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Abstract Let R be a commutative ring with identity which is not an integral domain. An
idealI of a ringR is called an annihilating ideal if there existsr ∈ R r {0} such thatIr = (0).
In this paper, we consider a simple undirected graph associated withR denoted byΩ(R) whose
vertex set equals the set of all nonzero annihilating ideals ofR and two distinct verticesI, J are
adjacent if and only ifI + J is an annihilating ideal ofR.

1 Introduction

The rings considered in this paper are commutative with identity which are not integral domains.
The idea of associating a graph to a ring was initiated by Beck in [16] and subsequently several
researchers have done interesting and enormous work on zero-divisor graphs of rings. To men-
tion a few, see [9, 10, 14, 22, 24]. For an excellent and inspiring survey of the research work
done in the area of zero-divisor graphs in commutative rings, the reader is referred to [5].

LetR be a ring which is not an integral domain. LetZ(R) denote the set of all zero-divisors
of R. Recall from [9] that the zero-divisor graphΓ(R) of a ringR is a simple undirected graph
with vertex setZ(R)∗ and two distinct verticesx, y are adjacent inΓ(R) if and only if xy = 0.
Recall from [17] that an idealI ofR is said to be anannihilating-ideal if Ir = (0) for somer ∈ R∗.
As in [17], we denote byA(R), the set of all annihilating-ideals ofR and byA(R)∗, the set of
all nonzero annihilating-ideals ofR. Recall from [17] that the annihilating-ideal graph of a ring
R, denoted byAG(R) is a simple undirected graph whose vertex set isA(R)∗ and two distinct
I, J ∈ A(R)∗ are adjacent in this graph if and only ifIJ = (0). The concept of annihilating-ideal
graph of a ring was introduced by Behboodi and Rakeei in [17]. Many interesting and inspiring
theorems proved in [17, 18] on annihilating-ideal graph of a commutative ring reveal that this
graph is also worthy to study just like the zero-divisor graph of a ring. The interplay between the
ring theoretic properties of a ringR and the graph theoretic properties of its annihilating ideal
graph has also been investigated in [1, 20].

In [6], Anderson and Badawi introduced the concept of the total graph of acommutative
ring R, denoted byT (Γ(R)), as an undirected graph with all the elements ofR as vertices and
for distinctx, y ∈ R, the verticesx andy are adjacent if and only ifx + y ∈ Z(R) and they
have established several illuminating theorems on this graph in [6, 7]. Moreover, this graph
has been generalized and investigated in [22]. Recently S. Visweswaran. and H. D. Patel[28]
have introduced and investigated the graphΩ(R) of a commutative ringR. For a non-domain
commutative ringR, let A∗(R) be the set of non-zero ideals with non-zero annihilators. The
vertex set of this graph isA(R)∗ the set of all nonzero annihilating ideals of R and for distinct
I, J ∈ A(R)∗, the vertices I and J are joined by an edge in this graph if and only ifI+J ∈ A(R)∗.
For convenience we call this graph assum annihilating ideal graph and denote it byΩ(R). The
main aim of this paper is to study some of the properties ofΩ(R). We investigate the interplay
between the graph-theoretic properties ofΩ(R) and the ring-theoretic properties ofR. For basic
definitions on rings, one may refer [21].

By a graphG = (V,E), we mean an undirected simple graph with vertex setV and edge
setE. A graph in which each pair of distinct vertices is joined by an edge is called acomplete
graph. We useKn to denote the complete graph withn vertices. Anr-partite graph is one whose
vertex set can be partitioned intor subsets so that no edge has both ends in any one subset. A
completer-partite graph is one in which each vertex is joined to every vertex that is notin the
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same subset. The complete bipartite graph (2-partite graph) with part sizesm andn is denoted
by Km,n. If G = K1,n wheren ≥ 1, thenG is a star graph. Asplit graph is a simple graph in
which the vertices can be partitioned into a clique and an independent set. A graphG is said to
beunicyclic if it contains a unique cycle. For basic definitions on graphs, one may refer[19].

Throughout this paper, we assume thatR is a finite commutative ring with identity but not an
integral domain,Z(R) its set of zero-divisors,N(R) its set of nilpotent elements,R× its group
of units,Fq denote the field withq elements, andR∗ = R− {0}.

2 Basic Properties of Ω(R)

In this section, we study some fundamental properties ofΩ(R). Especially we identify when the
annihilator graph is isomorphic to some well-known graphs. By the definitionof Ω(R), if R is
an integral domain, thenΩ(R) is an empty graph.

Remark 2.1. Let R be a finite commutative ring but not a field. Then every non-zero proper
ideal is an annihilating ideal ofR.

Theorem 2.1. LetR be a finite commutative ring. ThenR is a local ring if and only ifΩ(R) is
complete.

Proof. Suppose thatR is a local ring. ThenR has a unique maximal ideal, say,m. Note that any
non-zero proper ideal ofR is an annihilating ideal ofR. For any two non-zero proper idealsI, J
in R, I + J ⊆ m and soI + J is an annihilating ideal inR. By definition ofΩ(R), I andJ are
adjacent inΩ(R) for all non-zero proper idealsI, J in R and henceΩ(R) is complete.

Conversely, assume thatΩ(R) is complete. Suppose thatR is not a local ring. ThenR
has at least two maximal ideals, say,M1 andM2. Note thatM1 + M2 = R. By definition of
Ω(R),M1 +M2 is not an annihilating ideal ofR and soM1 andM2 are nonadjacent inΩ(R), a
contradiction. HenceR is a local ring.

Theorem 2.2. LetR be a finite commutative non-local ring. ThenΩ(R) is totally disconnected
if and only ifR ∼= F1 × F2 whereF1 andF2 are fields.

Proof. Suppose thatΩ(R) is totally disconnected. ThenΩ(R) has no edge. SinceR is a finite
non-local ring,R ∼= R1 × · · · × Rn, where(Ri,mi) is a local ring andn ≥ 2. If n ≥ 3, then
(0) × (0) × R3 × (0) × · · · × (0) and(0) × R2 × R3 × (0) × · · · × (0) are adjacent inΩ(R), a
contradiction. Hencen = 2.

Supposem1 6= (0). Then(0)×R2 andm1× (0) are adjacent inΩ(R), a contradiction. Hence
R1 andR2 are fields.

Conversely, ifR ∼= F1 ×F2, whereF1 andF2 are fields, thenΩ(R) ∼= K2 and henceΩ(R) is
totally disconnected.

Remark 2.2. Let (R,m) be a finite local ring. ThenΩ(R) is totally disconnected if and only if
m is the only non-zero proper ideal ofR. Hence in this case diam(Ω(R) = ∞.

Corollary 2.3. Let R be a finite commutative non-local ring. Then diam(Ω(R)) = ∞ if and
only if R ∼= F1 × F2 whereF1 andF2 are fields.

Proof. If R ∼= F1 × F2, whereF1 andF2 are fields, thenΩ(R) ∼= K2 and hence diam(Ω(R)) =
∞.

Suppose that diam(Ω(R)) = ∞. SinceR is a finite non-local ring,R ∼= R1×· · ·×Rn, where
(Ri,mi) is a local ring andn ≥ 2. If n ≥ 3, thenΩ(R) is connected, a contradiction. Hence
n = 2 andR = R1 ×R2

If mi 6= (0) for somei, thenΩ(R) is connected, a contradiction. HenceR1 andR2 are
fields.

Theorem 2.4. Let R be a finite commutative ring and|Ω(R)| ≥ 3. ThenΩ(R) is unicyclic if
and only if
(i) R is a local ring which contains three non-zero proper ideals
(ii) R = R1 × R2, where(R1,m1) is a local ring withm1 as only non-zero proper ideal inR1

andR2 is a field.
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Proof. Suppose thatΩ(R) is unicyclic. SinceR is finite,R = R1×· · ·×Rn, where(Ri,mi) is a
local ring. Ifn ≥ 3, then(0)×R2×(0)×(0)×· · ·×(0)−R1×(0)×(0)×(0)×· · ·×(0)−(0)×
(0)×R3× (0)×· · ·× (0)− (0)×R2× (0)× (0)×· · ·× (0) andR1×R2× (0)× (0)×· · ·× (0)−
(0)×R2×(0)×(0)×· · ·×(0)−R1×(0)×(0)×(0)×· · ·×(0)−R1×R2×(0)×(0)×· · ·×(0)
are two distinct cycles inΩ(R), a contradiction. Hencen ≤ 2.

If n = 1, then by Theorem2.1, Ω(R) is complete. SinceΩ(R) is unicyclic and|Ω(R)| ≥ 3,
R contains three non-zero proper ideals.

Suppose thatn = 2. ThenR = R1×R2. If mi 6= (0) for i = 1,2, thenm1× (0)−m1×m2−
(0) × m2 − m1 × (0) andm1 × (0) − (0) × m2 − m1 ×R2 − m1 × (0) are two distinct cycles in
Ω(R), a contradiction. Hencemi = (0) for somei.

m1 × R2 (0) × R2

R1 × (0)

m1 × (0)

Fig. 2.1:Ω(R1 × R2)

Without loss of generality, we assume thatm2 = (0). ThenR2 is a field. Since|Ω(R)| ≥
3, by Corollary2.3, Ω(R) is connected and soR1 is not a field. Suppose thatI is any non-
zero proper ideal inR1 with I 6= m1. ThenI × (0) − m1 × (0) − (0) × R2 − I × (0) and
I × (0)− (0)×R2 −m1 ×R2 − I × (0) are two distinct cycles inΩ(R), a contradiction. Hence
m1 is the only non-zero proper ideal inR1.

Conversely, suppose that(i) and(ii) holds. ThenΩ(R) ∼= K3 or Ω(R) is isomorphic to Fig.
2.1.

Theorem 2.5. Let R be a finite commutative ring. IfΩ(R) is connected, thenΩ(R) is a tree if
and only ifR is a local ring which contains two non-zero proper ideals.

Proof. Suppose thatR is a local ring which contains two non-zero proper ideals. Then by The-
orem2.1, Ω(R) ∼= K2.

Conversely, assume thatΩ(R) is a tree. SupposeR is a non-local ring. ThenR = R1 × · · · ×
Rn, where(Ri,mi) is a local ring andn ≥ 2. If n ≥ 3 thenR contains a cycle, a contradiction.
Hencen = 2. SinceΩ(R) is connected,R1 andR2 are not fields and soRi is not a field for some
i. Since Fig. 2.1 is a subgraph ofΩ(R1 × R2), Ω(R) contains a cycle, a contradiction. Hence
R is a local ring and by Theorem2.1, Ω(R) is complete. ThusR contains two non-zero proper
ideals.

3 Hamiltonian nature of Ω(R)

In this section, we discuss about the Hamiltonian property ofΩ(R). In view of Theorem2.1,
Ω(R) is Hamiltonian whenR is a local ring which contains at least three non-zero proper ideals.

If R is finite, thenR = R1 × · · · × Rn, where(Ri,mi) is a local ring andn ≥ 3. Let
Max(R) = {Mi : Mi = R2 × · · · × Ri−1 × mi × Ri+1 × · · · × Rn,1 ≤ i ≤ n} be the set of all
maximal ideals inR andJ (R) be the Jacobson radical ofR.

Theorem 3.1. Let R be a finite commutative ring and|Max(R)| ≥ 3. ThenΩ(R) is Hamilto-
nian.

Proof. LetAi = {I ⊆Mi : I is a non-zero proper ideal inR} for 1 ≤ i ≤ n. ThenAi ∩Aj 6= ∅

for all i 6= j andV (Ω(R)) =
n
⋃

i=1
Ai. Clearly the subgraph〈Ai〉 induced byAi is a complete
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subgraph ofΩ(R) and also〈Ai ∩Aj〉 is a complete subgraph ofΩ(R). Let Ii(i+1) ∈ Ai ∩ Ai+1

for 1 ≤ i ≤ n− 1 andIn1 ∈ An ∩A1.
Now we start with the vertexM1, traverse all vertices in

〈

A1 − {Ii(i+1), In1 : 1 ≤ i ≤ n− 1}
〉

through a spanning path in
〈

A1 − {Ii(i+1), In1 : 1 ≤ i ≤ n− 1}
〉

, pass on toI12, traverse vertices
in

〈

A2 − {Ii(i+1), In1 : 2 ≤ i ≤ n− 1}
〉

through a spanning path in
〈

A2 − {Ii(i+1), In1 : 2 ≤ i ≤ n− 1}
〉

, pass on toI23. Continue this process through
〈

A3 − {Ii(i+1), In1 : 3 ≤ i ≤ n− 1}
〉

,
〈

A3 − {Ii(i+1), In1 : 3 ≤ i ≤ n− 1}
〉

,
〈

A4 − {Ii(i+1), In1 : 4 ≤ i ≤ n− 1}
〉

, . . . . . ., 〈An − {In1}〉 to get a Hamiltonian path atIn1.
From this Hamiltonian path together with the edge joiningM1 andIn1 gives a required Hamil-
tonian cycle inΩ(R). HenceΩ(R) is Hamiltonian.

Proof of the following is analogous .

Corollary 3.2. Let R be a finite commutative ring and|Max(R)| = 2. If the condition(ii) in
Theorem2.4does not hold, thenΩ(R) is Hamiltonian.

4 Genus of Ω(R)

In this section, we characterize all commutative ringsR for which Ω(R) is planar. Also we
determine all isomorphism classes of finite commutative rings with identity whoseΩ(R) has
genus one.

Let Sk denote the sphere withk handles, wherek is a nonnegative integer, that is,Sk is an
oriented surface of genusk. The genus of a graphG, denotedg(G), is the minimal integern
such that the graph can be embedded inSn. Intuitively, G is embedded in a surface if it can be
drawn in the surface so that its edges intersect only at their common vertices. A graphG with
genus 0 is called a planar graph where as a graphG with genus 1 is called as a toroidal graph.
Further note that ifH is a subgraph of a graphG, theng(H) ≤ g(G). For details on the notion
of embedding a graph in a surface, see [29]. First let us summarize certain results on the genus
of a graph.

Lemma 4.1. [29] g(Kn) =
⌈

(n−3)(n−4)
12

⌉

if n ≥ 3. In particular,g(Kn) = 1 if n = 5,6,7.

Lemma 4.2. [29] g(Km,n) =
⌈

(m−2)(n−2)
4

⌉

if m,n ≥ 2. In particular,g(K4,4) = g(K3,n) = 1 if

n = 3,4,5,6. Alsog(K5,4) = g(K6,4) = g(Km,4) = 2 if m = 7,8,9,10.

First let us characterize finite commutative ringsR for which genus ofAG(R) is zero.

Theorem 4.3. Let R ∼= R1 × · · · × Rn be a finite commutative ring with identity, where each
(Ri,mi) is a local ring but not a field andn ≥ 1. ThenΩ(R) is planar if and only ifR is a local
ring andR contains at most four non-zero proper ideals.

Proof. Assume thatΩ(R) is planar. Supposen ≥ 2. LetA = {m1 × 0,0× m2,m1 × m2, R1 ×
0,m1 × R2, R1 × m2} ⊆ V (Ω(R)). Then the subgraph induced byA in Ω(R) containsK3,3 as
a subgraph, a contradiction. Hencen = 1, R is local and by Theorem2.1, Ω(R) is complete.
SinceΩ(R) is planar,R contains at most four non-zero proper ideals.

Conversely, supposeR is a local ring which contains at most four non-zero proper ideals.
Then by Theorem2.1, Ω(R) ∼= Kn, where 1≤ n ≤ 4 and henceΩ(R) is planar.

Theorem 4.4. LetR ∼= F1 × · · · × Fn be a finite commutative ring with identity, where eachFi

is a field andn ≥ 2. ThenΩ(R) is planar if and only ifn = 2 or 3.

Proof. SupposeΩ(R) is planar. Supposen ≥ 4. LetA = {0×F2 ×F3 × · · · ×Fn,0× 0×F3 ×
· · · ×Fn,0×F2 ×0× · · · ×Fn,0×F2 ×F3 × · · · ×Fn,0×0×0×F4 × · · · ×Fn} ⊆ V (Ω(R)).
Then the subgraph induced byA in Ω(R) containsK5 as a subgraph, a contradiction. Hence
n ≤ 3.

Supposen = 2. ThenR ∼= F1 × F2 and by Theorem2.1, Ω(R) = K2. Supposen = 3. Then
R ∼= F1 × F2 × F3. ThenV (Ω(R)) = {0× F2 × F3, F1 × 0× F3, F1 × F2 × 0,0× 0× F3,0×
F2 × 0, F1 × 0× 0}.
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F1 × 0 × F3 F1 × 0 × 0 F1 × F2 × 0

0 × 0 × F3 0 × F2 × 0

0 × F2 × F3

Fig 4.1:Ω(F1 × F2 × F3)

Converse follows from Fig. 4.1.

Theorem 4.5. LetR ∼= R1×· · ·×Rn ×F1×· · ·×Fm be a finite commutative ring with identity
but not a field, where each(Ri,mi) is a local ring andFj is a field. ThenΩ(R) is planar if and
only if n = 1,m = 1 andR1 contains exactly one proper ideal.

Proof. Assume thatΩ(R) is planar. Supposen ≥ 2. Then by Theorem4.3, Ω(R) is non-planar,
a contradiction. Hencen = 1. Supposem ≥ 2. LetA = {I ⊆ m1 × F1 × · · · × Fm, I 6=
(0), I is an ideal}. Then|A| ≥ 7 and so the subgraph induced byA in Ω(R) containsK7 as a
subgraph, a contradiction. Hencem = 1 andR = R1 × F1.

m1 × F1 (0) × F1

R1 × (0)

m1 × (0)

Fig. 4.2:Ω(R1 × F1)

SupposeR1 contains two proper ideals. LetI1,m1 be two proper ideals withm1 6= I1. Let
B = {I ⊆ m1 × F1, I 6= 0, I is an ideal}. Then|B| ≥ 5 and〈B〉 ∼= K5 so thatΩ(R) contains
K5 as a subgraph, a contradiction. HenceR1 contains a unique proper ideal.

Conversely, supposen = m = 1 andR1 contains unique proper idealm1. ThenV (Ω(R)) =
{m1 × F1,0× F1,m1 × 0, R1 × 0} and henceΩ(R) is isomorphic to Fig 4.2.

Theorem 4.6. Let R be a finite local ring but not a field. Theng(Ω(R)) = 1 if and only ifR
contains at mostn non-zero proper ideals, where 5≤ n ≤ 7.

Proof. Assume thatg(Ω(R)) = 1. Then by Theorem4.3, R contains at least 5 proper ideals.
SinceR is local, by Theorem2.1, Ω(R) is complete and henceR contains at mostn non-zero
proper ideals, where 5≤ n ≤ 7.

Conversely, supposeR contains at mostn non-zero proper ideals, where 5≤ n ≤ 7. Note
thatΩ(R) is complete so thatg(Ω(R)) = 1.

Theorem 4.7. Let R ∼= R1 × · · · × Rn be a finite commutative ring with identity, where each
(Ri,mi) is a local ring but not a field andn ≥ 2. Theng(Ω(R)) = 1 if and only if n = 2 and
eachRi contains exactly one non-zero proper ideal.

Proof. Assume thatg(Ω(R)) = 1. Supposen ≥ 3. LetA = {I ⊆M1 : I 6= 0, I is an ideal} ⊆
V (Ω(R)). Then|A| ≥ 17 and so the subgraph induced byA in Ω(R) containsK17 as a subgraph
so thatg(Ω(R)) ≥ 4, a contradiction. Hencen = 2 and soR ∼= R1 ×R2.

SupposeR1 contains two proper ideals. LetI,m1 be two non-zero proper ideals ofR1 with
I 6= m1. LetB = {I ⊆ M1; I 6= 0, I is an ideal}. Then|B| ≥ 8 and so the subgraph induced
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by B in Ω(R) containsK8 as a subgraph. Thusg(Ω(R)) ≥ 2, a contradiction. Hence eachRi

contains exactly one non-zero proper ideal.
Conversely, assume thatn = 2 and eachRi contains exactly one non-zero proper ideal. Then

|V (Ω(R))| = 7 and soΩ(R) is a subgraph ofK7. Sinceg(K7) = 1, g(Ω(R)) = 1.

Theorem 4.8. LetR ∼= F1 × · · · × Fn be a finite commutative ring with identity, where eachFi

is a field andn ≥ 4. Theng(Ω(R)) > 1.

Proof. As in the proof of Theorem4.4, Ω(R) is non-planar and sog(Ω(R)) ≥ 1. Supposen ≥ 5.
Let A = {I ⊆ 0 × F2 × · · · × Fn : I 6= 0, I is an ideal}. Then|A| ≥ 8 and so the subgraph
induced byA in Ω(R) containsK8 as a subgraph so thatg(Ω(R)) ≥ 2. Henceg(Ω(R)) > 1.

Supposen = 4. LetB = {F1 × F2 × F3 × 0, F1 × F2 × 0× 0,0× F2 × F3 × 0, F1 × 0× 0×
0, F1×0×F3×0,0×0×F3×F4,0×0×0×F4,0×F2×0×F4,0×F2×F3×F4, } ⊆ V (Ω(R)).
Then the graph induced byB in Ω(R) containsH as a subgraph, whereH = 2K4 +K1. Since
g(H) > 1, g(Ω(R)) > 1.

Theorem 4.9. LetR ∼= R1×· · ·×Rn ×F1×· · ·×Fm be a finite commutative ring with identity
but not a field, where each(Ri,mi) is a local ring,Fj is a field andn,m ≥ 1. Theng(Ω(R)) = 1
if and only if n = m = 1 andR1 containsk non-zero proper ideals, wherek = 2,3.

Proof. Assume thatg(Ω(R)) = 1. Supposen ≥ 2. LetA = {I ⊆ M1 : I 6= 0, I is an ideal}.
Then the subgraph induced byA in Ω(R) containsK11 as a subgraph and sog(Ω(R)) > 1, a
contradiction. Hencen = 1.

Supposen = 1 andm ≥ 3. Thenn+m ≥ 4. ClearlyΩ(F1 × F2 × F3 × F4) is a subgraph
of Ω(R). But by Theorem4.8, g(Ω(F1 × F2 × F3 × F4)) > 1, g(Ω(R)) > 1, a contradiction.
Hencem = 1 or 2.

x1

x5

x3 x6

x2

x4

Fig. 4.3: A planar of embedding ofΩ(R1 × F1)

Supposem = 2. ThenR = R1 × F1 × F2. Let B = {I ⊆ R : I 6= 0 and I 6=
R, I is an ideal} ⊆ V (Ω(R)). Then|B| ≥ 10, the subgraph induced byB in Ω(R) containsK10

as a subgraph and sog(Ω(R)) > 1, a contradiction. Hencem = 1 and soR = R1 × F1.

x1

x4

x5

x1
x1x3x2

x2 x3
x1

x4

x5

x4

x7

x8
x6

Fig. 4.4: A planar embedding ofΩ(R1 × F1) in S1
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SupposeR1 contains at least 4 proper ideals. Letm1, I1, I2, I3 be four proper ideals inR1

with m1 6= I1 6= I2 6= I3. LetC = {I ⊆ M1 : I 6= 0, I is an ideal}. Then|C| ≥ 9, the subgraph
induced byC in Ω(R) containsK9 as a subgraph and sog(Ω(R)) > 1, a contradiction. By
Theorem4.5, R1 containsk non-zero proper ideals, wherek = 2,3.

Conversely, supposeR1 contains two non-zero proper ideals. ThenV (Ω(R)) = {x1 =
0×F1, x2 = R1 × 0, x3 = m1 × 0, x4 = I × 0, x5 = m1 ×F1, x6 = I ×F1},K5 is a subgraph of
Ω(R) and sog(Ω(R)) ≥ 1. However, we can drawΩ(R) on the surface of a torus, see Fig. 4.3.
Henceg(Ω(R)) = 1.

supposeR1 contains three non-zero proper ideals. ThenV (Ω(R)) = {x1 = 0 × F1, x2 =
m1 × 0, x3 = I1 × 0, x4 = I2 × 0, x5 = I2 × F1, x6 = I1 × F1, x7 = m1 × F1, x8 = R1 × 0} and
by Theorem4.5, g(Ω(R)) ≥ 1. However, we can drawΩ(R) on the surface of a torus, see Fig.
4.4. Henceg(Ω(R)) = 1.

5 Isomorphism Properties of Ω(R)

Consider the question: IfR andS are two rings withΩ(R) ∼= Ω(S), then do we haveR ∼= S?
The following example shows that the above question is not valid in general.

Example 5.1. LetR = Z25 × Z13 andS = Z9 × Z29. ThenΩ(R) ∼= Ω(S)(see. Fig. 6.6). ButR
andS are not isomorphic.

〈5〉 × Z13 (0) × Z13

Z25 × (0)

〈5〉 × (0)

Fig. 6.6:Ω(Z25 × Z13) ∼= Ω(Z9 × Z29)

Theorem 5.2. LetR =
n
∏

i=1
Ri ×

m
∏

j=1
Fj andS =

n
∏

i=1
R′

i ×
m
∏

j=1
F ′

j be finite commutative rings with

n + m ≥ 2, where each(Ri,mi) and(R′

i,m
′

i) are local rings which are not fields eachFi and
F ′

j are fields. Letki be the number of ideals inRi andk′i be the number of ideals inR′

i. Then
Ω(R) ∼= Ω(S) if and only if ki = k′i for all i, 1≤ i ≤ n.

Proof. If R ∼= S, then the result is obvious. Assume thatR ≇ S. Supposeki = k′i for all i,
1 ≤ i ≤ n. Then|V (Ω(R))| = |V (Ω(S))|. Let Ij(Rj) = {I1j = (0), I2j = mj , I3j , . . . , Ikjj =
Rj} be the set of ideals inRj andI′j(R

′

j) = {I ′1j = (0), I ′2j = mj , I
′

3j , . . . , I
′

kjj = R′

j} be the
set of ideals inR′

j . Then the mapItj → I ′tj is a bijection fromIj(Rj) onto I′j(R
′

j). Define

ψ : V (Ω(R)) −→ V (Ω(S)) by ψ(
n
∏

i=1
Iti ×

m
∏

j=1
Jj) =

n
∏

i=1
I ′ti ×

m
∏

j=1
J ′

j where

J ′

j =

{

F ′

j if Jj = Fj

(0) if Jj = (0)

Thenψ is well-defined and bijective. LetI =
n
∏

i=1
Ii ×

m
∏

j=1
Jj andJ =

n
∏

i=1
Ai ×

m
∏

j=1
Bj be two

non-zero ideals inR. SupposeI andJ are adjacent inΩ(R). ThenI + J is an annihilating ideal
of R and soIi + Ai ⊆ mi for somei or Jj + Bj = (0) for somej. From this,Ii, Ai ⊆ mi or
Jj = (0) andBj = (0).
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Let ψ(I) =
n
∏

i=1
I ′i ×

m
∏

j=1
J ′

j andψ(J) =
n
∏

i=1
A′

i ×
m
∏

j=1
B′

j . By definition ofψ, I ′i +A′

i ⊆ m
′

i for

somei or J ′

j +B′

j 6= (0) for somej and soψ(I)+ψ(J) = S. Henceψ(I) andψ(J) are adjacent
in Ω(S). Similarly one can prove thatψ preserves non-adjacency also. HenceΩ(R) ∼= Ω(S).

Conversely, assume thatΩ(R) ∼= Ω(S). Supposeki 6= k′i for somei. Then|V (Ω(R))| 6=
|V (Ω(S))|, a contradiction. Henceki = k′i for all i.

Corollary 5.3. Let R1 =
n
∏

i=1
Fi andR2 =

n
∏

j=1
F ′

i , whereFi andF ′

j are fields andn ≥ 2. Then

Ω(R1) ∼= Ω(R2).

Corollary 5.4. Let R =
n
∏

i=1
Ri andS =

n
∏

i=1
R′

i be finite commutative rings withn ≥ 2, where

each(Ri,mi) and(Ri,m
′

i) are local rings which are not field. Letki be the number of ideals in
Ri andk′i be the number of ideals inR′

i. ThenΩ(R) ∼= Ω(S) if and only if ki = k′i for all i,
1 ≤ i ≤ n.
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