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Abstract Jain and Chhabra (2015) introduced and characterized a new exponential diver-
gence measure. Also in the same literature, they introduced new fuzzy and useful information
divergence measure corresponding to same exponential divergence. They also evaluated the up-
per and lower bounds of this new divergence in terms of various well known symmetric and non-
symmetric divergence measures together with numerical verification.
In this work, we extends the previous work, i.e., we apply the new exponential divergence to the
Mutual information and as a metric to the metric space. Bounds in terms of Variational distance
and numerical verification are evaluated as well.

1 Introduction

Divergence measures are basically measures of distance between two probability distributions
or compare two probability distributions. Divergence measures have been demonstrated very
useful in a variety of disciplines such as Bayesian model validation (1996) [40], quantum infor-
mation theory (2008, 2000) [26, 28], model validation (1987) [3], robust detection (1980) [31],
economics and political science (1972, 1967) [38, 39], biology (1975) [30], analysis of contin-
gency tables (1978) [15], approximation of probability distributions (1968, 1980) [9, 23], signal
processing (1967, 1967) [21, 22], pattern recognition (1978, 1979, 1973, 1990) [2, 8, 20, 5],
color image segmentation (2010) [27], 3D image segmentation and word alignment (2006) [37],
cost- sensitive classification for medical diagnosis (2009) [34], magnetic resonance image anal-
ysis (2010) [41] etc.
Also we can use divergence measures in fuzzy mathematics as fuzzy directed divergences and
fuzzy entropies (2010, 2004, 2012) [1, 16, 19], which are very useful to find the amount of av-
erage ambiguity or difficulty in making a decision whether an element belongs to a set or not.
Fuzzy information measures have recently found applications to fuzzy aircraft control, fuzzy
traffic control, engineering, medicines, computer science, management and decision making etc.
Divergence measures are also very useful to find the utility of an event (2010, 1986) [4, 36], i.e.,
an event is how much useful compare to other event.
Without essential loss of insight, we have restricted ourselves to discrete probability distribu-
tions, so let Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,

∑n
i=1 pi = 1}, n ≥ 2 be the set of all

complete finite discrete probability distributions. The restriction here to discrete distributions is
only for convenience, similar results hold for continuous distributions as well. If we take pi ≥ 0
for some i = 1, 2, 3..., n, then we have to suppose that 0f (0) = 0f

( 0
0

)
= 0.

Some generalized f - information divergence measures had been introduced, characterized and
applied in variety of fields, such as: Csiszar’s f - divergence (1974, 1967) [10, 11], Bregman’s
f - divergence (1967) [6], Burbea- Rao’s f - divergence (1982) [7], Renyi’s like f - divergence
(1961) [32], M - divergence (1994) [33], Jain- Saraswat f - divergence (2012) [18] etc.
Csiszar’s f - divergence is widely used due to its compact nature, which is given by

Cf (P,Q) =
n∑

i=1

qif

(
pi
qi

)
, (1.1)
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where f : (0,∞) → R (set of real no.) is real, continuous, and convex function and P =
(p1, p2, ..., pn) , Q = (q1, q2, ..., qn) ∈ Γn, where pi and qi are probabilities.
Cf (P,Q) is a natural distance measure from a true probability distribution P to an arbitrary
probability distribution Q. Typically P represents observations or a precise calculated probabil-
ity distribution, whereas Q represents a model, a description or an approximation of P . Funda-
mental properties of Cf (P,Q) can be seen in literature (2002) [29], in detail.

Definition 1.1. Convex function: A function f (t) is said to be convex over an interval (a, b) if
for every t1, t2 ∈ (a, b) and 0 ≤ λ ≤ 1, we have

f [λt1 + (1 − λ) t2] ≤ λf (t1) + (1 − λ) f (t2) ,

and said to be strictly convex if equality does not hold only if λ ̸= 0 or λ ̸= 1.
Geometrically, it means that if A,B,C are three distinct points on the graph of convex function
f with B between A and C, then B is on or below chord AC.

Jain and Chhabra (2015) [17] introduced the following divergence measure which is expo-
nential in nature and did a quality work on it in the same literature

Gexp (P,Q) =
n∑

i=1

e
pi
qi (pi − qi) . (1.2)

We see that Gexp (P,Q) is positive and convex for the pair of probability distribution (P,Q) ∈
Γn × Γn and equal to zero (Non- degeneracy) or attains its minimum value when pi = qi. We
can also see that Gexp (P,Q) is non- symmetric divergence w.r.t. P and Q because Gexp (P,Q) ̸=
Gexp (Q,P ).
In this paper, we introduce two important applications of this exponential divergence to the
information and statistical theory, one is to the Mutual information (section 4) and second is as
a Metric space (section 2). In section 3, we obtain bounds of this new divergence in terms of
Variational distance and in section 5, verification of these bounds is done numerically.

2 Application as a metric space

We know that Gexp (P,Q) is non- symmetric but

Gexp (P,Q) +Gexp (Q,P ) =
n∑

i=1

(pi − qi) e
pi
qi +

n∑
i=1

(qi − pi) e
qi
pi

=
n∑

i=1

(pi − qi)
(
e

pi
qi − e

qi
pi

)
= G∗

exp (P,Q) .

(2.1)

is symmetric with respect to probability distributions P,Q ∈ Γn, as G∗
exp (P,Q) = G∗

exp (Q,P ).

We can see that
√

G∗
exp (P,Q) > 0 and = 0 if and only if P = Q or pi = qi ∀ i = 1, 2, 3..., n. The√

G∗
exp (P,Q) is symmetric because G∗

exp (P,Q) is symmetric or
√
G∗

exp (P,Q) =
√
G∗

exp (Q,P ).

In this section we prove that
√
G∗

exp (P,Q) satisfies triangle inequality and then obtain a new
exponential metric space over an interval (0,∞). For this, we prove the following theorem,
which is stated as

Theorem 2.1. Let x (p, q) : (0,∞)× (0,∞) → (0,∞) be defined as

x (p, q) = (p− q)
(
e

p
q − e

q
p

)
, (2.2)

i.e., we can write

G∗
exp (P,Q) =

n∑
i=1

x (pi, qi) . (2.3)
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Then triangle inequality will be√
x (p, q) ≤

√
x (p, r) +

√
x (r, q), (2.4)

where p, q, r ∈ (0,∞) and G∗
exp (P,Q) is given by (2.1).

Proof: To prove the inequality (2.4), first let us consider

Xpq (r) =
√
x (p, r) +

√
x (r, q), (2.5)

then
d

dr
Xpq (r) = X ′

pq (r) =
x′ (p, r)

2
√

x (p, r)
+

x′ (r, q)

2
√
x (r, q)

. (2.6)

Now from (2.2), we can write

x (p, r) = (p− r)
(
e

p
r − e

r
p

)
(2.7)

and after differentiating (2.7) w.r.t r, we obtain

x′ (p, r) = −

[
e

p
r

(
p2 − pr + r2

r2

)
− re

r
p

p

]
. (2.8)

Put p = rt, i.e., t = p
r ∈ (0,∞) in (2.8), we get

[x′ (p, r)]p=rt = k (t) =
e

1
t − tet

(
t2 − t+ 1

)
t

. (2.9)

Now from (2.7), we can write

x (t, 1) = (t− 1)
(
et − e

1
t

)
. (2.10)

From (2.7) and (2.10), we have the following relation for p = rt√
x (p, r) =

√
r
√
x (t, 1) =

√
r l (t) , (2.11)

where we are assuming √
x (t, 1) = l (t) . (2.12)

Now, differentiate (2.9) w.r.t t, we obtain

k′ (t) = −

(t+ 1)
(
t4et + e

1
t

)
t3

 . (2.13)

Now, let we define a function

s (t) =
k (t)

l (t)
, ∀ t ∈ (0,∞) . (2.14)

From (2.10) and (2.13), we can see that l (t) =
√
x (t, 1) ≥ 0 and k′ (t) < 0 ∀ t ∈ (0,∞), i.e.,

k (t) is monotonically decreasing function and k (1) = 0, so s (t) will be decreasing as well in
(0,∞) with limt→1 s (t) = 0 or the nature of s (t) depends on the nature of k (t) only as l (t) is
fix and positive. Therefore, we conclude that s (t) changes the sign at t = 1, so

s (t) =


> 0 if t < 1
< 0 if t > 1
= 0 if t → 1

. (2.15)
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Now suppose u = q
p ∈ (0,∞) ⇒ q

r = q
p
p
r = ut ∈ (0,∞), so (2.6) can be written as

2
√
rX ′

pq (r) = s (t) + s (ut) . (2.16)

Now we have two cases on u, as follows.
Case I: If we are taking u > 1 or q > p, then (by considering that s (t) is decreasing function)
(a) For t > 1 ⇒ s (t) < 0 and s (ut) < 0 ⇒ s (t) + s (ut) < 0.
(b) For 1

u < t < 1 ⇒ s (t) > 0 and s (ut) < 0 ⇒ s (t) > s (ut) ⇒ s (t) + s (ut) > 0.
(c) For t < 1

u < 1 ⇒ s (t) > 0 and s (ut) > 0.
It means X ′

pq (r) =
s(t)+s(ut)

2
√
r

changes the sign at t = 1 or r = p, so Xpq (r) attains its minimum
value at t = 1 or r = p.
Case II: This case is for u < 1 or q < p, can be done in a similar manner.
Similarly, repeating the above procedure by considering t = q

r ∈ (0,∞) and u = p
q ∈ (0,∞) ⇒

p
r = p

q
q
r = ut ∈ (0,∞), then we get that X ′

pq (r) changes the sign at t = 1 or r = q, so Xpq (r)
attains its minimum value at t = 1 or r = q. Therefore, right side of (2.4) has its minimum value
at p = q = r ∀ p, q, r ∈ (0,∞).
Hence proof the result (2.4) or theorem 2.1.
In view of this proof, we conclude that the new exponential symmetric divergence measure√

G∗
exp (P,Q) is a metric or we obtain a new metric space

√(
G∗

exp, (0,∞)
)

over (0,∞).

3 Bounds in terms of Variational distance

We had obtained bounds of new exponential divergence in terms of the various well known
symmetric and non- symmetric divergences in last literature (2015) [17]. Now in this section,
we obtain bounds in terms of Variational distance. For getting the bounds, we consider the
following theorem from literature (2001) [12].

Theorem 3.1. Let f1, f2 : (α, β) ⊂ (0,∞) → R be two real, convex and normalized differ-
entiable functions, i.e., f ′′

1 (t) , f ′′
2 (t) ≥ 0 ∀ t > 0 and f1 (1) = f2 (1) = 0 respectively with

0 < α ≤ 1 ≤ β < ∞, α ̸= β. If there exists the real constants m,M such that m < M and

m ≤ |f1 (t1)− f1 (t2)|
|f2 (t1)− f2 (t2)|

≤ M,

i.e.,

m ≤
|f ′

1 (t)|∣∣f ′
2 (t)

∣∣ =
∣∣∣∣f ′

1 (t)

f ′
2 (t)

∣∣∣∣ ≤ M, (3.1)

for all t1, t2 ∈ (α, β) ⊂ (0,∞).
If P,Q ∈ Γn, then we have the following inequalities

mC|f2| (P,Q) ≤ C|f1| (P,Q) ≤ MC|f2| (P,Q) , (3.2)

where Cf (P,Q) is given by (1.1).

Now by using the above theorem, we will obtain the bounds of Gexp (P,Q) in terms of
V (P,Q).

Proposition 3.2. Let Gexp (P,Q) and V (P,Q) be defined as in (1.2) and (3.5) respectively. For
P,Q ∈ Γn, we have

αeαV (P,Q) ≤
∣∣Gexp

∣∣ (P,Q) ≤ βeβV (P,Q) . (3.3)

Proof: Let us consider

f1 (t) = et (t− 1) , f2 (t) = |t− 1| ∀ t ∈ (0,∞) ,

f ′
1 (t) = tet, f ′

2 (t) =

{
−1 if 0 < t < 1
1 if 1 ≤ t < ∞
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and
f ′′

1 (t) = et (t+ 1) , f ′′
2 (t) = 0.

We can see that both functions f1 (t) , f2 (t) are convex and normalized because f ′′
1 (t) , f ′′

2 (t) ≥
0 ∀ t > 0 and f1 (1) = 0 = f2 (1) respectively.
Now put f1 (t) , f2 (t) in (1.1), we obtain the followings

C|f1| (P,Q) =
n∑

i=1

e
pi
qi |pi − qi| =

∣∣Gexp
∣∣ (P,Q) (3.4)

and

C|f2| (P,Q) =
n∑

i=1

|pi − qi| = V (P,Q) (3.5)

respectively. Where V (P,Q) is well known Variational distance or l1 distance (1963) [24].

Now, let g (t) = |f ′
1 (t)|

|f ′
2 (t)|

=
∣∣∣ f ′

1 (t)
f ′

2 (t)

∣∣∣ = |tet| = tet, where |f ′
2 (t)| = 1 and g′ (t) = et (t+ 1) > 0.

It is clear that g (t) is strictly increasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (α) = αeα. (3.6)

M = sup
t∈(α,β)

g (t) = g (β) = βeβ . (3.7)

The result (3.3) is obtained by using (3.4), (3.5), (3.6), and (3.7) in (3.2).

4 Application to the Mutual information

Mutual information (1948) [35] is a measure of amount of information that one random vari-
able contains about another or amount of information conveyed about one random variable by
another.
Let X and Y be two discrete random variables with a joint probability mass function p (xi, yj) =
pij with i = 1, 2, ...,m; j = 1, 2, ..., n and marginal probability mass functions p (xi) =

∑n
j=1 p (xi, yj) , i =

1, 2, ...,m and p (yj) =
∑m

i=1 p (xi, yj) , j = 1, 2, ..., n, where xi ∈ X, yj ∈ Y , then Mutual in-
formation I (X,Y ) is defined by

I (X,Y ) =
m∑
i=1

n∑
j=1

p (xi, yj) log
p (xi, yj)

p (xi) p (yj)
=

∑
(x,y)∈(X,Y )

p (x, y) log
p (x, y)

p (x) p (y)
. (4.1)

Since I (X,Y ) is symmetric in X,Y therefore it can also be written as

I (X,Y ) = I (Y,X) = H (X)−H

(
X

Y

)
= H (Y )−H

(
Y

X

)
, (4.2)

where

H (X) = −
m∑
i=1

p (xi) log p (xi) = −
m∑
i=1

n∑
j=1

p (xi, yj) log

 n∑
j=1

p (xi, yj)

 (4.3)

is known as Marginal entropy (1948) [35] and

H

(
X

Y

)
= −

m∑
i=1

n∑
j=1

p (xi, yj) log p
(
xi

yj

)
(4.4)

is known as Conditional entropy (1948) [35].
By viewing

K (P,Q) =
n∑

i=1

pi log
pi
qi

= Kullback- Leibler divergence or Relative entropy(1951)[25],

(4.5)
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we can say that the Mutual information is nothing but a Relative entropy between joint distribu-
tion p (x, y) and product of marginal distributions p (x) and p (y) after replacing p (x) and q (x)
by p (x, y) and p (x) p (y) respectively in (4.5). So I (X,Y ) can also be written as

I (X,Y ) = K (p (x, y) , p (x) p (y)) =
∑

(x,y)∈(X,Y )

p (x, y) log
p (x, y)

p (x) p (y)
. (4.6)

Similarly, we can define the Mutual information in following manners as well.
In

∣∣Gexp
∣∣ (P,Q) manner:

I|Gexp| (X,Y ) =
∑

(x,y)∈(X,Y )

|p (x, y)− p (x) p (y)| e
p(x,y)

p(x)p(y) , (4.7)

In V (P,Q) manner:

IV (X,Y ) =
∑

(x,y)∈(X,Y )

|p (x, y)− p (x) p (y)| (4.8)

and
In JR (P,Q) manner:

IJR (X,Y ) =
∑

(x,y)∈(X,Y )

[p (x, y)− p (x) p (y)] log
p (x, y) + p (x) p (y)

2p (x) p (y)
, (4.9)

where
∣∣Gexp

∣∣ (P,Q) , V (P,Q) are given by (3.4) and (3.5) respectively and

JR (P,Q) =
n∑

i=1

(pi − qi) log
(
pi + qi

2qi

)
= Relative J- Divergence(2001)[14]. (4.10)

Equations (4.6) to (4.9) tell us that how far the joint distribution is from its independency or
I (X,Y ) = 0 = I|Gexp| (X,Y ) = IV (X,Y ) = IJR (X,Y ) if distributions are independent to
each other.
Now, the following theorem can be seen in literature (1999) [13].

Theorem 4.1. Let f : [α, β] ⊂ (0,∞) → R be a convex twice differentiable function which is
normalized, i.e., f (1) = 0 and f ′ is of bounded variation on [α, β], i.e., Aβ

α (f
′) =

∫ β

α
|f ′′ (t)| dt <

∞.
If P,Q ∈ Γn for some α and β with 0 < α ≤ 1 ≤ β < ∞, α ̸= β, then we have the following
inequality ∣∣∣Cf (P,Q)− E∗

Cf
(P,Q)

∣∣∣ ≤ Aβ
α (f

′)V (P,Q) , (4.11)

where Cf (P,Q) , V (P,Q) are given by (1.1) and (3.5) respectively and

E∗
Cf

(P,Q) =
n∑

i=1

(pi − qi) f
′
(
pi + qi

2qi

)
. (4.12)

Now by using the above theorem, we introduce a new information inequalities which relates
I (X,Y ) and I|Gexp| (X,Y ).

Proposition 4.2. For 0 < α ≤ p(x,y)
p(x)p(y) ≤ β < ∞ ∀ (x, y) ∈ (X,Y ), we obtain the following new

information inequalities in mutual information sense

|I (X,Y )− IJR (X,Y )| ≤ log
(
β

α

)
IV (X,Y ) ≤

log β
α

αeα
I|Gexp| (X,Y ) , (4.13)

where I (X,Y ) , I|Gexp| (X,Y ) , IV (X,Y ), and IJR (X,Y ) are given by (4.6) to (4.9) respec-
tively.
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Proof: Let us consider

f (t) = t log t, t ∈ (0,∞) , f (1) = 0, f ′ (t) = 1 + log t

and
f ′′ (t) =

1
t
. (4.14)

Since f ′′ (t) > 0 ∀ t > 0 and f (1) = 0, so f (t) is strictly convex and normalized function
respectively. Now put f (t) in (1.1) and f ′ (t) in (4.12) then after replacing pi, qi ∀i = 1, 2, ..., n
by p (x, y) , p (x) p (y) ∀ (x, y) ∈ (X,Y ), we get

Cf (P,Q) = I (X,Y ) , (4.15)

E∗
Cf

(P,Q) = IJR (X,Y ) , (4.16)

respectively. Also we obtain

Aβ
α (f

′) =

∫ β

α

|f ′′ (t)| dt =
∫ β

α

1
t
dt = logβ − logα = log

β

α
. (4.17)

The result (4.13) is obtained by using (4.15), (4.16), (4.17) together with first inequality of (3.3)
in (4.11), after replacing pi, qi by p (x, y) , p (x) p (y) respectively.

5 Numerical verification of bounds

In this section, we take an example for calculating the divergences |Gexp| (P,Q) and V (P,Q)
and verify numerically the inequalities (3.3) or verify the bounds of |Gexp| (P,Q).

Example 5.1. Let P be the binomial probability distribution with parameters (n = 10, p = 0.7)
and Q its approximated Poisson probability distribution with parameter (λ = np = 7) for the
random variable X , then we have

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282
qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709
pi

qi
≈ .00647 .0214 .0654 .173 .395 .871 1.005 1.785 1.792 1.198 .397

Table 1. Evaluation of discrete probability distributions for (n = 10, p = 0.7, q = 0.3)

By using Table 1, we get the followings.

α (= .00647) ≤
pi
qi

≤ β (= 1.792) . (5.1)

∣∣Gexp
∣∣ (P,Q) =

11∑
i=1

e
pi
qi |pi − qi| ≈ 1.78872. (5.2)

V (P,Q) =
11∑
i=1

|pi − qi| ≈ 0.4844. (5.3)

Put the approximated values from (5.1) to (5.3) in inequalities (3.3) and get the following result

3.154 × 10−3 ≤ 1.78872
(
=

∣∣Gexp
∣∣ (P,Q)

)
≤ 5.2095. (5.4)

Hence verified the bounds of
∣∣Gexp

∣∣ (P,Q) in terms of V (P,Q) for p = 0.7.

Similarly, we can verify the bounds of
∣∣Gexp

∣∣ (P,Q) for different values of p and q and for
other discrete probability distributions as well, like; Negative binomial, Geometric, uniform etc.



256 K.C. Jain and Praphull Chhabra

References
[1] R.K. Bajaj and D.S. Hooda, Generalized measures of fuzzy directed divergence, total ambiguity and

information improvement, Journal of Applied Mathematics, Statistics and Informatics, vol. 6 (2010), no.
2, pp: 31- 44.

[2] M.B. Bassat, f- Entropies, probability of error and feature selection, Inform. Control, vol. 39, 1978, pp:
227-242.

[3] A. Benveniste, M. Basseville, G. Moustakides, The asymptotic local approach to change detection and
model validation, IEEE Trans. Automatic Control, vol. AC-32, no. 7, pp: 583- 592, 1987.

[4] J.S. Bhullar, O.P. Vinocha, and M. Gupta, Generalized measure for two utility distributions, Proceedings
of the World Congress on Engineering, vol. 3, June 30- July 2, 2010.

[5] D.E. Boekee, J.C.A. Van Der Lubbe, Some aspects of error bounds in feature selection, Pattern Recogni-
tion, vol. 11, pp: 353- 360, 1979.

[6] L.M. Bregman, The relaxation method to find the common point of convex sets and its applications to the
solution of problems in convex programming, USSR Comput. Math. Phys., vol. 7, pp: 200- 217, 1967.

[7] J. Burbea and C.R. Rao, On the convexity of some divergence measures based on entropy functions, IEEE
Trans. on Inform. Theory, IT-28 (1982), pp: 489-495.

[8] H.C. Chen, Statistical pattern recognition, Hoyderc Book Co., Rocelle Park, New York, 1973.

[9] C.K. Chow and C.N. Lin, Approximating discrete probability distributions with dependence trees, IEEE
Trans. Inform. Theory, vol. 14, 1968, no 3, pp: 462-467.

[10] I. Csiszar, Information measures: A Critical survey, in Trans.- In: Seventh Prague Conf. on Information
Theory, Academia, Prague, 1974, pp: 73-86.

[11] I. Csiszar, Information type measures of differences of probability distribution and indirect observations,
Studia Math. Hungarica, vol. 2, pp: 299- 318, 1967.

[12] S.S. Dragomir, Some inequalities for two Csiszar’s divergences and applications, Mat. Bilten (Macedo-
nia), 25 (2001), pp: 73- 90.

[13] S.S. Dragomir, On the Ostrowski’s integral inequality for mappings of bounded variation and applications,
RGMIA Res. Rep. Coll. 2 (1999) No.1, 73- 80.

[14] S.S. Dragomir, V. Gluscevic, and C.E.M. Pearce, Approximation for the Csiszar’s f- divergence via mid-
point inequalities, in Inequality Theory and Applications - Y.J. Cho, J.K. Kim, and S.S. Dragomir (Eds.),
Nova Science Publishers, Inc., Huntington, New York, Vol. 1, 2001, pp: 139-154.

[15] D.V. Gokhale and S. Kullback, Information in contingency Tables, New York, Marcel Dekker, 1978.

[16] D.S. Hooda, On generalized measures of fuzzy entropy, Mathematica Slovaca, vol. 54 (2004), no. 3, pp:
315- 325.

[17] K.C. Jain and P. Chhabra, On a new exponential information divergence measure, Communicated (2015).

[18] K.C. Jain and R.N. Saraswat, Some new information inequalities and its applications in information the-
ory, International Journal of Mathematics Research, vol. 4, no.3 (2012), pp: 295- 307.

[19] P. Jha and V.K. Mishra , Some new trigonometric, hyperbolic and exponential measures of fuzzy entropy
and fuzzy directed divergence, International Journal of Scientific and Engineering Research, vol. 3 (2012),
no. 4, pp: 1- 5.

[20] L. Jones and C. Byrne, General entropy criteria for inverse problems with applications to data compres-
sion, pattern classification and cluster analysis, IEEE Trans. Inform. Theory, vol. 36, 1990, pp: 23- 30.

[21] T.T. Kadota and L.A. Shepp, On the best finite set of linear observables for discriminating two Gaussian
signals, IEEE Trans. Inform. Theory, vol. 13, 1967, pp: 288-294.

[22] T. Kailath, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Comm.
Technology, vol. COM-15, 1967, pp: 52- 60.

[23] D. Kazakos and T. Cotsidas, A decision theory approach to the approximation of discrete probability
densities, IEEE Trans. Perform. Anal. Machine Intell, vol. 1, 1980, pp: 61- 67.

[24] A.N. Kolmogorov, On the approximation of distributions of sums of independent summands by infinitely
divisible distributions, Sankhya, 25, pp: 159-174.

[25] S. Kullback and R.A. Leibler, On information and sufficiency, Ann. Math. Statist., 22 (1951), pp: 79-86.

[26] P.W. Lamberti, A.P. Majtey, A. Borras, M. Casas, A. Plastino , Metric character of the quantum Jensen-
Shannon divergence, Physical Review A, 77:052311, 2008.

[27] F. Nielsen and S. Boltz, The Burbea-Rao and Bhattacharyya centroids, Apr. 2010, Arxiv.

[28] M.A. Nielsen, I.L. Chuang, Quantum computation and information, Cambridge University Press, Cam-
bridge, UK, 3 (8):9, 2000.



APPLICATIONS OF NEW EXPONENTIAL... 257

[29] F. Osterreicher, Csiszar’s f- divergence basic properties, Homepage: http//www.sbg.ac.at/mat/home.html,
November 22, 2002.

[30] E.C. Pielou, Ecological diversity, New York, Wiley, 1975.

[31] H.V. Poor, Robust decision design using a distance criterion, IEEE Trans. Inf. Th., vol.- IT 26, no. 5, pp:
575- 587, 1980.

[32] A. Renyi, On measures of entropy and information, Proc. 4th Berkeley Symposium on Math. Statist. and
Prob., 1 (1961), pp: 547-561.

[33] M. Salicru, Measures of information associated with Csiszar’s divergences, Kybernetika, vol. 30 (1994),
no. 5, pp: 563- 573.

[34] R. Santos-Rodriguez, D. Garcia-Garcia, and J. Cid-Sueiro, Cost-sensitive classification based on Bregman
divergences for medical diagnosis, In M.A. Wani, editor, Proceedings of the 8th International Conference
on Machine Learning and Applications (ICMLA’09), Miami Beach, Fl., USA, December 13-15, 2009,
pp: 551- 556, 2009.

[35] C.E. Shannon, A mathematical theory of communication, Bull. Sept. Tech. J., 27 (1948), 370-423 and
623-656.

[36] H.C. Taneja and R.K. Tuteja, Characterization of a quantitative- qualitative measure of inaccuracy, Ky-
bernetika, vol. 22 (1986), no. 5, pp: 393- 402.

[37] B. Taskar, S. Lacoste-Julien, and M.I. Jordan, Structured prediction, dual extra gradient and Bregman
projections, Journal of Machine Learning Research, 7, pp: 1627- 1653, July 2006.

[38] H. Theil, Statistical decomposition analysis, Amsterdam, North-Holland, 1972.

[39] H. Theil, Economics and information theory, Amsterdam, North-Holland, 1967.

[40] K. Tumer, J. Ghosh, Estimating the Bayes error rate through classifier combining, Proceedings of 13th
International Conference on Pattern Recognition, pp: 695- 699, 1996.

[41] B. Vemuri, M. Liu, S. Amari, and F. Nielsen, Total Bregman divergence and its applications to DTI
analysis, IEEE Transactions on Medical Imaging, 2010.

Author information
K.C. Jain and Praphull Chhabra, Department of Mathematics, Malaviya National Institute of Technology,
Jaipur- 302017 (Rajasthan), India.
E-mail: jainkc_2003@yahoo.com, prfl24@gmail.com

Received: May 28, 2015.

Accepted: September 26, 2015.


