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Abstract Let R be a commutative ring with identity which is not an integral domain. An
ideal I of aring R is called an annihilating ideal if there exist& R ~ {0} such that’r = (0).
In this paper, we consider a simple undirected graph associatedd#imoted byQ(R) whose
vertex set equals the set of all nonzero annihilating ideal? ahd two distinct vertices, J are
adjacent if and only if + J is an annihilating ideal oR.

1 Introduction

The rings considered in this paper are commutative with identity which aiategral domains.
The idea of associating a graph to a ring was initiated by Beck6hgnd subsequently several
researchers have done interesting and enormous work on zésordivaphs of rings. To men-
tion a few, seeq, 10, 14, 22, 24]. For an excellent and inspiring survey of the research work
done in the area of zero-divisor graphs in commutative rings, theréadeferred to9].

Let R be a ring which is not an integral domain. L&¢(R) denote the set of all zero-divisors
of R. Recall from P] that the zero-divisor graph(R) of a ring R is a simple undirected graph
with vertex setZ(R)* and two distinct vertices, y are adjacent it (R) if and only if zy = 0.
Recall from [L7] that an ideal of R is said to be aannihilating-ideal if Ir = (0) for somer € R*.

As in [17], we denote byA(R), the set of all annihilating-ideals @t and by A(R)*, the set of

all nonzero annihilating-ideals dt. Recall from [L7] that the annihilating-ideal graph of a ring
R, denoted byAG(R) is a simple undirected graph whose vertex sef(®)* and two distinct
I,J € A(R)* are adjacent in this graph if and onlyfiff = (0). The concept of annihilating-ideal
graph of a ring was introduced by Behboodi and Rakeel i [Many interesting and inspiring
theorems proved inlf7, 18] on annihilating-ideal graph of a commutative ring reveal that this
graph is also worthy to study just like the zero-divisor graph of a ring ilterplay between the
ring theoretic properties of a ring and the graph theoretic properties of its annihilating ideal
graph has also been investigatedinZQ].

In [6], Anderson and Badawi introduced the concept of the total graphaminamutative
ring R, denoted byl'(I'(R)), as an undirected graph with all the elementsads vertices and
for distinctz,y € R, the verticest andy are adjacent if and only if + y € Z(R) and they
have established several illuminating theorems on this graph, if]] Moreover, this graph
has been generalized and investigated?#].[ Recently S. Visweswaran. and H. D. Pa2g][
have introduced and investigated the grapiR) of a commutative ring?. For a non-domain
commutative ringR, let A*(R) be the set of non-zero ideals with non-zero annihilators. The
vertex set of this graph id(R)* the set of all nonzero annihilating ideals of R and for distinct
I,J € A(R)*, the vertices | and J are joined by an edge in this graph if and oy if € A(R)*.

For convenience we call this graphssn annihilating ideal graph and denote it bf2(R). The
main aim of this paper is to study some of the propertieQ@®). We investigate the interplay
between the graph-theoretic propertie€X§f2) and the ring-theoretic properties Bf For basic
definitions on rings, one may refe2]].

By a graphG = (V, E)), we mean an undirected simple graph with vertexisetnd edge
setE. A graph in which each pair of distinct vertices is joined by an edge is caltzmhplete
graph. We usé,, to denote the complete graph withvertices. Anr-partite graph is one whose
vertex set can be partitioned intcsubsets so that no edge has both ends in any one subset. A
completer-partite graph is one in which each vertex is joined to every vertex that isribée
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same subset. The complete bipartite graph (2-partite graph) with pastsiaadn is denoted
by K, . If G = K1, Wheren > 1, thenG is a star graph. Aplit graph is a simple graph in
which the vertices can be partitioned into a clique and an independent sedpAd is said to
be unicyclicif it contains a unigue cycle. For basic definitions on graphs, one may{16F.

Throughout this paper, we assume tRas a finite commutative ring with identity but not an
integral domainZ(R) its set of zero-divisors)t(R) its set of nilpotent element®* its group
of units,IF, denote the field witly elements, an®* = R — {0}.

2 Basic Propertiesof Q2(R)

In this section, we study some fundamental properti€@(@f). Especially we identify when the
annihilator graph is isomorphic to some well-known graphs. By the definlid®(R), if R is
an integral domain, the@(R) is an empty graph.

Remark 2.1. Let R be a finite commutative ring but not a field. Then every non-zero prope
ideal is an annihilating ideal a®.

Theorem 2.1. Let R be a finite commutative ring. TheR is a local ring if and only ifQ(R) is
complete.

Proof. Suppose thak is a local ring. TherR? has a unique maximal ideal, say, Note that any
non-zero proper ideal @t is an annihilating ideal oR. For any two non-zero proper idedlsJ
in R, I +J C mand sol + J is an annihilating ideal irk. By definition of Q(R), I and.J are
adjacent iQ(R) for all non-zero proper idealg .J in R and henc&(R) is complete.
Conversely, assume th&(R) is complete. Suppose that is not a local ring. TherR
has at least two maximal ideals, say; and M,. Note thatd; + M, = R. By definition of
Q(R), M1 + M is not an annihilating ideal aR and soM; and M, are nonadjacent iQ(R), a
contradiction. Hence is a local ring. m]

Theorem 2.2. Let R be a finite commutative non-local ring. The{R) is totally disconnected
if and only if R = F1 x F» whereF; andF; are fields.

Proof. Suppose tha®(R) is totally disconnected. TheR(R) has no edge. Sinck is a finite
non-local ring,R & R; x --- X R,, where(R;,m;) is a local ring anch > 2. If n > 3, then
(0) x (0) x Rz x (0) x --- x (0) and(0) x Rz x Rz x (0) x --- x (0) are adjacent if2(R), a
contradiction. Hence = 2.

Supposen; # (0). Then(0) x R, andm; x (0) are adjacent if(R), a contradiction. Hence
Ry, andR; are fields.

Conversely, ifR = Fy x F,, whereF; andF; are fields, the®(R) = K, and henc&(R) is
totally disconnected. a

Remark 2.2. Let (R, m) be a finite local ring. The®(R) is totally disconnected if and only if
m is the only non-zero proper ideal & Hence in this case diaif2(R) = oco.

Corollary 2.3. Let R be a finite commutative non-local ring. Then di@R)) = oo if and
only if R = Fy x F, whereF) andF; are fields.

Proof. If R = I, x F», whereF; andF> are fields, thef(R) = K, and hence diaf®(R)) =
.
Suppose that diaf@(R)) = oo. SinceR is a finite non-local ringR = Ry x - - - x R,,, where
(R;,m;) is alocal ring andh > 2. If n > 3, thenQ(R) is connected, a contradiction. Hence
n:2andR:R1><R2

If m; # (0) for somei, thenQ(R) is connected, a contradiction. Hen&g and R, are
fields. m]

Theorem 2.4. Let R be a finite commutative ring an@(R)| > 3. ThenQ(R) is unicyclic if
and only if

(7) Ris alocal ring which contains three non-zero proper ideals

(ii) R = Ry X Ry, where(Ry,m;) is a local ring withm; as only non-zero proper ideal iRy
andR; is a field.
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Proof. Suppose tha®(R) is unicyclic. Sincer is finite, R = Ry x - - X Ry, Where(R m;)isa
local ring. Ifn > 3, then(0) x Ry x (0) x (0) x - -+ x (0) — Ry x (0) x (O) x (0) x -+ x (0)—(0) x
(0)><R3><(O)><~-~><(O)—(O)><R2><(O)><(O)><~--x(O)andeszx(O)x( ) X - ><( ) —
(0) x Rax (0) x (0) x -+ x (0) = R1x (0) x (0) x (0) x - - x (0) = Ry x Rp x (0) x (0) x - - - x (
are two distinct cycles iR (R), a contradiction. Hence < 2.

If n =1, then by Theorer.1, Q(R) is complete. Sinc&(R) is unicyclic andQ(R)| > 3,
R contains three non-zero proper ideals.

Suppose that = 2. ThenR = Ry x Rp. If m; # (0) fori = 1,2, thenmy x (0) —my x mp —
(0) x my —my x (0) andmy x (0) — (0) x mp —mg x Rp —my x (0) are two distinct cycles in
Q(R), a contradiction. Hence; = (0) for some:i.

0)

my X Ry (0) x Rp

mjy X (0)

Ry x (0)

Fig. 2.1:Q(R1 x R»)

Without loss of generality, we assume that = (0). ThenR; is a field. SincgQ(R)| >
3, by Corollary2.3 Q(R) is connected and s&; is not a field. Suppose thdtis any non-
zero proper ideal iRy with I # mjy. ThenI x (0) — my x (0) — (0) x R, — I x (0) and
I x (0)—(0) x R, —my x Ry — I x (0) are two distinct cycles iQ(R), a contradiction. Hence
my is the only non-zero proper ideal iy.

Conversely, suppose th@) and(::) holds. Them(R) = K3 or Q(R) is isomorphic to Fig.
2.1. O

Theorem 2.5. Let R be a finite commutative ring. ®(R) is connected, thef(R) is a tree if
and only if R is a local ring which contains two non-zero proper ideals.

Proof. Suppose thaR is a local ring which contains two non-zero proper ideals. Then by The-
orem2.1, Q(R) = K».

Conversely, assume th@{ R) is a tree. SupposR is a non-local ring. The® = Ry x - - - X
R,, where(R;,m;) is alocal ring and: > 2. If n > 3 thenR contains a cycle, a contradiction.
Hencen = 2. SinceQ(R) is connectedR; andR; are not fields and s8; is not a field for some
i. Since Fig. 2.1 is a subgraph 6f R; x R2), Q(R) contains a cycle, a contradiction. Hence
Ris alocal ring and by Theoreth1, Q(R) is complete. Thug contains two non-zero proper
ideals. m|

3 Hamiltonian nature of Q2(R)

In this section, we discuss about the Hamiltonian propert@@®). In view of Theorem?.1,
Q(R) is Hamiltonian wherr is a local ring which contains at least three non-zero proper ideals.

If R is finite, thenR = Ry x --- x R,, Where(R;,m;) is a local ring and» > 3. Let
Maz(R)={M; : M; = Ry X --- X R;_1 Xm; X Rjy1 X --- x Ry, 1 <4 < n} be the set of all
maximal ideals ink and 7 (R) be the Jacobson radical &f

Theorem 3.1. Let R be a finite commutative ring and/az(R)| > 3. ThenQ(R) is Hamilto-
nian.

Proof. Let A, = {I C M, : I is anon-zero proper ideal iR} for 1 < i <n. ThenA4; N A; # 0
forall i # j andV(Q(R)) = CJ A;. Clearly the subgraph4;) induced byA; is a complete
i=1
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subgraph of2(R) and also(4; N A;) is a complete subgraph Gf(R). LetI;;.1) € A; N A
forl<i<n-—1landl,; € 4, N A;.

Now we start with the vertex/y, traverse all vertices i0A1 — {I;(;+1), In1 : 1 <i <n—1})
through a spanning path {1 — {Z;(;11), In1 : 1 < i <n — 1}), pass on td, traverse vertices
in (A2 —{Ls1,In1:2<i<n-1}) through a spanning path in
(A2 — {I;(;+1), In1 : 2< i < n — 1}), pass on tdz3. Continue this process through
(As —{Li(1), In1 : 3< i <n—1}), (A3 = {Lii41), In1 : 3< i <n—1}),

(Ag —{Ljj1), L1 14 <i<n—1}), ...... , (A, — {I,1}) to get a Hamiltonian path at,;.
From this Hamiltonian path together with the edge joiniig andI,,1 gives a required Hamil-
tonian cycle inQQ(R). HenceQ(R) is Hamiltonian. o

Proof of the following is analogous .

Corollary 3.2. Let R be a finite commutative ring and/az(R)| = 2. If the condition(i) in
Theorenm?2.4 does not hold, the@(R) is Hamiltonian.

4 Genusof 2(R)

In this section, we characterize all commutative ririg$or which Q(R) is planar. Also we
determine all isomorphism classes of finite commutative rings with identityse/®@R) has
genus one.

Let S; denote the sphere with handles, wheré is a nonnegative integer, that i$; is an
oriented surface of genus The genus of a grap¥, denotedy(G), is the minimal integen
such that the graph can be embedded,jn Intuitively, G is embedded in a surface if it can be
drawn in the surface so that its edges intersect only at their commonegericgraphG with
genus 0 is called a planar graph where as a grap¥ith genus 1 is called as a toroidal graph.
Further note that if7 is a subgraph of a graph, theng(H) < ¢g(G). For details on the notion
of embedding a graph in a surface, s2g|[ First let us summarize certain results on the genus
of a graph.

Lemma4.1. [29] g(K,) = [“=2¢=4] if n > 3. In particularg(K,,) = 1if n = 5,6,7.

Lemma 4.2. [29] g(Kp.n) = [%}"‘ﬂ if m,n > 2. In particularg(Ks4) = g(K3,,) = 1if
n=3,4,5,6. A|SOg(K5,4) = g(K674) = g(Km,4) =2ifm= 7,8,9,10.

First let us characterize finite commutative ring$or which genus ofAG(R) is zero.

Theorem 4.3. Let R = R; x --- X R, be a finite commutative ring with identity, where each
(R;,m;) is alocal ring but not a field and > 1. ThenQ(R) is planar if and only ifR is a local
ring andR contains at most four non-zero proper ideals.

Proof. Assume thaf)(R) is planar. Suppose > 2. LetA = {my x 0,0 x mp, m; x mp, Ry X
0,m1 x Rz, Rq x mp} C V(Q(R)). Then the subgraph induced Byin Q(R) containsKs; as
a subgraph, a contradiction. Henee= 1, R is local and by Theorer@.1, Q(R) is complete.
SinceQ(R) is planar,R contains at most four non-zero proper ideals.

Conversely, supposB is a local ring which contains at most four non-zero proper ideals.
Then by Theoren2.1, Q(R) = K,,, where 1< n < 4 and henc&(R) is planar. ]

Theorem 44.LetR = F; x --- x F,, be a finite commutative ring with identity, where eagh
is a field andn > 2. ThenQ(R) is planar if and only if» = 2 or 3.

Proof. Supposé€(R) is planar. Suppose > 4. LetA = {0Ox Fo X F3x - x F,,,0x 0 x F3 x
X Fp, OX Fo X OX o X Fp,OX Fo x F3 X --- X Fp,,0Xx0OX0X Fyx - x F,} CV(Q(R)).
Then the subgraph induced byin Q(R) containsKs as a subgraph, a contradiction. Hence
n < 3.

Suppose: = 2. ThenR = F; x I, and by Theoren2.1, Q(R) = K,. Suppose: = 3. Then
R2F) x F» x F5. ThenV(Q(R)) = {0 x F, x F3,F1 x 0x F3, F1 X F» x 0,0x 0x F3,0 x
F, x 0, F1 x 0x 0}.
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0 X Fp X F3

0x0x F 00X Fp x 0

F1 x 0x F3 F; x0x0 Fp X Fp X0

Flg 4.1:Q(F1 X Fp x Fg)

Converse follows from Fig. 4.1. O

Theorem 4.5.LetR = Ry x --- X R, X F1 x - - - x Fy,, be afinite commutative ring with identity
but not a field, where eadiR;, m;) is a local ring andF; is a field. TherQ(R) is planar if and
only if n = 1, m = 1 andR; contains exactly one proper ideal.

Proof. Assume thaf2(R) is planar. Suppose > 2. Then by Theorem.3 Q(R) is non-planar,
a contradiction. Hence = 1. Supposen > 2. LetA = {I C my X Fy X -+ X Fp,, I #
(0), I isanideal}. Then|A| > 7 and so the subgraph induced Ayin Q(R) containsk7; as a
subgraph, a contradiction. Henee= 1 andR = Ry x F}.

mq X Fy (0) x Fy

my x (0)

Ry X (0)

Fig. 4.ZZQ(R1 X Fl)

SupposeR; contains two proper ideals. Lét, m; be two proper ideals withh; # I;. Let
B ={I Cmyx F1,I #0,Iisanideal}. Then|B| > 5 and(B) = K5 so thatQ(R) contains
Ks as a subgraph, a contradiction. Heritecontains a unique proper ideal.

Conversely, suppose= m = 1 andR; contains unique proper ideak. ThenV (Q(R))
{m, x F1,0x F1,m, x 0, Ry x O} and hence&(R) is isomorphic to Fig 4.2.

ol

Theorem 4.6. Let R be a finite local ring but not a field. ThetQ(R)) = 1 if and only if R
contains at most non-zero proper ideals, wherebn < 7.

Proof. Assume thay(Q(R)) = 1. Then by Theorem.3, R contains at least 5 proper ideals.
SinceR is local, by Theoren?2.1, Q(R) is complete and henck contains at most non-zero
proper ideals, where 8 n < 7.

Conversely, supposk contains at most hon-zero proper ideals, wheren < 7. Note
thatQ(R) is complete so thaf(Q(R)) = 1. o

Theorem 4.7.Let R & R; x --- X R, be a finite commutative ring with identity, where each
(R;,m;) is a local ring but not a field and > 2. Theng(Q(R)) = 1 if and only ifn = 2 and
eachR; contains exactly one non-zero proper ideal.

Proof. Assume thay(Q(R)) = 1. Suppose: > 3. LetA={I C M;:I#0,Iisanideal} C
V(Q(R)). Then|A| > 17 and so the subgraph inducedAyn Q(R) containsK;7 as a subgraph
so thatg(Q(R)) > 4, a contradiction. Hence = 2 and SOR = Ry x R».

SupposeR; contains two proper ideals. Létm, be two non-zero proper ideals &f with
I #my. LetB ={I C M;;I # 0,Iisanideal}. Then|B| > 8 and so the subgraph induced
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by B in Q(R) containsKg as a subgraph. ThugQ(R)) > 2, a contradiction. Hence eact)
contains exactly one non-zero proper ideal.

Conversely, assume that= 2 and eaclR; contains exactly one non-zero proper ideal. Then
[V(Q(R))| = 7 and siQ(R) is a subgraph of7. Sinceg(K7) = 1, g(Q(R)) = 1. i

Theorem 4.8. Let R = F} x --- x F, be a finite commutative ring with identity, where each
is a field andh > 4. Theng(Q(R)) > 1.

Proof. Asinthe proof of Theorem.4, Q(R) is non-planar and s¢(Q(R)) > 1. Suppose > 5.

LetA={ICOxFx---xF,:I#0Iisanideal}. Then|A| > 8 and so the subgraph

induced byA in Q(R) containsKg as a subgraph so thatQ(R)) > 2. Hencey(Q(R)) > 1.
Supposer = 4. LetB = {F1 X Fo x F3x 0,F1 X F» x 0x 0,0 x Fy x F3x 0, F1 x 0 x 0 x

0, 1 x0x F3x0,0x0x F3x Fg,0x0x0x Fy,0x F, x0x Fy,0x Fo x F3x Fy, } C V(Q(R)).

Then the graph induced by in Q(R) containsH as a subgraph, whe = 2K, + K;. Since

g(H) >1,9(Q(R)) > 1. ]

Theorem4.9.LetR = Ry x --- X R,, X F1 x - - - x Fy,, be afinite commutative ring with identity
but not a field, where eadlR;, m;) is a local ring,F; is a field anch, m > 1. Theng(Q(R)) =1
if and only if n = m = 1 andR; containsk non-zero proper ideals, wheke= 2, 3.

Proof. Assume thay(Q(R)) = 1. Suppose: > 2. LetA = {I C M; : [ # O, I is an ideal}.
Then the subgraph induced byin Q(R) containsK;; as a subgraph and gdQ(R)) > 1, a
contradiction. Hence = 1.

Supposer = 1 andm > 3. Thenn + m > 4. ClearlyQ(Fy x F, x F3 x Fj) is a subgraph
of Q(R). But by Theorem.8, ¢(Q(F1 x F> x F3 x Fy)) > 1, g(Q(R)) > 1, a contradiction.
Hencem = 1 or 2.

Fig. 4.3: A planar of embedding 61( Ry x F1)

Supposen = 2. ThenR = Ry Xx Fi x F,. LetB = {I C R : I # 0andl #
R,Iisanideall C V(Q(R)). Then|B| > 10, the subgraph induced B/in Q(R) containsKo
as a subgraph and g6Q(R)) > 1, a contradiction. Hence = 1 and saR = Ry x Fi.

z2 3

I1 o o I
T4 T4
s x5
1 ¢ O
x2 T3 Tl

Fig. 4.4: A planar embedding 61(R; x F1) in Sy
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SupposeR; contains at least 4 proper ideals. et, I;, I, I3 be four proper ideals ik,
withmy #£ I # I, # I3. LetC = {I C M; : I # 0,1 is anideal}. Then|C| > 9, the subgraph
induced byC' in Q(R) containsKy as a subgraph and $¢Q(R)) > 1, a contradiction. By
Theoremd.5, R; containsk non-zero proper ideals, wheke= 2, 3.

Conversely, suppos&; contains two non-zero proper ideals. ThENQ(R)) = {z1 =
0 x Fi,20 = R1 X 0,1‘3 =mq X 0,3;4 =1x 0,3;5 =my X Fy,x6 =1 X Fl}, Ks isasubgraph of
Q(R) and sog(Q(R)) > 1. However, we can draf2(R) on the surface of a torus, see Fig. 4.3.
Hencey(Q(R)) = 1.

supposeR; contains three non-zero proper ideals. Th&R2(R)) = {z1 = 0 X Fi,22 =
my X 0,x3 =11 x 0,.%4 =1 x 0,.%5 =D xF,26 =11 X Fi,z7=m1 X F1,2zg = R1 X 0} and
by Theoremd.5, g(Q(R)) > 1. However, we can dra®(R) on the surface of a torus, see Fig.
4.4. Hencg/(Q(R)) = 1. i

5 Isomorphism Propertiesof Q(R)

Consider the question: IR andS are two rings withQ(R) = Q(S), then do we haveé? = S?
The following example shows that the above question is not valid in general.

Example5.1. Let R = Zps X ZyzandsS = Zg x Zye. ThenQ(R) = Q(S)(see. Fig. 6.6). BUR
andsS are not isomorphic.

(5) X Z13 (0) x Z43

(5) x (0)

Zog X (0)

Fig. 6.6:9(225 X Zle,) =~ Q(Zg X Zzg)

Theorem 5.2. Let R = H R; x H F;andS = H R} x H F} be finite commutative rings with
i=1 i=1 j=1

n+m > 2, where eacf@RZ,ml) and( m}) are local rings which are not fields eaghand

F! are fields. Let; be the number of ideals iR; andk; be the number of ideals iR;. Then

Q(R) =2 Q(S)ifandonly if k; = k] forall 4, 1 <i < n.

Proof. If R = S, then the result is obvious. Assume thatz S. Suppose:; = k] for all 4,
1<i<n. Then|V(Q(R))| = |V(Q(S>)| LetHJ(R]) = {I]_j = (0),[2]' = mj,I3j, .. .,ijj =
R;} be the set of ideals ii; andl’;(R}) = {Iij =(0),13; = my, I3;,.... I}, = R}} be the
set of ideals inR}. Then the mathJ — Ij;isa bljectlon froml;(R;) ontoI;(RY). Define

m

¥ 1 VIQ(R)) — V(Q(S)) by v([T 1 ¢ HJ) 1 17 > 11, where

1=

J;=

0 if J;=(0)

Then is well-defined and bijective. Let = H I; x H JyandJ = H A; X H B, be two
=1 j= =1 7=1

non-zero ideals itk. Supposd and.J are adjacent if2(R ) ThenI + J is an annihilating ideal

of R and sol; + A; C m,; for somei or J; + B; = (0) for somej. From this,I;, A; C m; or

Jj = (0) andB; = (0).
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Lety(I) = ﬁ Il x ﬁ Jiandy(J) = H Al x H Bj. By definition ofy, I; + A} C m; for
i=1 j=1 i=1
somei or .J; + B # (0) for some;j and soy(1 )—H/)( ) S. Hencey(I) andy(.J) are adjacent
in Q(S). Similarly one can prove that preserves non-adjacency also. Hefxgr) = Q(S).
Conversely, assume th&X(R) = Q(S). Suppose:; # k; for somei. Then|V(Q(R))| #
[V(Q(S))]|, a contradiction. Henck; = &/ for all . ]

Corollary 5.3. Let Ry = ﬁ F,andR, = ﬁ F!, whereF; andij are fields anch > 2. Then
i=1 j=1
Q(Rl) = Q(Rz).

Corollary 54. Let R = H R;andS = H R! be finite commutative rings with > 2, where

each(RZ,mz) and(R;, m/ ) are local rlngs WhICh are not field. L&t be the number of ideals in
R; and k] be the number of ideals iR,. ThenQ(R) = Q(S) if and only if k; = k] for all ¢,
1 § i< n.
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