipartition X := {H1} and
Y := {H2, H3, H4}.
Case 2: p > q:
Case 2a: q - (p2 − 1). In this case there is no non-abelian group.
Case 2b: q | (p− 1). In this case there are two groups. The first one is G4 := ⟨a, b | ap2

= bq =
1, bab−1 = ai, ordp2(i) = q⟩. It has H1 := ⟨a⟩, H2 := ⟨ap⟩, H3 := ⟨apb⟩, H4 := ⟨b⟩, H5 := ⟨ab⟩
as its proper cyclic subgroups, so |V (Γc(G4))| ≥ 5. Since H1 is a normal subgroup of G4, so
it permutes with all the subgroup of G4; H2H3 = ⟨ap, b⟩ = H2H4; H2H5 = ⟨ap, ab⟩. So C3
is a subgraph of Γc(G4) induced by H1, H2, H4; K1,3 is a subgraph of Γc(G4) with bipartition
X := {H1} and Y := {H2, H3, H4}.

Next, we have the family of groups ⟨a, b, c | ap = bp = cq = 1, cac−1 = ai, cbc−1 =

bi
t

, ab = ba, ordp(i) = q⟩. There are (q + 3)/2 isomorphism types in this family (one for t = 0
and one for each pair {x, x−1} in F×

p . We will refer to all of these groups as G5(t) of order
p2q. They have a subgroup H isomorphic to Zp × Zp. Since p > 2, so by (3.2), Γc(G5(t))
contains K4 as a subgraph. In addition to these four vertices, Γc(G5(t)) have ⟨c⟩ as their vertex,
so |V (Γc(G5(t)))| ≥ 5.
Case 2c: q | (p + 1). In this case, we have only one group of order p2q, given by G6 :=
(Zp × Zp) o Zq = ⟨a, b, c | ap = bp = cq = 1, ab = ba, cac−1 = aibj , cbc−1 = akbl⟩, where(

i j
k l

)
has order q in GL2(p). It has a subgroup H isomorphic to Zp × Zp. Since p > 2, so by

(3.2), Γc(G6) contains K4 as a subgraph. In addition to these four vertices, Γc(G6) has ⟨c⟩ as its
vertex, so |V (Γc(G6))| ≥ 5.

Note that if (p, q) = (2, 3), the Cases 1 and 2 are not mutually exclusive. Up to isomorphism,
there are three non-abelian groups of order 12: Z3 o Z4, D12, and A4. In Case 1b we already
dealt with Z3 o Z4 (the group G1), and D12 (the group G2). But for the case of A4 (the group
G6), we can not use the argument as in Case 2c, since p = 2. So we now separately deal with
this case. Note that A4 ∼= (Z2 × Z2) o Z3. Here H1 := Z2 × Z2 is a subgroup of A4 of order
4, and it has three nontrivial subgroups, say Hi, i = 2, 3, 4 each of order 2. Also A4 has four
subgroups of order 3, let them be Hj , j = 5, 6, 7, 8. These eight subgroups are the only proper
subgroups of A4, so |V (Γc(G))| ≥ 5. Further, H2, H3 and H4 permutes with each other, but no
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two subgroups H5, H6, H7, H8 permutes; for if they permutes, then G has a subgroup of order
9, which is not possible. Also, no Hi (i = 2, 3, 4) permutes with Hj (j = 5, 6, 7, 8); for if they
permutes, then G has a subgroup of order 6, which is not possible. Thus,

Γc(G6) ∼= K3 ∪K4. (3.5)

The proof follows by combining all the cases. 2

Proposition 3.5. If G is a non-abelian group of order pαq, where p, q are two distinct primes
with α ≥ 3, then Γc(G) has C3 and K1,3 as proper subgraphs; it has at least five vertices.

Proof. Let P denote a Sylow p-subgroup of G. We first prove this result for α = 3. If p > q,
then np = 1, by Sylow’s Theorem and our group G ∼= P o Zq. Suppose Γc(P ) contains C3 and
K1,3; |V (Γc(G))| ≥ 5, then Γc(G) also has the same. So by Propositions 3.1 and 3.2, the only
possibilities are P ∼= Zp3 or Q8. If P ∼= Zp3 , then G ∼= Zp3 o Zq = ⟨a, b | ap3

= q = 1, bab−1 =

ai, ordp3(i) = q⟩ and it has H1 := ⟨a⟩, H2 := ⟨ap⟩ ,H3 := ⟨ap2⟩, H4 := ⟨b⟩, H5 := ⟨ab⟩ as its
proper cyclic subgroups, so |V (Γc(G))| ≥ 5. HereH1,H2,H3 are normal inG, so they permutes
with all the subgroups of G. It follows that Γc(G) contains K4 as a proper subgraph. If P ∼= Q8,
then by (3.3), Γc(P ) ∼= K4. But this K4 is a proper subgraph of Γc(G), since G has a cyclic
subgroup isomorphic to Zq, in addition and so |V (Γc(G))| ≥ 5.

Now, let us consider the case p < q and (p, q) ̸= (2, 3). Here nq = p is not possible.
If nq = p2, then q | (p + 1)(p − 1) which implies that q|(p + 1) or q | (p − 1). But this is
impossible, since q > p > 2. If nq = p3, then there are p3(q − 1) elements of order q. But
this only leaves p3q − p3(q − 1) = p3 elements, and the Sylow p-subgroup must be normal,
a case we already considered. Therefore, the only remaining possibility is that G ∼= Zq o P .
Suppose Γc(P ) contains C3 and K1,3; |V (Γc(P ))| ≥ 5, then Γc(G) also has the same. So by
Propositions 3.1 and 3.2, we have the only possibilities P ∼= Zp3 or Q8. If P ∼= Zp3 , then
G ∼= ZqoZp3 = ⟨a, b | aq = bp

3
= 1, bab−1 = ai, ordq(i) = p3⟩ and it has H1 := ⟨a⟩, H2 := ⟨b⟩,

H3 := ⟨bp⟩, H4 := ⟨bp2⟩, H5 := ⟨abp⟩ as its proper cyclic subgroups, so |V (Γc(G))| ≥ 5. Here
H1, H5 are normal in G, so they permutes with all the subgroups of G; H3 is a subgroups of H2.
So K4 is a subgraph of Γc(G) induced by H1, H2, H3, H4. The case P ∼= Q8 is similar to the
earlier case.

If (p, q) = (2, 3), then G ∼= S4 and it has a subgroup H isomorphic to D8. Therefore, by
Theorem 3.2, Γc(H) contains C3 and K1,3 as proper subgraphs. Also H has more than four
cyclic subgroups, so Γc(G) also has the same properties.

If α ≥ 4, then G has a subgroup, say H of order p4. Suppose Γc(H) contains C3 and K1,3;
also |V (Γc(H))| ≥ 5, then Γc(G) also has the same properties. So by Propositions 3.1 and 3.2,
we need to check when H ∼= Zp4 . If H ∼= Zp4 , then by (3.2), Γc(H) ∼= K3, so H together with
its subgroups forms K4 as a subgraph of Γc(G). Also |V (Γc(G))| ≥ 5, since G has a subgroup
of order q in addition. 2

Proposition 3.6. If G is a non-abelian group of order p2q2, where p, q are two distinct primes,
then Γc(G) contains C3 and K1,3 as proper subgraphs; it has at least five vertices.

Proof. We use the classification of groups of order p2q2 given in [15]. Let P and Q denote a
Sylow p, q-subgroups of G respectively. Without loss of generality, we assume that p > q. By
Sylow’s Theorem, np = 1, q, q2. But np = q is not possible, since p > q. If np = q2, then
p | (q + 1)(q − 1), this implies that p | (q + 1), which is true only when (p, q) = (3, 2).
When (p, q) ̸= (3, 2), then G ∼= P oQ. Now we have the following possibilities.

If G ∼= Zp2 o Zq2 = ⟨a, b | ap2
= bq

2
= 1, bab−1 = ai, iq

2 ≡ 1 (mod p2)⟩, then H1 :=
⟨a⟩, H2 := ⟨ap⟩, H3 := ⟨b⟩, H4 := ⟨bq⟩, H5 := ⟨ab⟩ are proper cyclic subgroups of G, so
|V (Γc(G))| ≥ 5. Here H1, H2 are normal in G; H3, H4 permutes with each other. So K4 is a
proper subgraph of Γc(G) induced by H1, H2, H3, H4.

If G ∼= Zp2 o (Zq × Zq), then H1 := ⟨a⟩, H2 := ⟨ap⟩, H3 := ⟨b⟩, H4 := ⟨c⟩, H5 := ⟨bc⟩ are
proper cyclic subgroups of G, so |V (Γc(G))| ≥ 5. Here H1 is a normal subgroup of G; H3, H4,
H5 permutes with each other. So K4 is a proper subgraph of Γc(G) induced by Hi, i = 1, 3, 4, 5.
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If G ∼= (Zp × Zp)oZq2 or (Zp × Zp)o (Zq × Zq), then Zp × Zp is a subgroup of G. Since
p > 2, so by (3.2), Γc(G) contains K4 as a proper subgraph and so |V (Γc(G))| ≥ 5.

Next, we consider the case when (p, q) = (3, 2) and np = 1. Consider the Sylow 3-subgroup
P and a Sylow 2-subgroup Q of G. Let H be a subgroup of Q of order 2. Since |G| does not
divide [G : P ]!, so P contains a subgroup, say K of order 3, which is normal in G; H1 := QK is
a subgroup of order 12. Suppose Γc(H) contains C3 and K1,3; also |V (Γc(H))| ≥ 5, then Γc(G)
also has the same. So by Propositions 3.1 and 3.4, the only cases remains to check is when
H ∼= Zp2q or A4. If H1 ∼= Zp2q, then by (3.2), Γc(H1) ∼= K4, so H together with its subgroups
forms K5 as a proper subgraph of Γc(G) and so |V (Γc(G))| ≥ 5. If H1 ∼= A4, then by (3.5),
Γc(H1) ∼= K3 ∪ K4, so |V (Γc(G))| ≥ 5. Also K1,3 is a subgraph of Γc(G) with bipartition
X := {K} and Y := {K1,K2,K3}, where Ki’s are the vertices of K3 in Γc(H1). 2

Proposition 3.7. If G is a non-abelian group of order pαqβ , where p, q are distinct primes, and
α, β ≥ 2, then Γc(G) has C3 and K1,3 as proper subgraphs; it has at least five vertices.

Proof. We prove the result by induction on α + β. If α + β = 4, then by Propositions 3.1
and 3.6, the result is true in the case. Assume that the result is true for all non-abelian groups
of order pmqn with m,n ≥ 2, and m + n < α + β. We prove the result when α + β > 4.
Since G is solvable, G has a subgroup H of prime index, with out loss of generality, say q. So
|H| = pαqβ−1. If H is abelian, then by Proposition 3.1, the result is true. If H is non-abelian,
then we have the following cases to consider:
Case 1: If β = 2, then α > 2. So by Proposition 3.5, the result is true for Γc(H).
Case 2: If β > 2, then by induction hypothesis, the result is true for Γc(H).
Case 3: If α = 2, then β > 2. So by Case 2, the result is true for Γc(H).
Case 4: If α > 2, then by induction hypothesis, the result is true for Γc(H).

Then by Theorem 2.4, result is true for Γc(G) also. 2

Proposition 3.8. Let G be a finite group of order pα1
1 pα2

2 . . . pαk

k , k ≥ 3, where pi’s are distinct
primes and αi ≥ 1. Then Γc(G) contains C3, K1,3 and it has more than four vertices.

Proof. If αi = 1, for every i, then G is solvable. We consider the following cases:
Case 1: k = 3. If α1 = α2 = α3 = 1, then without loss of generality, we assume that
p1 < p2 < p3. Since G is solvable, it has a Sylow basis {P1, P2, P3}, where Pi is the Sylow pi-
subgroup of G for every i = 1, 2, 3. Also H1 := ⟨ab⟩ and H2 := ⟨bc⟩ are proper cyclic subgroups
of G, where a, b, c are generators of P1, P2, P3 respectively, so we have |V (Γc(G))| ≥ 5.
Moreover, P1, P2, P3 permutes with each other, so Γc(G) contains C3 as a proper subgraph.
Further, G has a normal subgroup, say N of order p3, so it follows that Γc(G) contains K1,3 as a
subgraph with bipartition X := {N} and Y := {P1, P2, H1}.
Case 2: k > 3. Since G is solvable, it has a Sylow basis containing P1, P2, P3 , where Pi is
the Sylow pi-subgroup of G for every i = 1, 2, 3. Then H := P1P2P3 is a subgroup of G. So
by Proposition 3.1 and by Case 1 of this proof, Γc(H) contains C3 and K1,3 as subgraphs; also
|V (Γc(H))| ≥ 5. It follows that Γc(G) also has the same properties.

If αi > 1, for some i, then without loss of generality, we assume that α1 > 1. By Sylow’s
theorem, G has a Sylow p1-subgroup, say P and G has an element, say b of order p2. If P is
non-abelian, then by Proposition 3.2, Γc(P ) contains C3, K1,3 as a subgraph. By Theorem 3.2,
taking the cyclic subgroups of P together with ⟨b⟩, we have |V (Γc(G))| ≥ 5.

If P is abelian, then we consider the following cases:
Case 3: P is cyclic. Let P := ⟨a⟩. Now consider the subgroup ⟨a, b⟩ of G. Then by Propo-
sitions 3.1, 3.3, 3.4, 3.5, 3.6, and 3.7, we have Γc(⟨a, b⟩) contains C3, K1,3. Also by Proposi-
tions 3.3, 3.4, 3.5, 3.6 and 3.7, taking cyclic subgroups of ⟨a, b⟩ together with ⟨a, b⟩, we have
|V (Γc(G))| ≥ 5.
Case 4: P is non-cyclic. If α1 = 2, then P ∼= Zp × Zp := ⟨a1, a2⟩.
subcase 4a: If ⟨a1, a2, b⟩ � A4, then by Propositions 3.1, 3.3, 3.4, 3.5, 3.6 and 3.7, Γc(⟨a1, a2, b⟩)
contains C3, K1,3 and |V (⟨a1, a2, b⟩)| ≥ 5.
subcase 4b: If ⟨a1, a2, b⟩ ∼= A4. By (3.5), Γc(⟨a1, a2, b⟩) has C3 as a subgraph. Let c be an
element of G of order p3. If ⟨c⟩ permutes with a cyclic subgroups of ⟨a1, a2⟩, then Γc(⟨a1, a2⟩) ∼=
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C3. So ⟨c⟩ together with cyclic subgroups of ⟨a1, a2⟩ forms K1,3. If ⟨c⟩ does not permute with
a subgroups of ⟨a1, a2⟩, the by Propositions 3.1, 3.3, 3.4, 3.5, 3.6 and 3.7, Γc(⟨a1, c⟩) contains
K1,3 as a subgraph. Also |V (⟨a1, a2, b⟩)| ≥ 5, since by (3.5). If α1 ≥ 3, then by Proposition 3.1,
the result is true for Γc(P ), so it is true for Γc(G) also.

The proof follows by combining all these cases. 2

3.3 Main results for finite groups

Combining all the results obtained so-far in this section, we have the following main results
which are applications for group theory.

Theorem 3.9. Let G be a finite group and p, q be distinct primes. Then

(i) Γc(G) is C3-free if and only if G is one of Zpα (α = 2, 3), Zpq, Zq oZp;

(ii) Γc(G) is Cn if and only if n = 3 and G is either Zp4 or Z2 × Z2;

(iii) Γc(G) is Pn if and only if n = 1 and G is either Zp3 or Zpq;

(iv) Γc(G) is K4 if and only if G is one of Zp5 , Zp2q, Z3 × Z3, Q8;

(v) Γc(G) is claw-free if and only if G is one of Zpα (α = 2, 3, 4), Zpq, Z2 × Z2, A4.

Corollary 3.10. Let G be a finite group and p, q are distinct primes.

(i) The following are equivalent:

(a) Γc(G) is C3-free;
(b) Γc(G) is bipartite;
(c) Γc(G) is complete bipartite;
(d) Γc(G) is tree;
(e) Γc(G) is star graph.

(ii) Γc(G) is P2-free if and only if G is either Zpα (α = 2, 3) or Zpq.

(iii) girth(Γc(G)) is infinity if G is one of Zpα (α = 2, 3), Zpq or Zq oZp;
otherwise girth(Γc(G)) = 3.

Proof. To classify the groups whose permutability graph is either bipartite or complete bipartite,
it is enough to consider the groups whose permutability graph of cyclic subgroups are C3-free.
By Theorem 3.9(i) and (3.1), (3.4), we have (a) ⇔ (b) ⇔ (c). Now, to classify the groups
whose permutability graphs of cyclic subgroups is one of tree, star graph or P2-free, it is enough
to consider the groups whose permutability graphs of cyclic subgroups are bipartite. So by the
above argument and by Theorem 3.9(i), (3.1), (3.4), we have (b) ⇔ (d) ⇔ (e) and Γc(G) is
P2-free if and only if Zpα(α = 2, 3) or Zpq. This completes the proof of parts (i) and (ii). The
proof of part (iii) follows by the part (i) of this corollary and by Theorem 3.9(i). 2

Corollary 3.11. Let G be a finite group. Then Γc(G) is totally disconnected if and only if G ∼=
Zp2 .

Proof. Let |G| = pα1
1 pα2

2 . . . pαk

k , where pi’s are distinct primes, k ≥ 1 and αi ≥ 1. If αi = 1,
for every i, then G is solvable. Suppose k = 1, then G does not contains a proper subgroup.
It follows that k ≥ 2 and so any two subgroups in Sylow basis of G permutes with each other.
Therefore, Γc(G) is not totally disconnected. If αi > 1, for some i, then without loss of gen-
erality we assume that α1 > 1 and so by Sylow’s Theorem, G has a Sylow p1 subgroup, say
P . Suppose P � Zp2 , then by Propositions 3.1 and 3.2, Γc(G) is not totally disconnected. If
P ∼= Zp2 , then P and its subgroup of order p permutes with each other. Thus Γc(G) is not totally
disconnected. 2

Remark 3.12. Not every graph is a permutability graph of cyclic subgroups of some group.
For example, by Theorem 3.9 (3), the graph Cn, n ≥ 4 is not a permutability graph of cyclic
subgroups of any group.
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3.4 Infinite groups

We now investigate the of permutability graph of cyclic subgroups of infinite groups. It is well
known that any infinite group has infinite number of subgroups. Let G be an infinite abelian
group. If G is finitely generated, then by fundamental theorem of finitely generated abelian
groups, Z is a subgroup of G. Since Z is cyclic, it follows that Γc(Z) contains Kr as a proper
subgraph for every positive integer r. Therefore, by Theorem 2.4, Γc(G) also has the same
property. If G is not finitely generated, then we can take the cyclic groups generated by each
generating element and so Γc(G) contains Kr as a proper subgraph, for every positive integer r.
Thus we have the following result.

Theorem 3.13. The permutability graph of cyclic subgroups of any infinite abelian group con-
tains Kr as a subgraph, for every positive integer r.

Next, we consider the infinite non-abelian groups. Recall that an infinite non-abelian group
G in which every proper subgroups of G have order a fixed prime number p is called a Tarski
monster group. Existence of such groups was given by Ol’shanskii in [17]. In general, the ex-
istence of infinite non-abelian groups in which the order of all proper subgroups are of prime
order (primes not necessarily distinct) were also given by him in [18, Theorem 35.1]. Also M.
Shahryari in [21, Theorem 5.2] give the existence of countable non-abelian simple groups with
the property that their all non-trivial finite subgroups are cyclic of order a fixed prime p (of
course, this existence can also be deduced from the results of [18]). It is easy to see that the
permutability graph of cyclic subgroups of the above mentioned first two class of non-abelian
groups are totally disconnected and for the third class of non-abelian groups, it is totally discon-
nected if that group does not have Z as a subgroup. In the next result, we characterize the infinite
non-abelian groups whose permutability graph of cyclic subgroups is totally disconnected.

Theorem 3.14. Let G be an infinite group. Then Γc(G) is totally disconnected if and only if
every non-trivial finite subgroup of G is of prime order (primes not necessarily distinct) and Z
is not a subgroup of G.

Proof. It is easy to see that if every proper subgroup of G is of prime order (primes not necessar-
ily distinct) and Z is not a subgroup ofG then Γc(G) is totally disconnected. Conversely, suppose
that Γc(G) is totally disconnected. Then by Theorem 3.13, G must be non-abelian. Suppose not
every proper subgroup of G is of prime order, then we have the following possibilities.

(i) G may have a subgroup whose order is a composite number; or
(ii) all the subgroups of G may have infinite order.
If G is of type (i), then let H be a subgroup of G of composite order. If H � Zp2 , then by

Corollary 3.11, Γc(H) is not totally disconnected. If H ∼= Zp2 , then H and its subgroup of order
p permutes with each other. So it follows that Γc(G) is not totally disconnected.

If G is of type (ii), then it must have Z as a subgroup and so by Theorem 3.13, Γc(G) is not
totally disconnected. Hence the proof. 2

4 Further results on Γc(G)

Recall that a subgroup H of a group G is said to be permutable if it permutes with all the
subgroups of G. In [13], Iwasawa characterized the groups whose subgroups are permutable.

Theorem 4.1. ([13]) A group whose subgroups are permutable is a nilpotent group in which for
every Sylow p-subgroup P , either P is a direct product of a quaternion group and an elementary
abelian 2-group, or P contains an abelian normal subgroup A and an element b ∈ P such that
P = A⟨b⟩ and there exists a natural number s, with s ≥ 2 if p = 2, such that ab = a1+ps

for
every a ∈ A.

The next theorem classifies the groups whose permutability graph of cyclic subgroups are
complete (see, also in [5, p.14]).

Theorem 4.2. Let G be a group. Then Γc(G) is complete if and only if G is one of the groups
given in Theorem 4.1.
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Theorem 4.3. LetG be a group with a permutable proper cyclic subgroup. Then Γc(G) is regular
if and only if Γc(G) is complete.

Proof. Let N be a permutable cyclic subgroup of G. Assume that Γc(G) is regular. Since N per-
mutes with all the cyclic subgroup of G, so from the regularity of Γc(G), it follows that any two
vertices in Γc(G) are adjacent and hence Γc(G) is complete. Converse of the result is obvious. 2

Theorem 4.4. Let G be a group with a permutable proper cyclic subgroup. Then Γc(G) is
connected and diam(Γc(G)) ≤ 2.

Proof. If every cyclic subgroups of G are permutable, then obviously Γc(G) is connected and
diam(Γc(G)) = 1. Let N be a permutable proper cyclic subgroup of G. Suppose H and K are
two proper cyclic subgroups of G such that HK ̸= KH . Then we have a path H − N −K in
Γc(G) and so Γc(G) is connected and diam(Γc(G)) = 2. 2

Problem 4.1. Which groups have connected permutability graph of cyclic subgroups ? and esti-
mate their diameter.

In the next result, we classify the abelian groups whose permutability graph of cyclic sub-
groups are planar.

Theorem 4.5. Let G be an abelian group and p, q be distinct primes. Then Γc(G) is planar if
and only if G is isomorphic to one of the following: Zpα(α = 2, 3, 4, 5), Zpq,Zp2q, Z2 × Z2,
Z3 × Z3.

Proof. If G is infinite abelian, then by Theorem 3.13, Γc(G) is non-planar. So in the rest of the
proof, we assume that G is finite.

Suppose G is cyclic, then with the notations used in the proof of Proposition 3.1 and by (3.1),
we have Γc(G) ∼= Kr. So Γc(G) is planar if and only if r ≤ 4. This is true only when one of the
following holds:

(i) k = 1 with α1 < 6;

(ii) k = 2 with α1 = 1, α2 = 1;

(iii) k = 2 with α1 = 2, α2 = 1.

If G is non-cyclic, then we need to consider the following cases:
Case 1: G ∼= Zp×Zp. Then the number of proper subgroups of G is p+1; they are ⟨(1, 0)⟩, and
⟨x, 1⟩, x ∈ {0, 1, . . . , p− 1}. By (3.2), Γc(G) is planar only when p = 2, 3.
Case 2: G ∼= Zp2 ×Zp. Then ⟨(1, 0)⟩, ⟨(1, 1)⟩, ⟨(p, 0)⟩, ⟨(0, 1)⟩, ⟨(p, 1)⟩ are proper subgroups of
G, so Γc(G) contains K5 as a subgraph.
Case 3: G ∼= Zpq × Zp. Then Zpq, Zq, Zp × Zp are proper subgroups of G. Here Zp × Zp has
at least three proper subgroups of order p, so these three subgroups together with Zpq, Zq forms
K5 as a subgraph of Γc(G).
Case 4: G ∼= Zpk × Zpl , k, l ≥ 2. Then Zp2 × Zp is a proper subgroup of G, so by Case 2 and
by Theorem 2.4, Γc(G) contains K5 as a subgraph.
Case 5: G ∼= Zp × Zp × Zp. then G has two subgroups each isomorphic to Zp × Zp. It follows
that G has at least five subgroups of order p and so they form K5 as a subgraph of Γc(G).
Case 6: G ∼= Zp

α1
1

× Zp
α2
2

× . . . × Zp
αk
k

, where pi’s are primes and αi ≥ 1. If k = 2 or 3,
then αi > 1, for some i and if k ≥ 4, then αi ≥ 1. In either case, one of Zp2 × Zp, Zpq × Zp,
Zp×Zp×Zp is a proper subgroup ofG, so by Cases 2, 3 and 5, Γc(G) containsK5 as a subgraph.
The result follows by combining all the above cases. 2

Proposition 3.3 shows the existence of a finite non-abelian group whose permutability graph
of cyclic subgroups is planar. Further, the Torski monster group is an example of an infinite
non-abelian group whose permutability graph of cyclic subgroups is planar. Now we pose the
following
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Problem 4.2. Classify all non-abelian groups whose permutability graph of cyclic subgroups are
planar.

The next result characterize some non-abelian groups by using their permutability graph of
cyclic subgroups.

Theorem 4.6. Let G be a finite group.

(i) If G is non-abelian and Γc(G) ∼= Γc(Q8), then G ∼= Q8.

(ii) If Γc(G) ∼= Γc(S3), then G ∼= S3.

(iii) If Γc(G) ∼= Γc(A4), then G ∼= A4.

Proof.

(i); By Theorem 3.9(5), Q8 is the only non-abelian group such that Γc(Q8) = K4, so the result
follows.

(ii): By Theorem 3.9(1) and (3.1), (3.4), S3 is the only group such that Γc(S3) = K1,3, so the
result follows.

(iii): By Theorem 3.9(6) and (3.1), (3.2), (3.5), A4 is the only group such that Γc(A4) = K3∪K4,
so the result follows.2
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