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Abstract. δ−ideals are established in a Pseudo-complemented Almost Distributive lattice in
terms of filters and some important properties are derived. δ−ideals are utilized to characterize
the stone ADLs.

1 Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean algebra, a number
of generalizations both ring theoretically and lattice theoretically have come into being. The
concept of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [7] as a
common abstraction of many existing ring theoretic generalizations of a Boolean algebra on one
hand and the class of distributive lattices on the other. In that paper, the concept of an ideal in
an ADL was introduced analogous to that in a distributive lattice and it was observed that the
set PI(L) of all principal ideals of L forms a distributive lattice. This provided a path to extend
many existing concepts of lattice theory to the class of ADLs. With this motivation, Swamy, Rao
and Nanaji[8] introduced the concept of pseudo-complementation on an ADL. They observed
that unlike in a distributive lattice, an ADL R can have more than one pseudo-complementation.
If ∗, ⊥ are two pseudo-complementations on L, it was observed that x∗ ∨ x∗∗ is maximal, for
all x ∈ L if and only if x⊥ ∨ x⊥⊥ is maximal, for all x ∈ L. With this motivation, in refswamy
stone,the concept of a Stone ADL was introduced as an ADL with a pseudo-complementation
∗ satisfying the condition x∗ ∨ x∗∗ is maximal, for all x ∈ L. They studied the properties of
pseudo-complemented ADLs and characterized Stone ADLs algebraically, topologically and by
means of prime ideals. In [5], G.C. Rao and S. Ravi Kumar proved that some important results
on minimal prime ideal of an ADL. In [6], Sambasiva Rao introduced δ−ideals in Pseudo-
complemented Distributive lattices and proved their properties. In this paper, we extend the
concept of δideals to a Pseudo-complemented ADL in terms of filters. Some properties of these
δ−ideals are studied and then proved that the set of all δ−ideals can be made into a complete
distributive lattice. We proved that the set of all δ−ideals of a pseudo-complemented ADL forms
a complete distributive lattice on its own. We derive a set of equivalent conditions for the class of
all δ−ideals to become a sublattice to the lattice of all ideals, which leads to a characterization of
Stone ADLs. Derived the image a δ−ideal of Pseudo-complemented ADL under homomorphism
is again a δ−ideal. Finally, the set of δ−ideals of a pseudo-complemented ADL is characterized
in terms of filter congruences.

2 Preliminaries

Definition 2.1. [7] An Almost Distributive Lattice with zero or simply ADL is an algebra (L,∨,∧, 0)
of type (2, 2, 0) satisfying:

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
3. (x ∨ y) ∧ y = y
4. (x ∨ y) ∧ x = x
5. x ∨ (x ∧ y) = x
6. 0 ∧ x = 0
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7. x ∨ 0 = x, for all x, y, z ∈ L.

Every non-empty setX can be regarded as an ADL as follows. Let x0 ∈ X. Define the binary
operations ∨,∧ on X by

x ∨ y =

{
x if x 6= x0

y if x = x0
x ∧ y =

{
y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL. If (L,∨,∧, 0)
is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a ∧ b (or equivalently, a ∨ b = b),
then ≤ is a partial ordering on L.

Theorem 2.2. [7] If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the following:
(1). a ∨ b = a⇔ a ∧ b = b
(2). a ∨ b = b⇔ a ∧ b = a
(3). ∧ is associative in L
(4). a ∧ b ∧ c = b ∧ a ∧ c
(5). (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6). a ∧ b = 0⇔ b ∧ a = 0
(7). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(8). a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
(9). a ≤ a ∨ b and a ∧ b ≤ b
(10). a ∧ a = a and a ∨ a = a
(11). 0 ∨ a = a and a ∧ 0 = 0
(12). If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a
(13). a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a distributive lattice
except the right distributivity of ∨ over ∧, commutativity of ∨, commutativity of ∧. Any one of
these properties make an ADL L a distributive lattice. That is

Theorem 2.3. [7] Let (L,∨,∧, 0) be an ADL with 0. Then the following are equivalent:
1). (L,∨,∧, 0) is a distributive lattice
2). a ∨ b = b ∨ a, for all a, b ∈ L
3). a ∧ b = b ∧ a, for all a, b ∈ L
4). (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in the partially
ordered set (L,≤). That is, for any a ∈ L, m ≤ a⇒ m = a.

Theorem 2.4. [7] Let L be an ADL and m ∈ L. Then the following are equivalent:
1). m is maximal with respect to ≤
2). m ∨ a = m, for all a ∈ L
3). m ∧ a = a, for all a ∈ L
4). a ∨m is maximal, for all a ∈ L.

As in distributive lattices [1, 2], a non-empty sub set I of an ADL L is called an ideal of L if
a ∨ b ∈ I and a ∧ x ∈ I for any a, b ∈ I and x ∈ L. Also, a non-empty subset F of L is said to
be a filter of L if a ∧ b ∈ F and x ∨ a ∈ F for a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element {0} and
greatest element L under set inclusion in which, for any I, J ∈ I(L), I ∩ J is the infimum of I
and J while the supremum is given by I ∨ J := {a ∨ b | a ∈ I, b ∈ J}. A proper ideal P of
L is called a prime ideal if, for any x, y ∈ L, x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . A proper ideal
M of L is said to be maximal if it is not properly contained in any proper ideal of L. It can be
observed that every maximal ideal of L is a prime ideal. Every proper ideal of L is contained
in a maximal ideal. For any subset S of L the smallest ideal containing S is given by (S] :=
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{(
n∨
i=1

si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead of (S]. Similarly, for

any S ⊆ L, [S) := {x ∨ (
n∧
i=1

si) | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write [s) instead of

[S).

Theorem 2.5. [7] For any x, y in L the following are equivalent:
1). (x] ⊆ (y]
2). y ∧ x = x
3). y ∨ x = y
4). [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨ (y] = (x∨ y] and (x]∧ (y] = (x∧ y]. Hence the
set PI(L) of all principal ideals of L is a sublattice of the distributive lattice I(L) of ideals of L.

Theorem 2.6 ([4]). Let I be an ideal and F a filter of L such that I ∩ F = ∅. Then there exists a
prime ideal P such that I ⊆ P and P ∩ F = ∅.

Definition 2.7. [5] A prime ideal of L is called a minimal prime ideal if it is a minimal element
in the set of all prime ideals of L ordered by set inclusion.

Theorem 2.8. [5] Let L be an ADL and P a prime ideal of L. Then P is a minimal prime ideal
of L if and only if L \ P is a maximal filter of L.

Theorem 2.9. [5] Let L be an ADL. Then a prime ideal P is minimal if and only if for any x ∈ P,
there exist an element y /∈ P such that x ∧ y = 0.

Definition 2.10 ([4]). An equivalence relation θ on an ADL L is called a congruence relation on
L if (a ∧ c, b ∧ d), (a ∨ c, b ∨ d) ∈ θ, for all (a, b), (c, d) ∈ θ

Theorem 2.11 ([4]). An equivalence relation θ on an ADL L is a congruence relation if and only
if for any (a, b) ∈ θ, x ∈ L, (a ∨ x, b ∨ x), (x ∨ a, x ∨ b), (a ∧ x, b ∧ x), (x ∧ a, x ∧ b) are all in θ

Definition 2.12. [8] Let (L,∨,∧, 0) be an ADL. Then a unary operation a −→ a∗ on L is called
a pseudo-complementation on L if, for any a, b ∈ L, it satisfies the following conditions:

(1) a ∧ b = 0⇒ a∗ ∧ b = b

(2) a ∧ a∗ = 0
(3) (a ∨ b)∗ = a∗ ∧ b∗

Then (L,∨,∧,∗ , 0) is called a pseudo-complemented ADL.

Theorem 2.13. [8] Let L be an ADL and ∗ a pseudo-complementation on L. Then, for any
a, b ∈ L, we have the following:

(1) 0∗ is a maximal element
(2) If a is a maximal element then a∗ = 0
(3) 0∗∗ = 0
(4) 0∗ ∧ a = a

(5) a∗∗ ∧ a = a

(6) a∗∗∗ = a∗

(7) a ≤ b⇒ b∗ ≤ a∗

(8) a∗ ∧ b∗ = b∗ ∧ a∗

(9) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗

(10) a∗ ∧ b = (a ∧ b)∗ ∧ b∗.

For any pseudo-complemented ADL L, let us denote the set of all elements of the form
x∗ = 0 by D(L). It is easy to prove that D(L) is a filter of an ADL L.
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3 δ−ideals in pseudo-complemented ADLs

The concept of a δ−ideal in a Pseudo-complemented distributive lattice was given by M.S.Rao
[6]. In this section we extend the concept of a δ−ideal to a Pseudo-complemented ADL, analo-
gously. Though many results look similar, the proofs are not similar because we do not have the
properties like commutativity of ∨, commutativity of ∧ and the right distributivity of ∨ over ∧
in an ADL.
We begin with the following definition.

Definition 3.1. Let L be a pseudo-complemented ADL. Then for any filter F of L, define the set
δ(F ) = {x ∈ L | x∗ ∈ F}.

Now we have the following results.

Lemma 3.2. Let L be a pseudo-complemented ADL with maximal elements. Then for any filter
F of L, δ(F ) is an ideal of L.

Proof. Since 0∗ ∈ F, we get that 0 ∈ δ(F ). Hence δ(F ) 6= ∅. Let x, y ∈ δ(F ). Then x∗, y∗ ∈ F.
That implies x∗ ∧ y∗ ∈ F, since F is a filter of L. Therefore (x∨ y)∗ ∈ F. Now, let x ∈ δ(F ) and
r ∈ L. Then x∗ ∈ F. That implies x∗ ∨ r∗ ∈ F. Now, (x ∧ r)∗ = (x ∧ r)∗∗∗ = (x∗∗ ∧ r∗∗)∗ =
(x∗ ∨ r∗)∗∗ ∈ F. Therefore x ∧ r ∈ δ(F ) hence δ(F ) is an ideal of L.

Lemma 3.3. Let L be a pseudo-complemented ADL with maximal elements. For any two filters
F,G of L, we have the following properties:

1. F ∩ δ(F ) = ∅,
2. If x ∈ δ(F ) then x∗∗ ∈ δ(F ),
3. F = L if and only if δ(F ) = L,

4. If F ⊆ G then δ(F ) ⊆ δ(G),
5. δ(F ∩G) = δ(F ) ∩ δ(G).

Proof. (1) Suppose F ∩ δ(F ) 6= ∅. Choose x ∈ F ∩ δ(F ). Then x ∈ F and x ∈ δ(F ). That
implies x ∈ F and x∗ ∈ F. Since F is a filter, we get x∗ ∧ x ∈ F and hence 0 ∈ F, which is a
contradiction. Therefore F ∩ δ(F ) = ∅.
(2) Let x ∈ δ(F ). Then x∗ ∈ F. Since x∗∗∗ = x∗, we get that x∗∗∗ ∈ F. Hence x∗∗ ∈ δ(F ).
(3) Assume that F = L. Then, we can choose 0 ∈ F. That implies 0∗∗ ∈ F. Therefore 0∗ ∈ δ(F )
and hence δ(F ) = L. Conversely, assume that δ(F ) = L. Then, choose any maximal element m
of L such that m ∈ δ(F ). That implies m∗ ∈ F. Therefore 0 ∈ F and hence F = L.
(4) Suppose F ⊆ G. Let x ∈ δ(F ). Then x∗ ∈ F ⊆ G. Therefore x ∈ δ(G).
(5) Clearly, we have δ(F ∩G) ⊆ δ(F ) ∩ δ(G). Let x ∈ δ(F ) ∩ δ(G). Then x∗ ∈ F and x∗ ∈ G.
That implies x∗ ∈ F ∩ G. Hence x ∈ δ(F ∩ G). Therefore δ(F ) ∩ δ(G) ⊆ δ(F ∩ G). Thus
δ(F ∩G) = δ(F ) ∩ δ(G).

We introduce the concept of δ−ideals in a pseudo-complemented ADL.

Definition 3.4. Let L be a pseudo-complemented ADL. An ideal I of L is called a δ−ideal if
I = δ(F ), for some filter F of L.

Example 3.5. Consider a discrete ADLA = {0, a} and a distributive latticeB = {0′, a′, b′, c′, 1}
whose Hasse diagram is given in the following Figure-1.
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Take
R = A × B = {(0, 0′), (0, a′), (0, b′), (0, c′), (0, 1), (a, 0′), (a, a′), (a, b′), (a, c′), (a, 1)}. Then
(R,∨,∧, 0̄) is an ADL with zero 0̄ = (0, 0′) under point-wise operations. Consider I =
{(0, 0′), (0, a′), (0, b′), (0, c′), (0, 1)} and
F = {(a, 0′), (a, a′), (a, b′), (a, c′), (a, 1)}. Clearly, I is an ideals ofR and F is a filter ofR.Now
δ(F ) = {x ∈ R | x∗ ∈ F} = {(0, 0′), (0, a′), (0, b′), (0, c′), (0, 1)} = I. Therefore I is δ−ideal
of R.

Every δ−ideal is an ideal but converse is need not be true. For this, we have the following
example.

Example 3.6. In a distributive lattice B as shown in the above figure-1, take J = {0′, a′, b′, c′}
and F1 = {b′, c′, 1}. Clearly J is an ideal of B and F1 is a filter of B. But J is not a δ−ideal of
B. Suppose J = δ(F ). Then 0′ = c′∗ ∈ F. Hence F = B, which is a contradiction. Therefore J
is not a δ−ideal of B.

Now, we have the following.

Lemma 3.7. Let L be a pseudo-complemented ADL. For any x ∈ L, (x∗] is a δ−ideal of L.

Proof. Let a ∈ (x∗]. Then x∗ ∧ a = a. Now a ∧ x = x∗ ∧ a ∧ x = 0. That implies a ∧ x = 0
and hence a∗ ∧ x = x. That implies a∗ ∨ x = a∗. So that a∗ ∈ [x). Therefore a ∈ δ([x)). Thus
(x∗] ⊆ δ([x)). Let a ∈ δ([x)). Then a∗ ∈ [x). That implies a∗ ∨ x = a∗ and hence a∗ ∧ x = x.
Therefore a ∧ x = a ∧ a∗ ∧ x = 0. Thus x∗ ∧ a = a and hence a ∈ (x∗]. So that we have
δ([x)) ⊆ (x∗]. Therefore (x∗] is a δ−ideal of L.

Lemma 3.8. Let L be a pseudo-complemented ADL. Every prime ideal without dense element is
a δ−ideal.

Proof. Let P be a prime ideal of Lwith P∩D(L) = ∅. Let x ∈ P. Since x∨x∗ is a dense element
of L which is not in P, we get that x∗ /∈ P. That implies x∗ ∈ L \ P. Therefore x ∈ δ(L \ P ).
Hence P ⊆ δ(L \ P ). Conversely, let x ∈ δ(L \ P ). Then x∗ ∈ L \ P. Since P is prime and
x ∧ x∗ = 0 ∈ P, which implies that x ∈ P. Therefore δ(L \ P ) ⊆ P and hence P = δ(L \ P ).
Thus P is a δ−ideal of L.

Lemma 3.9. LetL be a pseudo-complemented ADL. Every minimal prime ideal ofL is a δ−ideal.

Proof. Let P be a minimal prime ideal of L. We prove that P is a δ−ideal of L. For this it is
enough to prove that P ∩D(L) = ∅. Suppose x ∈ P ∩D(L). Then x ∈ P and x ∈ D(L). Since
x ∈ D(L), we have x∗ = 0. Since x ∈ P and P is a minimal prime ideal of L, there exists y /∈ P
such that x ∧ y = 0. That implies x∗ ∧ y = y and hence 0 ∧ y = y. Therefore y = 0 ∈ P, which
is a contradiction. Thus P ∩D(L) = ∅. By above lemma we get that, P is a δ−ideal.

Lemma 3.10. Let L be a pseudo-complemented ADL. A proper δ−ideal contains no dense ele-
ment.

Proof. Let I be a proper δ−ideal of L. Then I = δ(F ), for some filter F. We prove that δ(F ) ∩
D(L) = ∅. Suppose x ∈ δ(F ) ∩ D(L). Then we get 0 = x∗ ∈ F, which is a contradiction.
Therefore δ(F ) ∩D(L) = ∅.

Let us denote the set of all δ−ideals of L by Iδ(L). Then by Example 3.6, it can be observed
that Iδ(B) is not a sublattice of I(B) of all ideals of B. Consider F = {b′, c′, 1} and G =
{a′, c′, 1}. Clearly F and G are filters of B. Now δ(F ) = {0′, a′} and δ(G) = {0′, b′}. But
δ(F )∨ δ(G) = {0′, a′, b′, c′} is not a δ−ideal of B, because c′ ∈ δ(F )∨ δ(G) is a dense element.
In the following theorem, we prove that Iδ(B) forms a complete distributive lattice.

Theorem 3.11. Let L be a pseudo-complemented ADL. Then the set Iδ(L) forms a complete
distributive lattice on its own.
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Proof. For any two filters F,G of L, define two binary operations ∩ and t as δ(F ) ∩ δ(G) =
δ(F∩G) and δ(F )tδ(G) = δ(F∨G).Clearly, we have δ(F∩G) is the infimum of δ(F ) and δ(G)
in Iδ(L). Also δ(F ) t δ(G) is a δ−ideal of L. Clearly δ(F ), δ(G) ⊆ δ(F ∨G) = δ(F ) t δ(G).
Let δ(H) be any δ−ideal of L such that δ(F ) ⊆ δ(H) and δ(G) ⊆ δ(H), where H is a filter
of L. Now we prove that δ(F ∨ G) ⊆ δ(H). Let x ∈ δ(F ∨ G). Then x∗ ∈ F ∨ G and hence
x∗ = f ∧ g, for some f ∈ F, g ∈ G. Since f ∈ F and g ∈ G, we get that f∗ ∈ δ(F ) ⊆ δ(H)
and g∗ ∈ δ(G) ⊆ δ(H). That implies f∗ ∨ g∗ ∈ δ(H) and hence (f∗ ∨ g∗)∗∗ ∈ δ(H). So that
(f∗∗ ∧ g∗∗)∗ ∈ δ(H). That implies x∗∗ ∈ δ(H). Therefore x ∈ δ(H). Hence δ(F ) t δ(G) =
δ(F ∨ G) is the supremum of both δ(F ) and δ(G) in (Iδ(L),∩,t) is a lattice. Distributivity of
δ−ideals can be easily followed by using the above operations of Iδ(L). It is clear that Iδ(L)
is a partially ordered set with respect to set-inclusion. Then by the extension of the property of
Lemma 3.3(5), we can obtain that Iδ(L) is a complete lattice. Therefore Iδ(L) is a complete
distributive lattice.

Now we prove that A∗(L) = {(x∗] | x ∈ L} is a Boolean algebra.

Theorem 3.12. For any pseudo-complemented ADL L, A∗(L) = {(x∗] | x ∈ L} is a sublattice
of the lattice Iδ(L) of all δ−ideals of L and hence is a Boolean algebra. Moreover, the mapping
x 7→ (x∗] is a dual homomorphism from L onto A∗(L).

Proof. Let (x∗], (y∗] ∈ A∗(L) for some x, y ∈ L. Then clearly (x∗] ∩ (y∗] ∈ A∗(L). Again,
(x∗] t (y∗] = δ([x)) t δ([y)) = δ([x) ∨ [y)) = δ([x ∧ y)) = ((x ∧ y)∗] ∈ A∗(L). Therefore
A∗(L) is a sublattice of Iδ(L) and hence a distributive lattice. Clearly (0∗∗] and (0∗] are the
least and greatest elements of A∗(L). Now for any x ∈ L, (x∗]∩ (x∗∗] = (0] and (x∗]t (x∗∗] =
δ([x)) t δ([x∗)) = δ([x) ∨ [x∗)) = δ([x ∧ x∗)) = δ([0)) = δ(L) = L. Hence (x∗∗] is the
complement of (x∗] inA∗(L). Therefore (A∗(L),t,∩) is a bounded distributive lattice in which
every element is complemented. The remaining part can be proved easily.

We have the following result.

Lemma 3.13. Every proper δ−ideal is contained in a minimal prime ideal.

Proof. Let I be a proper δ−ideal of L. Then I = δ(F ), for some filter F of L. Clearly δ(F ) ∩
D(L) = ∅. Then there exists a prime ideal P of L such that δ(F ) ⊆ P and P ∩ D(L) = ∅.
Let x ∈ P. We have always x ∧ x∗ = 0. Suppose x∗ ∈ P. Then x ∨ x∗ ∈ P ∩ D(L), which is
a contradiction. That means, for any x ∈ P there exist x∗ /∈ P such that x∗ ∧ x = 0. By the
theorem 2.9, we have P is a minimal prime ideal of L.

The concept of Stone ADL was introduced by U.M. Swamy, G.C. Rao and G. Nanaji Rao in
[9]. Now we have the following Stone ADL definition.

Definition 3.14. Let L be an ADL with a pseudo-complementation ∗. Then L is called a Stone
ADL if, for any x ∈ L, x∗ ∨ x∗∗ = 0∗.

It was already observed that Iδ(L) is not a sublattice of the ideal lattice I(L). In the following
theorem, we establish some equivalent conditions for Iδ(L) to become a sublattice of I(L),
which leads to a characterization of Stone ADL.

Theorem 3.15. Let L be a pseudo-complemented ADL with maximal elements. Then the follow-
ing are equivalent:

1. L is a Stone ADL,
2. For any x, y ∈ L, (x ∧ y)∗ = x∗ ∨ y∗,
3. For any two filters F,G of L, δ(F ) ∨ δ(G) = δ(F ∨G),
4. Iδ(L) is a sublattice of I(L).

Proof. (1)⇒ (2): Assume that L is a Stone ADL. Then x∗∨x∗∗ = 0∗, for all x ∈ L. Let x, y ∈ L.
Then (x ∧ y)∗ = (x ∧ y)∗∗∗ = (x∗∗ ∧ y∗∗)∗ = x∗∗∗ ∨ y∗∗∗, since x∗∗, y∗∗ are complemented
elements in [0, 0∗]. Therefore (x ∧ y)∗ = x∗ ∨ y∗.
(2) ⇒ (3): Assume the condition (2). Let F,G be two filters of L. We have always δ(F ) ∨
δ(G) ⊆ δ(F ∨ G). Conversely, let x ∈ δ(F ∨ G). Then x∗ ∈ F ∨ G ⇒ x∗ = f ∧ g for some
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f ∈ F, g ∈ G ⇒ x∗∗ = (f ∧ g)∗ ⇒ x∗∗ = f∗ ∨ g∗ ⇒ x∗∗ = f∗ ∨ g∗ ∈ δ(F ) ∨ δ(G)
since f∗∗ ∈ F, g∗∗ ∈ G ⇒ x ∈ δ(F ) ∨ δ(G). Hence δ(F ∨ G) ⊆ δ(F ) ∨ δ(G). Therefore
δ(F ) ∨ δ(G) = δ(F ∨G).
(3)⇒ (4): It is obvious.
(4)⇒ (1): Assume that Iδ(L) is a sublattice of I(L). Let x ∈ L. By lemma 3.7, (x∗] and (x∗∗]
are both δ−ideals of L. Suppose x∗ ∨x∗∗ 6= 0∗. Then by our assumption, (x∗]∨ (x∗∗] is a proper
δ−ideal of L. Hence there exists a minimal prime ideal P such that (x∗]∨ (x∗∗] ⊆ P. Since P is
minimal, we get that x∗∗ /∈ P, which is a contradiction. Therefore L is a Stone ADL.

Unlike in rings, if f is a a homomorphism of an ADL L with 0 into another ADL L′ with
0′ such that ker f = {x ∈ L | f(x) = 0} = {0} and f is onto, then f is need not be an
isomorphism. It may be seen in the following example.

Example 3.16. Let L = {0, a, b} and L′ = {0′, c} be two discrete ADLs. Define a mapping
f : L −→ L′ by f(0) = 0′ and f(a) = f(b) = c. Then clearly, f is a homomorphism from
L into L′ and also f is onto. Also Ker f = {0}. But f is not one-one. Hence f is not an
isomorphism.

However, we have the following.

Lemma 3.17. Let L and L′ be two pseudo-complemented ADLs with pseudo-complementation ∗
and f : L −→ L′ an onto homomorphism. If Ker f = {0}, then f(x∗) = {f(x)}∗ for all x ∈ L.

Proof. We have always f(x) ∧ f(x∗) = f(x ∧ x∗) = f(0) = 0. Suppose f(x) ∧ f(t) = 0 for
some t ∈ L. Then f(x∧ t) = 0 and hence x∧ t ∈ ker f = {0}. Thus x∧ t = 0. Hence x∗∧ t = t,
which yields f(x∗) ∧ f(t) = f(x∗ ∧ t) = f(t). Therefore f(x∗) is the pseudo-complement of
f(x) in L′.

In the following, we prove that the image of a δ−ideal of L under the above homomorphism
is again a δ−ideal.

Theorem 3.18. Let L, L′ be two pseudo-complemented ADLs with maximal elements, pseudo-
complementation ∗ and f : L −→ L′ an onto homomorphism such that Ker f = {0}. If I is a
δ−ideal of L, then f(I) is a δ−ideal of L′.

Proof. Let I be a δ−ideal of L. Then I = δ(G) for some filter G of L. It is clear that f(G)
is a filter in L′. Now, it is enough to show that f{δ(G)} = δ{f(G)}. Let a ∈ f{δ(G)}. Then
a = f(x), for some x ∈ δ(G).Hence x∗ ∈ G.Now f(x)∧f(x∗) = f(x∧x∗) = f(0) = 0.Hence
{f(x)}∗ ∧ f(x∗) = f(x∗) ∈ f(G). Thus {f(x)}∗ ∈ f(G). Therefore a = f(x) ∈ δ{f(G)}.
Therefore f{δ(G)} ⊆ δ{f(G)}. Conversely, let y ∈ δ{f(G)}. Since f is on-to, there exists
x ∈ L such that y = f(x). Then {f(x)}∗ ∈ f(G). Hence {f(x)}∗ = f(a) for some a ∈ G. Now
f(x) ∧ {f(x)}∗ = 0⇒ f(x) ∧ f(a) = 0⇒ f(x ∧ a) = 0⇒ x ∧ a ∈ Ker f = {0} ⇒ x∗ ∧ a =
a ∈ G ⇒ x∗ ∈ G ⇒ x ∈ δ(G) ⇒ y = f(x) ∈ f{δ(G)}. Thus δ{f(G)} ⊆ f{δ(G)}. Therefore
δ{f(G)} = f{δ(G)}.

The concept of filter congruences introduced by S. Ramesh in an ADL[3]. We have the
following definition.

Definition 3.19. Let F be a filter of an ADL L. Define θ
F

:= {(a, b) ∈ L | a ∧ x = b ∧
x, for some x ∈ F}.

The following result can be verified easily.

Theorem 3.20. For any filter F of an ADL L, θ
F

is a congruence on L.

We now prove the following.

Lemma 3.21. Let L be a pseudo-complemented ADL with maximal elements. Then for any ideal
I of L, FI = {x ∈ L | x∗ ∧ a∗ = 0, for some a ∈ I} is a filter of L.
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Proof. Clearly 0∗ ∈ FI . Let x, y ∈ FI . Then x∗ ∧ a∗ = 0 and y∗ ∧ b∗ = 0, for some a, b ∈ I.
Hence x∗∗∧a∗ = a∗ and y∗∗∧ b∗ = b∗. Now (x∧y)∗∗∧ (a∨ b)∗ = x∗∗∧y∗∗∧a∗∧ b∗ = a∗∧ b∗.
Thus (x ∧ y)∗ ∧ (a ∨ b)∗ = (x ∧ y)∗ ∧ a∗ ∧ b∗ = [(x ∧ y)∗ ∧ a∗] ∧ b∗ = [(x ∧ y) ∨ a]∗ ∧ b∗ =
[(x ∨ a) ∧ (y ∨ a)]∗ ∧ b∗ = [(x ∨ a) ∧ (y ∨ a)]∗∗∗ ∧ b∗ = [(x ∨ a)∗∗ ∧ (y ∨ a)∗∗]∗ ∧ b∗ =
[(x∗∧a∗)∗∧(y∨a)∗∗]∗∧b∗ = [0∗∧(y∨a)∗∗]∗∧b∗ = (y∨a)∗∗∗∧b∗ = y∗∧b∗∧a∗ = 0∧a∗ = 0.
Therefore x ∧ y ∈ FI . Let x ∈ FI and s ∈ L. Then x∗ ∧ a∗ = 0, for some a ∈ I. Now
(x ∨ s)∗ ∧ a∗ ≤ x∗ ∧ a∗ = 0. Thus x ∨ s ∈ FI . Therefore FI is a filter of L.

We conclude this paper with the following theorem.

Theorem 3.22. For any ideal I of a pseudo-complemented ADL L, the following conditions are
equivalent:

1. I is a δ−ideal,
2. I = Ker θ(FI),

3. I = Ker θ(F ), for some filter F of L.

Proof. (1)⇒ (2): Assume that I is a δ−ideal of L. Then I = δ(F ) for some filter F of L. Let
x ∈ I. Since x∗∗ ∧ x∗ = 0, we can get x∗ ∈ FI . Since x ∧ x∗ = 0 and x∗ ∈ FI , we get that
x ∈ Ker θ(FI). Therefore I ⊆ Ker θ(FI). Conversely, let x ∈ Ker θ(FI). Then (x, 0) ∈ θ(FI).
Thus x ∧ f = 0, for some f ∈ FI . Then f∗ ∧ x = x. Since f ∈ FI , we get that f∗ ∧ a∗ = 0
for some a ∈ I. That implies a∗∗ ∧ f∗ = f∗. Since a ∈= δ(F ), we have a∗ ∈ F. That implies
a∗∗∗ ∈ F. Therefore a∗∗ ∈ δ(F ) = I and hence f∗ ∈ δ(F ) = I. Thus x ∈ δ(F ) = I Therefore
I = Ker θ(FI).
(2)⇒ (3): Obvious.
(3) ⇒(1): Assume that I = Ker θ(F ) for some filter F of L. Let x ∈ I = Ker θ(F ). Then
x ∧ f = 0 for some f ∈ F. Hence x∗ ∧ f = f ∈ F. Thus x∗ ∈ F, which yields that x ∈ δ(F ).
Therefore I ⊆ δ(F ). Conversely, let x ∈ δ(F ). Then x∗ ∈ F. Since x ∧ x∗ = 0 and x∗ ∈ F, we
get (x, 0) ∈ θ(F ). Thus x ∈ Ker θ(F ) = I. Therefore I is a δ−ideal of L.
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