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Abstract. Let R be a ∗−prime ring with involution ∗ and F be a nonzero (α, β)−derivation
associated with a (α, β)−derivation d commuting with ∗. We prove classical results of Posner
and Herstein for Lie ideals of rings with involution. Also, we discuss the commutativity of
∗−prime rings addmitting a generalized (α, β)−derivations F satisfying several conditions on
Lie ideals.

1 Introduction

Let R will be an associative ring with center Z. For any x, y ∈ R the symbol [x, y] represents
commutator xy − yx. Recall that a ring R is prime if xRy = 0 implies x = 0 or y = 0. An
additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U, for all u ∈ U, r ∈ R.
An additive mapping ∗ : R → R is called an involution if (xy)∗ = y∗x∗ and (x∗)∗ = x for
all x, y ∈ R. A ring equipped with an involution is called a ring with involution or ∗−ring. A
ring with an involution is said to ∗−prime if xRy = xRy∗ = 0 or xRy = x∗Ry = 0 implies
that x = 0 or y = 0. Every prime ring with an involution is ∗−prime but the converse need
not hold general. An example due to Oukhtite [15] justifies the above statement that is, R be
a prime ring, S = R × Ro where Ro is the opposite ring of R. Define involution ∗ on S as
∗(x, y) = (y, x). S is ∗−prime, but not prime. This example shows that every prime ring can be
injected in a ∗−prime ring and from this point of view ∗−prime rings constitute a more general
class of prime rings. In all that follows the symbol Sa∗(R), first introduced by Oukhtite, will de-
note the set of symmetric and skew symmetric elements of R, i.e. Sa∗(R) = {x ∈ R | x∗ = ±x}.

An additive subgroup L of R is said to be a Lie ideal of R if [L,R] ⊆ L. A Lie ideal is said to
be a ∗-Lie ideal if L∗ = L. If L is a Lie (resp. ∗-Lie) ideal of R, then L is called a square closed
Lie (resp. ∗-Lie) ideal of R if x2 ∈ L for all x ∈ L.

Let α and β be endomorphisms of R. For any x, y ∈ R, set [x, y]α,β = xα(y) − β(y)x and
(x ◦ y)α,β = xα(y) + β(y)x. Following [5], an additive mapping F : R −→ R is called a gener-
alized derivation associated with a derivation d if F (xy) = F (x)y+xd(y) holds for all x, y ∈ R.
An additive map d : R −→ R is called an (α, β)-derivation if d(xy) = d(x)α(y) + β(x)d(y)
holds for all x, y ∈ R. For a fixed a, the map da : R −→ R given by da(x) = [a, x]α,β for all
x ∈ R is an (α, β)-derivation which is said to be an (α, β)-inner derivation. An additive mapping
F : R −→ R is called a generalized (α, β)-inner derivation if F (x) = aα(x) + β(x)b holds for
some fixed a, b ∈ R and for all x ∈ R. A simple computation yields that if F is a general-
ized (α, β)-inner derivation, then for all x, y ∈ R, we have F (xy) = F (x)α(y) + β(x)d(−b)(y),
where d(−b) is an (α, β)-inner derivation. With this viewpoint, an additive map F : R −→ R is
called a generalized (α, β)-derivation associated with an (α, β)-derivation d : R −→ R such that
F (xy) = F (x)α(y) + β(x)d(y) holds for all x, y ∈ R. A (1, 1)-generalized derivation is called
simply a generalized derivation, where 1 is the identity map on R.

Over the past thirty years, there has been ongoing interest concerning the relationship be-
tween the commutativity of prime ring R and the behaviour of a special mapping of ring, such
as derivation. Recently, some well-known results concerning prime rings have been proved for
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∗−prime ring by Oukhtite et al. (see, [11-17], where further references can be found). A map-
ping F from R to R is called centralizing on S if [F (x), x] ∈ Z, for all x ∈ S and is called
commuting on S if [F (x), x] = 0, for all x ∈ S. In [20], Posner showed that if a prime ring has a
nontrivial derivation which is centralizing on the entire ring, then the ring must be commutative
(Posner’s second theorem). A number of authors have generalized these results by considering
mappings which are only assumed to be centralizing on an appropriate subset of the ring. (see
[2], [3], [9], [11], [12], where further references can be found). In [19], Oukhitite et al. gener-
alized Posner’s second theorem to rings with involution in the case of characteristic not 2. Our
first aim in this paper is to prove this theorem for a (α, β)−derivation and a Lie ideal of ∗−prime
rings.

A famous result due to Herstein [8] states that if R is a prime ring of characteristic not 2
which admits a nonzero derivation d such that [d(x), a] = 0 for all x ∈ R, then a ∈ Z. This result
proved for a nonzero Lie ideal of R in [6] and for (α, β)−derivation of a ∗−prime ring in [21].
We shall prove this result for a (α, β)−derivation and a Lie ideal of ∗−prime rings.

Recently, in [10], Marubayashi et. al. obtained some results for generalized (α, β)-derivations
and Lie ideals of prime rings. In the present paper our aim is extend may results fora ∗−Lie ideal
and a generalized (α, β)−derivation of ∗−prime rings.

In [4], Bell and Kappe proved that if d is a derivation of prime ring R which acts as a ho-
momorphism or anti-homomorphism on a nonzero ideal of R, then d = 0. Oukhitite proved this
result is also true for ∗−prime rings in [15] and Shuliang extended to (α, β)-derivations in [22].
Finally, we prove this theorem for a ∗−Lie ideal and a (α, β)−derivation of ∗−prime rings.

Throughout the paper, R will be a 2−torsion free ∗−prime ring, where ∗ is an involution of
R, F be a generalized (α, β)-derivation associated with (α, β)-derivation d of R and U is a ∗-Lie
ideal of R.

2 Preliminary results

Throughout the present paper α, β will denote automorphisms of R. We shall use, without
explicit mention, the following basic identities:

[x, yz] = y[x, z] + [x, y]z

[xy, z] = [x, z]y + x[y, z]

[xy, z]α,β = x[y, z]α,β + [x, β(z)]y = x[y, α(z)] + [x, z]α,βy,

[x, yz]α,β = β(y)[x, z]α,β + [x, y]α,βα(z),

(x ◦ (yz))α,β = (x ◦ y)α,βα(z)− β(y)[x, z]α,β = β(y)(x ◦ z)α,β + [x, y]α,βα(z),

and ((xy) ◦ z)α,β = x(y ◦ z)α,β − [x, β(z)]y = (x ◦ z)α,βy + x[y, α(z)].

Lemma 2.1. [17, Lemma 2.3]Let R be a ∗−prime ring with characteristic not two, U be a
nonzero ∗−Lie ideal of R. If [U,U ] ⊆ Z, then U ⊆ Z.

Lemma 2.2. [18, Lemma 4]Let R be a ∗−prime ring with characteristic not two, U be a nonzero
∗−Lie ideal of R and a, b ∈ R. If aUb = ∗(a)Ub = 0, then a = 0 or b = 0 or U ⊆ Z.

Lemma 2.3. [1, Lemma 2.7]Let R be a 2−torsion free ∗−prime ring and U be a ∗−Lie ideal of
R. If a ∈ R such that [a, U ] ⊆ Z, then either U ⊆ Z or a ∈ Z.

Lemma 2.4. [21, Lemma 5]Let R be a ∗−prime ring with characteristic not two, d be a nonzero
(α, β)−derivation of R which commutes with ∗ and U be a nonzero ∗−Lie ideal of R. If d(U) =
0, then U ⊆ Z.

Lemma 2.5. [21, Lemma 6]Let R be a ∗−prime ring, d be a nonzero (α, β)−derivation of R
which commutes with ∗ and U be a nonzero ∗−Lie ideal of R. If a ∈ R and ad(U) = 0 (or
d(U)a = 0), then a = 0 or U ⊆ Z.

Lemma 2.6. [21, Lemma 8]Let R be a ∗−prime ring with characteristic not two, d be a nonzero
(α, β)−derivation of R which commutes with ∗ and U be a nonzero ∗−Lie ideal of R. If d(U) ⊂
Z, then U ⊆ Z.
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Now we prove the following:

Lemma 2.7. Let R be a prime ring with char(R)̸= 2, and let be U a nonzero square-closed Lie
ideal of R. If [u, v]α,β = 0 for all u, v ∈ U , then U ⊆ Z(R).

Proof. We have
[u, v]α,β = 0 for all u, v ∈ U. (2.1)

Replacing v by [r, u] in (2.1), we get [u, [r, u]]α,β = 0 for all u ∈ U, r ∈ R. Again replace r by
rs, to get [u, [rs, u]]α,β = 0 for all u ∈ U and r, s ∈ R. That is,

[u, [r, u]]α,βα(s) + β([r, u])[u, s]α,β + β(r)[u, [s, u]]α,β + [u, r]α,βα([s, u]) = 0

for all u ∈ U and r, s ∈ R. This implies that

β([r, u])[u, s]α,β + [u, r]α,βα([s, u]) = 0 for all u ∈ U, r, s ∈ R.

Now replace r by v in the above expression and use (2.1), to get β([v, u])[u, s]α,β = 0 for all
u, v ∈ U and s ∈ R. Again replacing s by sr and using the above expression we find that
β([v, u])β(s)[u, r]α,β = 0 for all u, v ∈ U and s ∈ R, that is, β([v, u])R[u, r]α,β = {0}. For
U ∈ Sa∗(R) we have either β([v, u]) = 0 or [u, r]α,β = 0 for all v ∈ U , r ∈ R. Using the fact
that u+ u∗ and u− u∗ are in U ∩ Sa∗(R) for all u ∈ U , we easily deduce that U is union of two
additive subgroups A and B where

A = {u ∈ U | β([v, u]) = 0, for all v ∈ U}

and
B = {u ∈ U | [u, r]α,β = 0, for allr ∈ R}

But a group cannot be a union of two its proper subgroups. Hence U = A or U = B. If U = A,
then β([v, u]) = 0 for all u, v ∈ U and hence [v, u] = 0. Thus by Lemma 2.1, we get the
required result. In the second case, replace u by 2vu in the expression [u, r]α,β = 0 to obtain
[v, β(r)]u = 0 for all u, v ∈ U, r ∈ R. It follows by Lemma 2.2 that U ⊆ Z(R).

3 Results

The following theorem gives a generalization of Herstein’s well known result [8, Theorem ] and
[21, Theorem 1].

Theorem 3.1. Let R be a ∗−prime ring with characteristic not two, U a nonzero ∗−Lie ideal of
R such that u2 ∈ U for all u ∈ U and a ∈ Sa∗(R). If R admits a nonzero (α, β)−derivation d
which commutes with ∗ and [d(U), a]α,β = 0, then a ∈ Z or U ⊆ Z.

Proof. Notice that uv + vu = (u+ v)
2 − u2 − v2, for all u, v ∈ U. Since u2 ∈ U for all u ∈ U,

uv + vu ∈ U. Also uv − vu ∈ U, for all u, v ∈ U. Hence, we get 2uv ∈ U, for all u, v ∈ U.
Now, let u, v ∈ U. Then

0 = [d(2uv), a]α,β = 2[d(u)α(v) + β(u)d(v), a]α,β

= 2[d(u), a]α,β α(v) + 2d(u)[α(v), α(a)] + 2β(u)[d(v), a]α,β +2[β(u), β(a)]d(v)

and so
d(u)α([v, a]) = β([a, u])d(v), for all u, v ∈ U. (3.1)

Replacing v by 2vw in (3.1) and using (3.1), we arrive at

d(u)α(v)α([w, a]) = β([a, u])β(v)d(w), for all u, v, w ∈ U. (3.2)

Let in (3.2) v be [v, a] and again using (3.1), we have

d(u)α([v, a])α([w, a]) = β([a, u])β([v, a])d(w)

β([a, u])d(v)α([w, a]) = β([a, u])β([v, a])d(w)
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and so

β([a, u])β([a, v])d(w)) = β([a, u])β([v, a])d(w), for all u, v, w ∈ U.

That is 2β([a, u])β([a, v])d(w)) = 0. Since R is 2−torsion free, we get

β([a, u][a, v])d(U) = 0, for all u, v ∈ U.

By Lemma 2.5, we arrive at

[a,w][a, v] = 0, for all u, v ∈ U.

Again replacing v by 2vw in the last equation and using this, we have

[a, u]U [a,w] = 0, for all u,w ∈ U.

Since U is a nonzero ∗−Lie ideal of R and a ∈ Sa∗(R) yields that

([a, u])∗U [a,w] = 0, for all u,w ∈ U.

By the application of Lemma 2.2 yields that [a, u] = 0 for all u ∈ U or [a,w] = 0, for all w ∈ U.
Hence a ∈ Z or U ⊆ Z by Lemma 2.3. This completes the proof.

Theorem 3.2. Let R be a ∗−prime ring with characteristic not two, U a nonzero square closed
∗−Lie ideal of R. If R admits a nonzero (α, β)−derivation d which commutes with ∗ and
[d(u), u]α,β = 0, for all u ∈ U, then U ⊆ Z.

Proof. Suppose, on the contrary that, U ̸⊆ Z(R). Define B(., .) : R×R → R by

B(u, v) = [d(u), v]α,β + [d(v), u]α,β for all u, v ∈ U ;

and note that by linearizing the condition [d(u), u]α,β = 0, we get B(u, v) = 0 for all u, v ∈ U .
It is easily verified that

B(uv,w) = B(u,w)α(v) + β(u)B(v, w) + d(u)α([v, w]) + β([u,w])d(v) for all u, v, w ∈ U,

so by taking w = u we obtain d(u)α([v, u]) = 0 for all u, v ∈ U . Replacing v by 2vw yields
d(u)α(v)α([w, u]) = 0,

Since α is an automorphism of R, we see that

α−1 (d (u))U [w, u] = 0, for all u,w ∈ U. (3.3)

Since U is a nonzero ∗−Lie ideal of R yields that

α−1 (d (u))U([w, u])∗ = 0, for all w ∈ U, u ∈ U ∩ Sa∗(R).

By Lemma 2.2, we get either [w, u] = 0, for all w ∈ U or d (u) = 0 for each u ∈ U ∩ Sa∗(R).
Let u ∈ U, as u + (u)∗, u − (u)∗ ∈ U ∩ Sa∗(R) and [w, u± (u)∗] = 0, for all v ∈ U, or
d(u ± (u)∗) = 0. Hence we have [w, u] = 0 or d(u) = 0, for all u,w ∈ U. We obtain that U is
union of two additive subgroups of U such that

K = {u ∈ U | d(u) = 0}

and
L = {u ∈ U | [w, u] = 0, for all w ∈ U}.

Morever, U is the set-theoretic union of K and L. But a group can not be the set-theoretic union
of two proper subgroups, hence K = U or L = U. In the former case, we get U ⊆ Z by Lemma
2.4. In the latter case, [U,U ] = (0) . That is U ⊆ Z by Lemma 2.1. This completes the proof.

Using the same techniques with necessary variations, we can prove the following corollary
even without the characteristic assumption on the ring.
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Corollary 3.3. Let R be a prime ring and I a nonzero ideal of R. If R admits a nonzero (α, β)-
derivation d such that [d(x), x]α,β = 0 for all x ∈ I , then R is commutative.

Theorem 3.4. Let R be a ∗−prime ring with characteristic not two, U a nonzero square closed
∗−Lie ideal of R. If R admits a nonzero generalized (α, β)−derivation F associated with
nonzero (α, β)-derivation d which commutes with ∗ such that [F (u), u]α,β = 0 for all u ∈ U
then U ⊆ Z.

Proof. Suppose, on the contrary that U * Z(R) and

[F (u), u]α,β = 0 for all u ∈ U. (3.4)

Linearizing (3.4) and using (3.4), we obtain

[F (u), v]α,β + [F (v), u]α,β = 0 for all u, v ∈ U. (3.5)

Replacing v by 2vu in (3.5), we get

[F (u), vu]α,β + [F (v)α(u) + β(v)d(u), u]α,β = 0

that is,
[F (u), v]α,βα(u) + β(v)[F (u), u]α,β + [F (v), u]α,βα(u)+

F (v)[α(u), α(u)] + β(v)[d(u), u]α,β + [β(v), β(u)]d(u) = 0. (3.6)

Now combining (3.4), (3.5) and (3.6) we find that

β(v)[d(u), u]α,β + [β(v), β(u)]d(u) = 0 for all u, v ∈ U. (3.7)

Again replace v by 2wv in (3.7) and use (3.7), to get

[β(w), β(u)]β(v)d(u) = 0 for all u, v, w ∈ U. (3.8)

This implies that [w, u]Uβ−1(d(u)) = {0} for all u,w ∈ U . Since β is an automorphism of R,
we see that

[w, u]Uβ−1 (d (u)) = 0, for all u,w ∈ U. (3.9)

Now using the similar arguments as used in the proof of Theorem 3.2, we get the required
result.

Theorem 3.5. Let R be a ∗−prime ring with characteristic not two, U a nonzero square closed
∗−Lie ideal of R. If R admits a nonzero generalized (α, β)−derivation F associated with
nonzero (α, β)-derivation d which commutes with ∗ such that [F (u), u] = 0 for all u ∈ U
then U ⊆ Z.

Proof. Suppose, on the contrary that U ̸⊆ Z(R) and F ([u, v]) = 0 for all u, v ∈ U. Replacing
v by 2vu in the above expression and using the fact that charR ̸= 2, we find that

0 = F ([u, vu]) = F ([u, v]u) = β([u, v])d(u).

Now, again replace v by 2wv, to get β([u,w]v)d(u) = 0 for all u, v, w ∈ U . This implies that
[u,w]Uβ−1(d(u)) = {0} for all u,w ∈ U . Now application of similar techniques as used in the
proof of Theorem 3.2 after (3.9) yields the required result.

Theorem 3.6. Let R be a 2-torsion free prime ring and U a nonzero square-closed Lie ideal of
R. Suppose that R admits a generalized (α, β)-derivation F with associated (α, β)-derivation d
such that

(i) F ([u, v]) = [u, v]α,β for all u, v ∈ U or

(ii) F ([u, v]) = −[u, v]α,β for all u, v ∈ U .

If F = 0 or d ̸= 0, then U ⊆ Z(R).
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Proof. (i) Given that F is a generalized (α, β)-derivation of R such that F ([u, v]) = [u, v]α,β
for all u, v ∈ U . If F = 0, then [u, v]α,β = 0 for all u, v ∈ U . Thus by Lemma 2.7, we get the
required result.

Henceforth, we shall assume that d ̸= 0. Suppose on the contrary that U ̸⊆ Z(R). For any
u, v ∈ U , we have

F ([u, v]) = [u, v]α,β . (3.10)

Replacing v by 2wv in (3.10) and using the fact that char(R) ̸= 2, we get

F (w[u, v] + [u,w]v) = [u,wv]α,β for all u, v, w ∈ U

that is,
F (w)α([u, v]) + β(w)d([u, v]) + F ([u,w])α(v) + β([u,w])d(v)

= [u,w]α,βα(v) + β(w)[u, v]α,β for all u, v, w ∈ U. (3.11)

Now by application of (3.10), we find that

F (w)α([u, v]) + β(w)d([u, v]) + β([u,w])d(v) = β(w)[u, v]α,β . (3.12)

Replace v by 2vu in (3.12), to get

F (w)α([u, v]u) + β(w)d([u, v]u) + β([u,w])(d(v)α(u) + β(v)d(u))

= β(w)([u, v]α,βα(u) + β(v)[u, u]α,β).

This implies that

{F (w)α([u, v]) + β(w)d([u, v]) + β([u,w])d(v)}α(u) + β(w)β([u, v])d(u)+

β([u,w])β(v)d(u) = β(w)([u, v]α,βα(u) + β(w)β(v)[u, u]α,β) for all u, v, w ∈ U.

Now using (3.12), we obtain

β(w)β([u, v])d(u) + β([u,w])β(v)d(u) = β(w)β(v)[u, u]α,β . (3.13)

Again replace w by 2w1w in (3.13), to get

β(w1)β(w)β([u, v])d(u) + β(w1[u,w] + [u,w1]w)β(v)d(u)

= β(w1)β(w)β(v)[u, u]α,β for all u, v, w,w1 ∈ U.

Application of (3.13) gives that

β([u,w1])β(w)β(v)d(u) = 0 for all u, v, w,w1 ∈ U,

and hence
[u,w1]wUβ−1(d(u)) = {0} for all u,w,w1 ∈ U.

It follows by Lemma 2.2 and using the similar arguments as used after equation (3.9), we get the
required result.

(ii) If F satisfies F ([u, v]) = −[u, v]α,β , then (−F ) satisfies the condition (−F )([u, v]) =
[u, v]α,β for all u, v ∈ U and hence by part (i), our result follows. �

Theorem 3.7. Let R be a 2-torsion free prime ring and U a square-closed Lie ideal of R. Suppose
that R admits a generalized (α, β)-derivation F with associated (α, β)-derivation d such that

(i) F (uv) = α(uv) for all u, v ∈ U or

(ii) F (uv) = α(vu) for all u, v ∈ U .
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If F = 0 or d ̸= 0, then U ⊆ Z(R).

Proof. (i) For any u, v ∈ U , we have F (uv − vu) = F (uv) − F (vu) = α(uv) − α(vu), and
hence F ([u, v]) = α([u, v]). If F = 0, then α([u, v]) = 0 for all u, v ∈ U . Thus [u, v] = 0 for all
u, v ∈ U and hence by Lemma 2.1, U ⊆ Z(R).

Henceforth, we shall assume that d ̸= 0. Suppose on the contrary that U * Z(R). For any
u, v ∈ U we have F ([u, v]) = α([u, v]). This can be rewritten as

F (u)α(v) + β(u)d(v)− F (v)α(u)− β(v)d(u) = α([u, v]) (3.14)

Replacing v by 2vu in (3.14) and using the fact that char(R) ̸= 2, we find that

F (u)α(v)α(u) + β(u)d(v)α(u) + β(u)β(v)d(u)− F (v)α(u)α(u)

−β(v)d(u)α(u)− β(v)β(u)d(u) = α([u, v])α(u) for all u, v ∈ U

and hence the application of (3.14) gives that β([u, v])d(u) = 0 for all u, v ∈ U . Again replace
v by 2wv, to get β([u,w])β(v)d(u) = 0 for all u, v, w ∈ U and hence

[u,w]Uβ−1(d(u)) = {0} for all u,w ∈ U.

The last expression is same as equation(3.8) and hence the result follows.

(ii) Using similar techniques with necessary variations, we get the required result. �

If the commutator is replaced by the anti-commutator in Theorems 3.5 & 3.6, then we see
that the conclusion of these theorems hold good.

Theorem 3.8. Let R be a 2-torsion free prime ring and U a nonzero square-closed Lie ideal of
R. Suppose that R admits a generalized (α, β)-derivation F with associated (α, β)-derivation d
such that F (uov) = 0 for all u, v ∈ U . If d ̸= 0, then U ⊆ Z(R).

Proof. Suppose on the contrary that U ̸⊆ Z(R), Replacing v by 2vu in our hypothesis, we obtain

0 = F (u ◦ vu) = F ((u ◦ v)u) = β(u ◦ v)d(u) for all u, v ∈ U.

Now replace v by 2wv and use the above relation, to get β([u,w]v)d(u) = 0 for all u, v, w ∈ U .
This implies that [u,w]Uβ−1(d(u)) = {0} for all u,w ∈ U . Now, application of similar argu-
ments as used after (3.8) in Theorem 3.4 yields the required result. �

Theorem 3.9. Let R be a 2-torsion free prime ring and U a square-closed Lie ideal of R. Suppose
that R admits a generalized (α, β)-derivation F with associated (α, β)-derivation d such that

(i) F (u ◦ v) = (u ◦ v)α,β for all u, v ∈ U or

(ii) F (u ◦ v) = −(u ◦ v)α,β for all u, v ∈ U .

If F = 0 or d ̸= 0, then U ⊆ Z(R).

Proof. (i) If F = 0, then we have

(u ◦ v)α,β = 0 for all u, v ∈ U. (3.15)

Replacing v by 2vw in (3.11) and using (3.11), we get β(v)[u,w]α,β = 0 for all u, v, w ∈ U .
Now replace v by [v, r], to get β([v, r])[u,w]α,β = 0. Again replacing r by rs in the above
expression, we find that β([v, r])R[u,w]α,β = {0} for all u, v, w ∈ U , r ∈ R. Notice that the
arguments given in the last paragraph of the proof of Lemma 2.7 are stil valid in the present
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situation, and hence repeating the same process, we get the required result.

Therefore, we shall assume that d ̸= 0. Suppose on the contrary that U * Z(R). For any
u, v ∈ U , we have F (u ◦ v) = (u ◦ v)α,β . This can be rewritten as

F (u)α(v) + β(u)d(v) + F (v)α(u) + β(v)d(u) = (u ◦ v)α,β . (3.16)

Replacing v by 2vu in (3.16), we find that

F (u)α(v)α(u) + β(u)d(v)α(u) + β(u)β(v)d(u) + F (v)α(u)α(u) + β(v)d(u)α(u)+

β(v)β(u)d(u) = (u ◦ v)α,βα(u)− β(v)[u, u]α,β for all u, v ∈ U.

Thus an application (3.16), gives that β(u ◦ v)d(u) + β(v)[u, u]α,β = 0 for all u, v ∈ U . Again
replace v by 2wv, to get β([u,w])β(v)d(u) = 0 i.e., [u,w]Uβ−1(d(u)) = {0} for all u,w ∈ U .
Now application of similar arguments as used after (3.8) in the proof of Theorem 3.4 yields the
required result.

(ii) Use similar arguments as above. �

In view of these results we get the following corollary:

Corollary 3.10. Let R be a prime ring and I a nonzero ideal of R. Suppose that R admits a
generalized (α, β)-derivation F with associated (α, β)-derivation d such that any one of the
following holds:

(i) [F (x), x]α,β = 0 for all x ∈ I ,

(ii) F ([x, y])− [x, y]α,β = 0 for all x, y ∈ I, or F ([x, y]) + [x, y]α,β = 0 for all x, y ∈ I ,

(iii) F (x ◦ y)− (x ◦ y)α,β = 0 for all x, y ∈ I, or F (x ◦ y) + (x ◦ y)α,β = 0 for all x, y ∈ I .

If F = 0 or d ̸= 0, then R is commutative.

Theorem 3.11. Let R be a 2-torsion free ∗-prime ring and F : R −→ R be a generalized (α, β)-
derivation with associated nonzero (α, β)-derivation d. Suppose that β and d commutes with
∗. If U is a nonzero ∗-square closed Lie ideal of R such that F ([u, v]) = [F (u), v]α,β for all
u, v ∈ U , then U ⊆ Z(R).

Proof. We have

F ([u, v]) = [F (u), v]α,β , for all u, v ∈ U. (3.17)

Replacing u by [u, ru] in (3.17) we have

F ([[u, ru], v]) = [F ([u, ru]), v]α,β , for all u, v ∈ U andr ∈ R. (3.18)

F ([[u, r]u, v]) = [F ([u, r]u), v]α,β , for all u, v ∈ U andr ∈ R. (3.19)

This implies that F ([u, r][u, v] + [[u, r], v]u) = [F [u, r]α(u) + β([u, r])d(u), v]α,β for all u, v ∈
U and r ∈ R. Using the hypothesis we obtain β([u, r])d[u, v] = β[u, r][d(u), v]α,β , for all u, v ∈
U and r ∈ R. This gives us β[u, r][d(v), u]α,β = 0, for all u, v ∈ U andr ∈ R. Replacing r by
sr for some s in R we get

β[u, sr][d(v), u]α,β = 0, for all u, v ∈ U and s,r ∈ R.

This implies that

β([u,R])R[d(v), u]α,β = 0, for all u, v ∈ U. (3.20)

If u ∈ S∗(R) ∩ U , then β([u,R])R[d(v), u]α,β = β ∗ ([u,R])R[d(v), u]α,β =
∗β([u,R])R[d(v), u]α,β = 0 . Thus, for some u ∈ S∗(R)∩U either β([u,R]) = 0 or [d(v), u]α,β =



266 Nadeem Ur Rehman and Oznur Gölbaşı

0. But for any u ∈ U, u − u∗, u + u∗ ∈ S∗(R) ∩ U . Therefore, for some u ∈ U either
β([u − u∗, R]) = 0 or [d(v), u − u∗]α,β = 0. If β([u − u∗, R]) = 0 then from equation
(3.20) we obtain that β([u,R])R[d(v), u]α,β = ∗β([u,R])R[d(v), u]α,β for all u ∈ U hence
either β([u,R]) = 0 or [d(v), u]α,β = 0. Let A = {u ∈ U | β[u,R] = 0} and B = {u ∈ U |
[d(v), u]α,β = 0}. Then it can be seen that L and Kare two additive subgroups of U whose union
is U . Using Brauer’s trick we have either A = U or B = U . If A = U , then [u,R] = 0 for all
u ∈ U r ∈ R and hence we get U ⊆ Z(R) on the other hand if B = U , then [d(v), u]α,β = 0
for all u, v ∈ U . In particular [d(u), u]α,β = 0 for all u ∈ U . Thus by Theorem 3.2 we get the
required result.

Theorem 3.12. Let R be a 2-torsion free ∗-prime ring and F : R −→ R be a generalized (α, β)-
derivation with associated nonzero (α, β)-derivation d. Suppose that β and d commutes with
∗. If U is a nonzero ∗-square closed Lie ideal of R such that F (u ◦ v) = (F (u) ◦ v)α,β for all
u, v ∈ U , then U ⊆ Z(R).

Proof. We have F (u ◦ v) = (F (u) ◦ v)α,β for all u, v ∈ U ,r ∈ R. Replacing u by [u, ru] in the
above expression we find that

F (([u, r] ◦ v)u+ [u, r][u, v]) = (F [u, r]α(u) ◦ v)α,β + (β([u, r])d(u) ◦ v)α,β

for all u, v ∈ U, r ∈ R. Thus we obtain,

F ([u, r] ◦ v)α(u) + β([u, r] ◦ v)d(u) + F ([u, r])α([u, v]) + β([u, r])d[u, v] =

(F [u, r] ◦ v)α,βα(u) + F ([u, r])[α(u), α(v)] + (β[u, r] ◦ v)α,βd(u) + β([u, r])[d(u), α(v)]

for all u, v ∈ U, r ∈ R. Using our hypothesis we find that

β([u, r] ◦ v)d(u) + β([u, r])d[u, v] =

(β[u, r] ◦ v)α,βd(u) + β([u, r])[d(u), α(v)] for all u, v ∈ U, r ∈ R.

Hence, we obtain, β([u, r])[d(v), u]α,β = 0 for all u, v ∈ U, r ∈ R. Replacing r by rs for some
s in R we get β([u,R])R[d(v), u]α,β = 0 for all u, v ∈ U. The last expression is same as the
equation (3.20) and hence the result follows.

Theorem 3.13. Let R be a 2-torsion free ∗-prime ring and F : R −→ R be a generalized (α, β)-
derivation with associated nonzero (α, β)-derivation d. Suppose that β and d commutes with ∗.
If U is a nonzero ∗-square closed Lie ideal of R such that F [u, v] = [F (u), v]α,β + [d(v), u]α,β
for all u, v ∈ U , then U ⊆ Z(R).

Proof. Proof We have F ([u, v]) = [F (u), v]α,β + [d(v), u]α,β for all u, v ∈ U . Now Replacing
u by [u, ru] we get

F ([[u, ru], v]) = [F ([u, ru]), v]α,β + [d(v), [u, ru]]α,β for all u, v ∈ U, r ∈ R

The last expression can be rewritten as

F ([u, r][u, v] + [[u, r], v]u) = [F ([u, r])α(u), v]α,β + [β([u, r])d(u), v]α,β

+β([d(v), u]) + [d(v), [u, r]]α,βα(u) for all u, v ∈ U, r ∈ R.

Hence
F [u, r]α[u, v] + β[u, r]d[u, v] + F [[u, r], v]α(u) + β[[u, r], v]d(u) =

F [u, r][α(u), v]α,β + [F [u, r], β(v)]α(u) + β[u, r][d(u), v]α,β+

[β[u, r], β(v)]d(u) + β[u, r][d(v), u]α,β + [d(v), [u, r]]α,βα(u) for all u, v ∈ U, r ∈ R.

We find that, β([u, r])β(u)d(v) = β([u, r])d(v)α(u) for all u, v ∈ U, r ∈ R. This gives us
β([u, r])[d(v), u]α,β = 0 for all u, v ∈ U, r ∈ R. Now application of similar arguments as used
after (3.20) in the proof of Theorem 3.11 yields the required result.
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Theorem 3.14. Let R be a 2-torsion free ∗-prime ring and F : R −→ R be a generalized (α, β)-
derivation with associated nonzero (α, β)-derivation d. Suppose that β and d commutes with ∗.
If U is a nonzero ∗-square closed Lie ideal of R such that F (u◦v) = (F (u)◦v)α,β+(d(v)◦u)α,β
for all u, v ∈ U , then U ⊆ Z(R).

Proof. We have

F (u ◦ v) = (F (u) ◦ v)α,β + (d(v) ◦ u)α,β for all u, v ∈ U.

Replacing u by [u, ru] in the above expression we obtain

F ([u, r]u ◦ v) = (F ([u, r]u) ◦ v)α,β + (d(v) ◦ [u, r]u)α,β for all u, v ∈ U, r ∈ R.

This gives us,

F (([u, r] ◦ v)u+ [u, r][u, v]) = ((F [u, r]α(u) + β[u, r]d(u)) ◦ v)α,β
+((d(v) ◦ [u, r])u+ [u, r][d(v), u])α,β for all u, v ∈ U, r ∈ R.

Thus,
F ([u, r] ◦ v)α(u) + β([u, r] ◦ v)d(u) + F [u, r]α[u, v] + β[u, r]d[u, v] =

(F [u, r] ◦ v)α,βα(u) + F [u, r]α([u, v]) + (β[u, r] ◦ v)α,βd(u)+
β[u, r][d(u), α(v)] + (d(v) ◦ [u, r])α,βα(u) + β[u, r][d(v), u]α,β

for all u, v ∈ U, r ∈ R. By our hypothesis we find that

β[u, r]β(v)d(u) + β[u, r]d[u, v] = β[u, r]α(v)d(u) + β[u, r][d(u), α(v)]

+β[u, r][d(v), u]α,β for all u, v ∈ U, r ∈ R.

This gives us β([u, r])[d(v), u]α,β = 0 for all u, v ∈ U, r ∈ R. Replacing r by rs for some s in
R we get β([u,R])R[d(v), u]α,β = 0 for all u, v ∈ U . Now repeating the same process as used
after expression (3.20) in the proof of Theorem 3.11,we get the required result.

Theorem 3.15. Let R be a ∗−prime ring with characteristic not two, U a nonzero ∗−Lie ideal
of R such that u2 ∈ U for all u ∈ U and d a nonzero (α, β)−derivation of R which commutes
with ∗ and β∗ = ∗β. If d acts as a homomorphism on U, then d = 0 or U ⊆ Z.

Proof. Assume that d acts as a homomorphism on U, then we have

d(u)d(v) = d(u)α(v) + β(u)d(v), for all u, v ∈ U. (3.21)

Replacing u by 2uw in (3.21) and using R is 2−torsion free, we get

d(uw)d(v) = d(u)d(w)α(v) + β(u)β(w)d(v). (3.22)

On the other hand, we have

d(uw)d(v) = d(u)d(w)d(v) = d(u)d(wv) = d(u)d(w)α(v) + d(u)β(w)d(v). (3.23)

Combining (3.22) and (3.23), we arrive at

(β(u)− d(u))β(w)d(v) = 0,

and so,
(u− β−1(d(u)))Uβ−1(d(v)) = 0, for all u, v ∈ U.

Using ∗d = d∗, β∗ = ∗β, we have

∗(u− β−1(d(u))Uβ−1(d(v)) = 0, for all u, v ∈ U.

By Lemma 2.2, we get u− β−1(d(u)) = 0, for all u ∈ U or d(v) = 0, for all v ∈ U. If d(v) = 0,
for all v ∈ U, then we get U ⊆ Z by Lemma 2.4.
Now, we assume u− β−1(d(u)) = 0, and so β(u) = d(u), for all u ∈ U. Hence

d(uv) = d(u)d(v) = d(u)α(v) + β(u)d(v) = d(u)α(v) + d(u)d(v),

and so
d(U)α(v) = 0, for all v ∈ U.

By the application of Lemma 2.5 yields that U ⊆ Z.
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Theorem 3.16. Let R be a ∗−prime ring with characteristic not two, U a nonzero ∗−Lie ideal
of R such that u2 ∈ U for all u ∈ U and d a nonzero (α, β)−derivation of R which commutes
with ∗ and β∗ = ∗β. If d acts as an anti-homomorphism on U, then d = 0 or U ⊆ Z.

Proof. Assume that d acts as an anti-homomorphism on U, then we have

d(v)d(u) = d(u)α(v) + β(u)d(v), for all u, v ∈ U. (3.24)

Replacing u by 2uv in (3.24) and using R is 2−torsion free, we get

d(v)d(uv) = d(v)d(u)α(v) + β(u)β(v)d(v). (3.25)

On the other hand, we have

d(v)d(uv) = d(v)d(u)α(v) + d(v)β(u)d(v). (3.26)

Combining (3.25) and (3.26), we arrive at

d(v)β(u)d(v) = β(u)β(v)d(v), for all u, v ∈ U. (3.27)

Substituting 2uw for u in (3.27) and using (3.27), we arrive at

[d(v), β(u)]β(w)d(v) = 0.

Hence we get
[β−1(d(v)), u]Uβ−1(d(v)) = 0, for all u, v ∈ U.

Using ∗d = d∗, β∗ = ∗β, we have

∗([β−1(d(v)), u])Uβ−1(d(v)) = 0, for all v ∈ U ∩ Sa∗(R), u ∈ U.

By Lemma 2.2, we get either [β−1(d(v)), u] = 0 for all u ∈ U or d (v) = 0 for each v ∈
U ∩ Sa∗(R). But d (v) = 0 also implies that [β−1(d(v)), u] = 0 for all u ∈ U, v ∈ U ∩ Sa∗(R).
Let v ∈ U, as v+∗(v), v−∗(v) ∈ U∩Sa∗(R) and [β−1(d(v±∗(v))), u] = 0, for all u ∈ U, and so
[β−1(d(∗(v))), u] = 0. Hence we obtain that [β−1(d(∗(v))), u] = 0, for all u, v ∈ U. By Lemma
2.3, we get β−1(d(∗(v))) ∈ Z, for all v ∈ U or U ⊆ Z. Now, we assume β−1(d(∗(v))) ∈ Z, for
all v ∈ U. Since ∗d = d∗ and β is an automorphism of R, we have d(U) ⊂ Z. Hence d acts as a
homomorphism on U , and so U ⊆ Z by Theorem 3.8.
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