Sum annihilating ideal graph of a commutative ring

R. Kala and S. Kavitha

Communicated by Ayman Badawi

MSC 2010 Classifications: 05C99, 05C15, 13A99.

Keywords and phrases: annihilating-ideal graph, unicyclic graph, planar, genus, Hamiltonian.

Abstract Let R be a commutative ring with identity which is not an integral domain. An ideal I of a ring R is called an annihilating ideal if there exists $r \in R \setminus \{0\}$ such that Ir = (0). In this paper, we consider a simple undirected graph associated with R denoted by $\Omega(R)$ whose vertex set equals the set of all nonzero annihilating ideals of R and two distinct vertices I, J are adjacent if and only if I + J is an annihilating ideal of R.

1 Introduction

The rings considered in this paper are commutative with identity which are not integral domains. The idea of associating a graph to a ring was initiated by Beck in [16] and subsequently several researchers have done interesting and enormous work on zero-divisor graphs of rings. To mention a few, see [9, 10, 14, 22, 24]. For an excellent and inspiring survey of the research work done in the area of zero-divisor graphs in commutative rings, the reader is referred to [5].

Let R be a ring which is not an integral domain. Let Z(R) denote the set of all zero-divisors of R. Recall from [9] that the zero-divisor graph $\Gamma(R)$ of a ring R is a simple undirected graph with vertex set $Z(R)^*$ and two distinct vertices x, y are adjacent in $\Gamma(R)$ if and only if xy = 0. Recall from [17] that an ideal I of R is said to be an *annihilating-ideal* if Ir = (0) for some $r \in R^*$. As in [17], we denote by A(R), the set of all annihilating-ideals of R and by $A(R)^*$, the set of all nonzero annihilating-ideals of R. Recall from [17] that the annihilating-ideal graph of a ring R, denoted by AG(R) is a simple undirected graph whose vertex set is $A(R)^*$ and two distinct $I, J \in A(R)^*$ are adjacent in this graph if and only if IJ = (0). The concept of annihilating-ideal graph of a ring was introduced by Behboodi and Rakeei in [17]. Many interesting and inspiring theorems proved in [17, 18] on annihilating-ideal graph of a ring. The interplay between the ring theoretic properties of a ring R and the graph theoretic properties of its annihilating ideal graph has also been investigated in [1, 20].

In [6], Anderson and Badawi introduced the concept of the total graph of a commutative ring R, denoted by $T(\Gamma(R))$, as an undirected graph with all the elements of R as vertices and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x + y \in Z(R)$ and they have established several illuminating theorems on this graph in [6, 7]. Moreover, this graph has been generalized and investigated in [22]. Recently S. Visweswaran. and H. D. Patel[28] have introduced and investigated the graph $\Omega(R)$ of a commutative ring R. For a non-domain commutative ring R, let $\mathbb{A}^*(R)$ be the set of non-zero ideals with non-zero annihilators. The vertex set of this graph is $A(R)^*$ the set of all nonzero annihilating ideals of R and for distinct $I, J \in A(R)^*$, the vertices I and J are joined by an edge in this graph if and only if $I+J \in A(R)^*$. For convenience we call this graph as *sum annihilating ideal graph* and denote it by $\Omega(R)$. The main aim of this paper is to study some of the properties of $\Omega(R)$. We investigate the interplay between the graph-theoretic properties of $\Omega(R)$ and the ring-theoretic properties of R. For basic definitions on rings, one may refer [21].

By a graph G = (V, E), we mean an undirected simple graph with vertex set V and edge set E. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We use K_n to denote the complete graph with n vertices. An r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m,n}$. If $G = K_{1,n}$ where $n \ge 1$, then G is a star graph. A *split graph* is a simple graph in which the vertices can be partitioned into a clique and an independent set. A graph G is said to be *unicyclic* if it contains a unique cycle. For basic definitions on graphs, one may refer[19].

Throughout this paper, we assume that R is a finite commutative ring with identity but not an integral domain, Z(R) its set of zero-divisors, $\mathfrak{N}(R)$ its set of nilpotent elements, R^{\times} its group of units, \mathbb{F}_q denote the field with q elements, and $R^* = R - \{0\}$.

2 Basic Properties of $\Omega(R)$

In this section, we study some fundamental properties of $\Omega(R)$. Especially we identify when the annihilator graph is isomorphic to some well-known graphs. By the definition of $\Omega(R)$, if *R* is an integral domain, then $\Omega(R)$ is an empty graph.

Remark 2.1. Let R be a finite commutative ring but not a field. Then every non-zero proper ideal is an annihilating ideal of R.

Theorem 2.1. Let R be a finite commutative ring. Then R is a local ring if and only if $\Omega(R)$ is complete.

Proof. Suppose that R is a local ring. Then R has a unique maximal ideal, say, m. Note that any non-zero proper ideal of R is an annihilating ideal of R. For any two non-zero proper ideals I, J in $R, I + J \subseteq m$ and so I + J is an annihilating ideal in R. By definition of $\Omega(R)$, I and J are adjacent in $\Omega(R)$ for all non-zero proper ideals I, J in R and hence $\Omega(R)$ is complete.

Conversely, assume that $\Omega(R)$ is complete. Suppose that R is not a local ring. Then R has at least two maximal ideals, say, M_1 and M_2 . Note that $M_1 + M_2 = R$. By definition of $\Omega(R)$, $M_1 + M_2$ is not an annihilating ideal of R and so M_1 and M_2 are nonadjacent in $\Omega(R)$, a contradiction. Hence R is a local ring.

Theorem 2.2. Let *R* be a finite commutative non-local ring. Then $\Omega(R)$ is totally disconnected if and only if $R \cong F_1 \times F_2$ where F_1 and F_2 are fields.

Proof. Suppose that $\Omega(R)$ is totally disconnected. Then $\Omega(R)$ has no edge. Since R is a finite non-local ring, $R \cong R_1 \times \cdots \times R_n$, where (R_i, \mathfrak{m}_i) is a local ring and $n \ge 2$. If $n \ge 3$, then $(0) \times (0) \times R_3 \times (0) \times \cdots \times (0)$ and $(0) \times R_2 \times R_3 \times (0) \times \cdots \times (0)$ are adjacent in $\Omega(R)$, a contradiction. Hence n = 2.

Suppose $\mathfrak{m}_1 \neq (0)$. Then $(0) \times R_2$ and $\mathfrak{m}_1 \times (0)$ are adjacent in $\Omega(R)$, a contradiction. Hence R_1 and R_2 are fields.

Conversely, if $R \cong F_1 \times F_2$, where F_1 and F_2 are fields, then $\Omega(R) \cong \overline{K}_2$ and hence $\Omega(R)$ is totally disconnected.

Remark 2.2. Let (R, \mathfrak{m}) be a finite local ring. Then $\Omega(R)$ is totally disconnected if and only if \mathfrak{m} is the only non-zero proper ideal of R. Hence in this case diam $(\Omega(R) = \infty)$.

Corollary 2.3. Let *R* be a finite commutative non-local ring. Then diam $(\Omega(R)) = \infty$ if and only if $R \cong F_1 \times F_2$ where F_1 and F_2 are fields.

Proof. If $R \cong F_1 \times F_2$, where F_1 and F_2 are fields, then $\Omega(R) \cong \overline{K}_2$ and hence diam $(\Omega(R)) = \infty$.

Suppose that diam $(\Omega(R)) = \infty$. Since R is a finite non-local ring, $R \cong R_1 \times \cdots \times R_n$, where (R_i, \mathfrak{m}_i) is a local ring and $n \ge 2$. If $n \ge 3$, then $\Omega(R)$ is connected, a contradiction. Hence n = 2 and $R = R_1 \times R_2$

If $\mathfrak{m}_i \neq (0)$ for some *i*, then $\Omega(R)$ is connected, a contradiction. Hence R_1 and R_2 are fields.

Theorem 2.4. Let *R* be a finite commutative ring and $|\Omega(R)| \ge 3$. Then $\Omega(R)$ is unicyclic if and only if

(i) R is a local ring which contains three non-zero proper ideals

(*ii*) $R = R_1 \times R_2$, where (R_1, \mathfrak{m}_1) is a local ring with \mathfrak{m}_1 as only non-zero proper ideal in R_1 and R_2 is a field.

Proof. Suppose that $\Omega(R)$ is unicyclic. Since R is finite, $R = R_1 \times \cdots \times R_n$, where (R_i, \mathfrak{m}_i) is a local ring. If $n \ge 3$, then $(0) \times R_2 \times (0) \times (0) \times \cdots \times (0) - R_1 \times (0) \times (0) \times (0) \times \cdots \times (0) - (0) \times (0) \times (0) \times \cdots \times (0) - (0) \times R_2 \times (0) \times (0) \times \cdots \times (0) = R_1 \times R_2 \times (0) \times (0) \times \cdots \times (0) - (0) \times R_2 \times (0) \times (0) \times \cdots \times (0) - R_1 \times R_2 \times (0) \times (0) \times \cdots \times (0) = (0) \times R_2 \times (0) \times (0) \times \cdots \times (0) - R_1 \times (0) \times (0) \times \cdots \times (0) - R_1 \times R_2 \times (0) \times (0) \times \cdots \times (0) = R_1 \times R_2 \times (0) \times (0) \times (0) \times (0) \times \cdots \times (0) = R_1 \times R_2 \times (0) \times (0)$

If n = 1, then by Theorem 2.1, $\Omega(R)$ is complete. Since $\Omega(R)$ is unicyclic and $|\Omega(R)| \ge 3$, R contains three non-zero proper ideals.

Suppose that n = 2. Then $R = R_1 \times R_2$. If $\mathfrak{m}_i \neq (0)$ for i = 1, 2, then $\mathfrak{m}_1 \times (0) - \mathfrak{m}_1 \times \mathfrak{m}_2 - (0) \times \mathfrak{m}_2 - \mathfrak{m}_1 \times (0)$ and $\mathfrak{m}_1 \times (0) - (0) \times \mathfrak{m}_2 - \mathfrak{m}_1 \times R_2 - \mathfrak{m}_1 \times (0)$ are two distinct cycles in $\Omega(R)$, a contradiction. Hence $\mathfrak{m}_i = (0)$ for some i.

Fig. 2.1: $\Omega(R_1 \times R_2)$

Without loss of generality, we assume that $\mathfrak{m}_2 = (0)$. Then R_2 is a field. Since $|\Omega(R)| \ge 3$, by Corollary 2.3, $\Omega(R)$ is connected and so R_1 is not a field. Suppose that I is any non-zero proper ideal in R_1 with $I \neq \mathfrak{m}_1$. Then $I \times (0) - \mathfrak{m}_1 \times (0) - (0) \times R_2 - I \times (0)$ and $I \times (0) - (0) \times R_2 - \mathfrak{m}_1 \times R_2 - I \times (0)$ are two distinct cycles in $\Omega(R)$, a contradiction. Hence \mathfrak{m}_1 is the only non-zero proper ideal in R_1 .

Conversely, suppose that (i) and (ii) holds. Then $\Omega(R) \cong K_3$ or $\Omega(R)$ is isomorphic to Fig. 2.1.

Theorem 2.5. Let *R* be a finite commutative ring. If $\Omega(R)$ is connected, then $\Omega(R)$ is a tree if and only if *R* is a local ring which contains two non-zero proper ideals.

Proof. Suppose that R is a local ring which contains two non-zero proper ideals. Then by Theorem 2.1, $\Omega(R) \cong K_2$.

Conversely, assume that $\Omega(R)$ is a tree. Suppose R is a non-local ring. Then $R = R_1 \times \cdots \times R_n$, where (R_i, \mathfrak{m}_i) is a local ring and $n \ge 2$. If $n \ge 3$ then R contains a cycle, a contradiction. Hence n = 2. Since $\Omega(R)$ is connected, R_1 and R_2 are not fields and so R_i is not a field for some i. Since Fig. 2.1 is a subgraph of $\Omega(R_1 \times R_2)$, $\Omega(R)$ contains a cycle, a contradiction. Hence R is a local ring and by Theorem 2.1, $\Omega(R)$ is complete. Thus R contains two non-zero proper ideals.

3 Hamiltonian nature of $\Omega(R)$

In this section, we discuss about the Hamiltonian property of $\Omega(R)$. In view of Theorem 2.1, $\Omega(R)$ is Hamiltonian when *R* is a local ring which contains at least three non-zero proper ideals.

If R is finite, then $R = R_1 \times \cdots \times R_n$, where (R_i, \mathfrak{m}_i) is a local ring and $n \geq 3$. Let $Max(R) = \{M_i : M_i = R_2 \times \cdots \times R_{i-1} \times \mathfrak{m}_i \times R_{i+1} \times \cdots \times R_n, 1 \leq i \leq n\}$ be the set of all maximal ideals in R and $\mathcal{J}(R)$ be the Jacobson radical of R.

Theorem 3.1. Let *R* be a finite commutative ring and $|Max(R)| \ge 3$. Then $\Omega(R)$ is Hamiltonian.

Proof. Let $A_i = \{I \subseteq M_i : I \text{ is a non-zero proper ideal in } R\}$ for $1 \le i \le n$. Then $A_i \cap A_j \ne \emptyset$ for all $i \ne j$ and $V(\Omega(R)) = \bigcup_{i=1}^n A_i$. Clearly the subgraph $\langle A_i \rangle$ induced by A_i is a complete

subgraph of $\Omega(R)$ and also $\langle A_i \cap A_j \rangle$ is a complete subgraph of $\Omega(R)$. Let $I_{i(i+1)} \in A_i \cap A_{i+1}$ for $1 \leq i \leq n-1$ and $I_{n1} \in A_n \cap A_1$.

Now we start with the vertex M_1 , traverse all vertices in $\langle A_1 - \{I_{i(i+1)}, I_{n1} : 1 \le i \le n-1\}\rangle$ through a spanning path in $\langle A_1 - \{I_{i(i+1)}, I_{n1} : 1 \le i \le n-1\}\rangle$, pass on to I_{12} , traverse vertices in $\langle A_2 - \{I_{i(i+1)}, I_{n1} : 2 \le i \le n-1\}\rangle$ through a spanning path in $\langle A_2 - \{I_{i(i+1)}, I_{n1} : 2 \le i \le n-1\}\rangle$, pass on to I_{23} . Continue this process through $\langle A_3 - \{I_{i(i+1)}, I_{n1} : 3 \le i \le n-1\}\rangle$, $\langle A_3 - \{I_{i(i+1)}, I_{n1} : 3 \le i \le n-1\}\rangle$, $\langle A_4 - \{I_{i(i+1)}, I_{n1} : 4 \le i \le n-1\}\rangle$,, $\langle A_n - \{I_{n1}\}\rangle$ to get a Hamiltonian path at I_{n1} .

 $\langle A_4 - \{I_{i(i+1)}, I_{n1} : 4 \leq i \leq n-1\} \rangle$,, $\langle A_n - \{I_{n1}\} \rangle$ to get a Hammonian pair at I_{n1} . From this Hamiltonian path together with the edge joining M_1 and I_{n1} gives a required Hamiltonian cycle in $\Omega(R)$. Hence $\Omega(R)$ is Hamiltonian.

Proof of the following is analogous .

Corollary 3.2. Let R be a finite commutative ring and |Max(R)| = 2. If the condition (*ii*) in Theorem 2.4 does not hold, then $\Omega(R)$ is Hamiltonian.

4 Genus of $\Omega(R)$

In this section, we characterize all commutative rings R for which $\Omega(R)$ is planar. Also we determine all isomorphism classes of finite commutative rings with identity whose $\Omega(R)$ has genus one.

Let S_k denote the sphere with k handles, where k is a nonnegative integer, that is, S_k is an oriented surface of genus k. The genus of a graph G, denoted g(G), is the minimal integer n such that the graph can be embedded in S_n . Intuitively, G is embedded in a surface if it can be drawn in the surface so that its edges intersect only at their common vertices. A graph G with genus 0 is called a planar graph where as a graph G with genus 1 is called as a toroidal graph. Further note that if H is a subgraph of a graph G, then $g(H) \leq g(G)$. For details on the notion of embedding a graph in a surface, see [29]. First let us summarize certain results on the genus of a graph.

Lemma 4.1. [29]
$$g(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$$
 if $n \ge 3$. In particular, $g(K_n) = 1$ if $n = 5, 6, 7$.

Lemma 4.2. [29] $g(K_{m,n}) = \left\lceil \frac{(m-2)(n-2)}{4} \right\rceil$ if $m, n \ge 2$. In particular, $g(K_{4,4}) = g(K_{3,n}) = 1$ if n = 3, 4, 5, 6. Also $g(K_{5,4}) = g(K_{6,4}) = g(K_{m,4}) = 2$ if m = 7, 8, 9, 10.

First let us characterize finite commutative rings R for which genus of AG(R) is zero.

Theorem 4.3. Let $R \cong R_1 \times \cdots \times R_n$ be a finite commutative ring with identity, where each (R_i, \mathfrak{m}_i) is a local ring but not a field and $n \ge 1$. Then $\Omega(R)$ is planar if and only if R is a local ring and R contains at most four non-zero proper ideals.

Proof. Assume that $\Omega(R)$ is planar. Suppose $n \ge 2$. Let $A = \{\mathfrak{m}_1 \times 0, 0 \times \mathfrak{m}_2, \mathfrak{m}_1 \times \mathfrak{m}_2, R_1 \times 0, \mathfrak{m}_1 \times R_2, R_1 \times \mathfrak{m}_2\} \subseteq V(\Omega(R))$. Then the subgraph induced by A in $\Omega(R)$ contains $K_{3,3}$ as a subgraph, a contradiction. Hence n = 1, R is local and by Theorem 2.1, $\Omega(R)$ is complete. Since $\Omega(R)$ is planar, R contains at most four non-zero proper ideals.

Conversely, suppose R is a local ring which contains at most four non-zero proper ideals. Then by Theorem 2.1, $\Omega(R) \cong K_n$, where $1 \le n \le 4$ and hence $\Omega(R)$ is planar.

Theorem 4.4. Let $R \cong F_1 \times \cdots \times F_n$ be a finite commutative ring with identity, where each F_i is a field and $n \ge 2$. Then $\Omega(R)$ is planar if and only if n = 2 or 3.

Proof. Suppose $\Omega(R)$ is planar. Suppose $n \ge 4$. Let $A = \{0 \times F_2 \times F_3 \times \cdots \times F_n, 0 \times 0 \times F_3 \times \cdots \times F_n, 0 \times F_2 \times 0 \times \cdots \times F_n, 0 \times F_2 \times F_3 \times \cdots \times F_n, 0 \times 0 \times 0 \times F_4 \times \cdots \times F_n\} \subseteq V(\Omega(R))$. Then the subgraph induced by A in $\Omega(R)$ contains K_5 as a subgraph, a contradiction. Hence $n \le 3$.

Suppose n = 2. Then $R \cong F_1 \times F_2$ and by Theorem 2.1, $\Omega(R) = \overline{K}_2$. Suppose n = 3. Then $R \cong F_1 \times F_2 \times F_3$. Then $V(\Omega(R)) = \{0 \times F_2 \times F_3, F_1 \times 0 \times F_3, F_1 \times F_2 \times 0, 0 \times 0 \times F_3, 0 \times F_2 \times 0, F_1 \times 0 \times 0\}$.

Converse follows from Fig. 4.1.

Theorem 4.5. Let $R \cong R_1 \times \cdots \times R_n \times F_1 \times \cdots \times F_m$ be a finite commutative ring with identity but not a field, where each (R_i, \mathfrak{m}_i) is a local ring and F_j is a field. Then $\Omega(R)$ is planar if and only if n = 1, m = 1 and R_1 contains exactly one proper ideal.

Proof. Assume that $\Omega(R)$ is planar. Suppose $n \ge 2$. Then by Theorem 4.3, $\Omega(R)$ is non-planar, a contradiction. Hence n = 1. Suppose $m \ge 2$. Let $A = \{I \subseteq \mathfrak{m}_1 \times F_1 \times \cdots \times F_m, I \ne (0), I \text{ is an ideal } \}$. Then $|A| \ge 7$ and so the subgraph induced by A in $\Omega(R)$ contains K_7 as a subgraph, a contradiction. Hence m = 1 and $R = R_1 \times F_1$.

Fig. 4.2: $\Omega(R_1 \times F_1)$

Suppose R_1 contains two proper ideals. Let I_1, \mathfrak{m}_1 be two proper ideals with $\mathfrak{m}_1 \neq I_1$. Let $B = \{I \subseteq \mathfrak{m}_1 \times F_1, I \neq 0, I \text{ is an ideal }\}$. Then $|B| \ge 5$ and $\langle B \rangle \cong K_5$ so that $\Omega(R)$ contains K_5 as a subgraph, a contradiction. Hence R_1 contains a unique proper ideal.

Conversely, suppose n = m = 1 and R_1 contains unique proper ideal \mathfrak{m}_1 . Then $V(\Omega(R)) = {\mathfrak{m}_1 \times F_1, \mathfrak{0} \times F_1, \mathfrak{m}_1 \times \mathfrak{0}, R_1 \times \mathfrak{0}}$ and hence $\Omega(R)$ is isomorphic to Fig 4.2.

Theorem 4.6. Let *R* be a finite local ring but not a field. Then $g(\Omega(R)) = 1$ if and only if *R* contains at most *n* non-zero proper ideals, where $5 \le n \le 7$.

Proof. Assume that $g(\Omega(R)) = 1$. Then by Theorem 4.3, R contains at least 5 proper ideals. Since R is local, by Theorem 2.1, $\Omega(R)$ is complete and hence R contains at most n non-zero proper ideals, where $5 \le n \le 7$.

Conversely, suppose R contains at most n non-zero proper ideals, where $5 \le n \le 7$. Note that $\Omega(R)$ is complete so that $g(\Omega(R)) = 1$.

Theorem 4.7. Let $R \cong R_1 \times \cdots \times R_n$ be a finite commutative ring with identity, where each (R_i, \mathfrak{m}_i) is a local ring but not a field and $n \ge 2$. Then $g(\Omega(R)) = 1$ if and only if n = 2 and each R_i contains exactly one non-zero proper ideal.

Proof. Assume that $g(\Omega(R)) = 1$. Suppose $n \ge 3$. Let $A = \{I \subseteq M_1 : I \ne 0, I \text{ is an ideal }\} \subseteq V(\Omega(R))$. Then $|A| \ge 17$ and so the subgraph induced by A in $\Omega(R)$ contains K_{17} as a subgraph so that $g(\Omega(R)) \ge 4$, a contradiction. Hence n = 2 and so $R \cong R_1 \times R_2$.

Suppose R_1 contains two proper ideals. Let I, \mathfrak{m}_1 be two non-zero proper ideals of R_1 with $I \neq \mathfrak{m}_1$. Let $B = \{I \subseteq M_1; I \neq 0, I \text{ is an ideal }\}$. Then $|B| \ge 8$ and so the subgraph induced

by B in $\Omega(R)$ contains K_8 as a subgraph. Thus $g(\Omega(R)) \ge 2$, a contradiction. Hence each R_i contains exactly one non-zero proper ideal.

Conversely, assume that n = 2 and each R_i contains exactly one non-zero proper ideal. Then $|V(\Omega(R))| = 7$ and so $\Omega(R)$ is a subgraph of K_7 . Since $g(K_7) = 1$, $g(\Omega(R)) = 1$.

Theorem 4.8. Let $R \cong F_1 \times \cdots \times F_n$ be a finite commutative ring with identity, where each F_i is a field and $n \ge 4$. Then $g(\Omega(R)) > 1$.

Proof. As in the proof of Theorem 4.4, $\Omega(R)$ is non-planar and so $g(\Omega(R)) \ge 1$. Suppose $n \ge 5$. Let $A = \{I \subseteq 0 \times F_2 \times \cdots \times F_n : I \ne 0, I \text{ is an ideal }\}$. Then $|A| \ge 8$ and so the subgraph induced by A in $\Omega(R)$ contains K_8 as a subgraph so that $g(\Omega(R)) \ge 2$. Hence $g(\Omega(R)) > 1$.

Suppose n = 4. Let $B = \{F_1 \times F_2 \times F_3 \times 0, F_1 \times F_2 \times 0 \times 0, 0 \times F_2 \times F_3 \times 0, F_1 \times 0 \times 0 \times 0, F_1 \times 0 \times F_3 \times 0, 0 \times 0 \times F_3 \times F_4, 0 \times 0 \times 0 \times F_4, 0 \times F_2 \times 0 \times F_4, 0 \times F_2 \times F_3 \times F_4, \} \subseteq V(\Omega(R)).$ Then the graph induced by B in $\Omega(R)$ contains H as a subgraph, where $H = 2K_4 + K_1$. Since $g(H) > 1, g(\Omega(R)) > 1$.

Theorem 4.9. Let $R \cong R_1 \times \cdots \times R_n \times F_1 \times \cdots \times F_m$ be a finite commutative ring with identity but not a field, where each (R_i, \mathfrak{m}_i) is a local ring, F_j is a field and $n, m \ge 1$. Then $g(\Omega(R)) = 1$ if and only if n = m = 1 and R_1 contains k non-zero proper ideals, where k = 2, 3.

Proof. Assume that $g(\Omega(R)) = 1$. Suppose $n \ge 2$. Let $A = \{I \subseteq M_1 : I \ne 0, I \text{ is an ideal }\}$. Then the subgraph induced by A in $\Omega(R)$ contains K_{11} as a subgraph and so $g(\Omega(R)) > 1$, a contradiction. Hence n = 1.

Suppose n = 1 and $m \ge 3$. Then $n + m \ge 4$. Clearly $\Omega(F_1 \times F_2 \times F_3 \times F_4)$ is a subgraph of $\Omega(R)$. But by Theorem 4.8, $g(\Omega(F_1 \times F_2 \times F_3 \times F_4)) > 1$, $g(\Omega(R)) > 1$, a contradiction. Hence m = 1 or 2.

Fig. 4.3: A planar of embedding of $\Omega(R_1 \times F_1)$

Suppose m = 2. Then $R = R_1 \times F_1 \times F_2$. Let $B = \{I \subseteq R : I \neq 0 \text{ and } I \neq R, I \text{ is an ideal } \} \subseteq V(\Omega(R))$. Then $|B| \ge 10$, the subgraph induced by B in $\Omega(R)$ contains K_{10} as a subgraph and so $g(\Omega(R)) > 1$, a contradiction. Hence m = 1 and so $R = R_1 \times F_1$.

Fig. 4.4: A planar embedding of $\Omega(R_1 \times F_1)$ in S_1

Suppose R_1 contains at least 4 proper ideals. Let $\mathfrak{m}_1, I_1, I_2, I_3$ be four proper ideals in R_1 with $\mathfrak{m}_1 \neq I_1 \neq I_2 \neq I_3$. Let $C = \{I \subseteq M_1 : I \neq 0, I \text{ is an ideal }\}$. Then $|C| \geq 9$, the subgraph induced by C in $\Omega(R)$ contains K_9 as a subgraph and so $g(\Omega(R)) > 1$, a contradiction. By Theorem 4.5, R_1 contains k non-zero proper ideals, where k = 2, 3.

Conversely, suppose R_1 contains two non-zero proper ideals. Then $V(\Omega(R)) = \{x_1 = 0 \times F_1, x_2 = R_1 \times 0, x_3 = \mathfrak{m}_1 \times 0, x_4 = I \times 0, x_5 = \mathfrak{m}_1 \times F_1, x_6 = I \times F_1\}$, K_5 is a subgraph of $\Omega(R)$ and so $g(\Omega(R)) \ge 1$. However, we can draw $\Omega(R)$ on the surface of a torus, see Fig. 4.3. Hence $g(\Omega(R)) = 1$.

suppose R_1 contains three non-zero proper ideals. Then $V(\Omega(R)) = \{x_1 = 0 \times F_1, x_2 = \mathfrak{m}_1 \times 0, x_3 = I_1 \times 0, x_4 = I_2 \times 0, x_5 = I_2 \times F_1, x_6 = I_1 \times F_1, x_7 = \mathfrak{m}_1 \times F_1, x_8 = R_1 \times 0\}$ and by Theorem 4.5, $g(\Omega(R)) \ge 1$. However, we can draw $\Omega(R)$ on the surface of a torus, see Fig. 4.4. Hence $g(\Omega(R)) = 1$.

5 Isomorphism Properties of $\Omega(R)$

Consider the question: If R and S are two rings with $\Omega(R) \cong \Omega(S)$, then do we have $R \cong S$? The following example shows that the above question is not valid in general.

Example 5.1. Let $R = \mathbb{Z}_{25} \times \mathbb{Z}_{13}$ and $S = \mathbb{Z}_9 \times \mathbb{Z}_{29}$. Then $\Omega(R) \cong \Omega(S)$ (see. Fig. 6.6). But R and S are not isomorphic.

Fig. 6.6: $\Omega(\mathbb{Z}_{25} \times \mathbb{Z}_{13}) \cong \Omega(\mathbb{Z}_9 \times \mathbb{Z}_{29})$

Theorem 5.2. Let $R = \prod_{i=1}^{n} R_i \times \prod_{j=1}^{m} F_j$ and $S = \prod_{i=1}^{n} R'_i \times \prod_{j=1}^{m} F'_j$ be finite commutative rings with $n + m \ge 2$, where each (R_i, \mathfrak{m}_i) and (R'_i, \mathfrak{m}'_i) are local rings which are not fields each F_i and F'_j are fields. Let k_i be the number of ideals in R_i and k'_i be the number of ideals in R'_i . Then $\Omega(R) \cong \Omega(S)$ if and only if $k_i = k'_i$ for all $i, 1 \le i \le n$.

 $\begin{array}{l} \textit{Proof. If } R \cong S, \, \text{then the result is obvious. Assume that } R \ncong S. \, \text{Suppose } k_i = k_i' \, \text{for all } i, \\ 1 \leq i \leq n. \, \text{Then } |V(\Omega(R))| = |V(\Omega(S))|. \, \text{Let } \mathbb{I}_j(R_j) = \{I_{1j} = (0), I_{2j} = \mathfrak{m}_j, I_{3j}, \ldots, I_{k_j j} = R_j\} \text{ be the set of ideals in } R_j \, \text{and } \mathbb{I}'_j(R'_j) = \{I'_{1j} = (0), I'_{2j} = \mathfrak{m}_j, I'_{3j}, \ldots, I'_{k_j j} = R'_j\} \text{ be the set of ideals in } R'_j. \, \text{Then the map } I_{tj} \to I'_{tj} \text{ is a bijection from } \mathbb{I}_j(R_j) \, \text{onto } \mathbb{I}'_j(R'_j). \, \text{Define} \\ \psi : V(\Omega(R)) \longrightarrow V(\Omega(S)) \text{ by } \psi(\prod_{i=1}^n I_{ti} \times \prod_{j=1}^m J_j) = \prod_{i=1}^n I'_{ti} \times \prod_{j=1}^m J'_j \, \text{ where} \\ J'_j = \begin{cases} F'_j & \text{if } J_j = F_j \\ (0) & \text{if } J_j = (0) \end{cases}$

Then ψ is well-defined and bijective. Let $I = \prod_{i=1}^{n} I_i \times \prod_{j=1}^{m} J_j$ and $J = \prod_{i=1}^{n} A_i \times \prod_{j=1}^{m} B_j$ be two non-zero ideals in R. Suppose I and J are adjacent in $\Omega(R)$. Then I + J is an annihilating ideal of R and so $I_i + A_i \subseteq \mathfrak{m}_i$ for some i or $J_j + B_j = (0)$ for some j. From this, $I_i, A_i \subseteq \mathfrak{m}_i$ or $J_j = (0)$ and $B_j = (0)$. Let $\psi(I) = \prod_{i=1}^{n} I'_i \times \prod_{j=1}^{m} J'_j$ and $\psi(J) = \prod_{i=1}^{n} A'_i \times \prod_{j=1}^{m} B'_j$. By definition of ψ , $I'_i + A'_i \subseteq \mathfrak{m}'_i$ for some i or $J'_j + B'_j \neq (0)$ for some j and so $\psi(I) + \psi(J) = S$. Hence $\psi(I)$ and $\psi(J)$ are adjacent

in $\Omega(S)$. Similarly one can prove that ψ preserves non-adjacency also. Hence $\Omega(R) \cong \Omega(S)$. Conversely, assume that $\Omega(R) \cong \Omega(S)$. Suppose $k_i \neq k'_i$ for some *i*. Then $|V(\Omega(R))| \neq |V(\Omega(S))|$, a contradiction. Hence $k_i = k'_i$ for all *i*.

Corollary 5.3. Let $R_1 = \prod_{i=1}^n F_i$ and $R_2 = \prod_{j=1}^n F'_i$, where F_i and F'_j are fields and $n \ge 2$. Then $\Omega(R_1) \cong \Omega(R_2)$.

Corollary 5.4. Let $R = \prod_{i=1}^{n} R_i$ and $S = \prod_{i=1}^{n} R'_i$ be finite commutative rings with $n \ge 2$, where each (R_i, \mathfrak{m}_i) and (R_i, \mathfrak{m}'_i) are local rings which are not field. Let k_i be the number of ideals in R_i and k'_i be the number of ideals in R'_i . Then $\Omega(R) \cong \Omega(S)$ if and only if $k_i = k'_i$ for all i, $1 \le i \le n$.

References

- G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, On the coloring of the annihilatingideal graph of a commutative ring, *Discrete Math.*, 312 (2012), 2620Ű-2625.
- [2] A. Abbasi and S. Habib, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc., 49(1) (2012), 85Ű-98.
- [3] S. Akbari, D. Kami, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra, 213 (2) (2009), 2224Ű- 2228.
- [4] S. Akbari, R. Nikandish and M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12(4) (2013), Art. ID: 1250200, (13 pages).
- [5] D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in *Commutative Algebra, Noetherian and Non-Noetherian Perspectives*, eds. M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson (Springer-Verlag, New York, 2011), pp. 177Ű-188.
- [6] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706Ű-2719.
- [7] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element, *J. Algebra Appl.*, 11(4) (2012), Art. ID: 1250074, (18 pages).
- [8] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl., 12(5) (2013), Art. ID: 1250212, (18 pages).
- [9] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434Ű-447.
- [10] D. D. Anderson and M. Naseer, BeckŠs coloring of a commutative ring, J. Algebra, 159 (1993), 500Ű-514.
- [11] T. Asir and T. Tamizh Chelvam, The intersection graph of gamma sets in the total graph of a commutative ring II, *J. Algebra Appl.*, 12(4) (2013), Art. ID: 1250199, 14 (pages).
- [12] T. Asir and T. Tamizh Chelvam, On the total graph and its complement of a commutative ring, Comm. Algebra 41(10) (2013) 3820Ú3835.
- [13] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, 1969).
- [14] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42(1) (2014), 108Ű-121.
- [15] Z. Barati, K. Khashyarmanesh, F. Mohammadi and Kh. Nafar, On the associated graphs to a commutative ring, J. Algebra Appl., 11(2) (2012), Art. ID: 1250037, (17 pages).
- [16] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208Ü-226.
- [17] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10(4) (2011), 727Ű-739.
- [18] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl., 10(4) (2011), 741Ű-753.
- [19] G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks/ Cole, Monterey, CA, 1986.
- [20] M. Hadian, Unit action and geometric zero-divisor ideal graph, Comm. Algebra, 40 (8) (2012), 2920Ű-2931.

- [21] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
- [22] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, *Comm. Algebra*, 31(9) (2003), 4425Ű-4443.
- [23] M. H. Shekarriz, M. H. Shirdareh Haghighi and H. Sharif, On the total graph of a finite commutative ring, *Comm. Algebra*, 40(8) (2012), 2798U-2807.
- [24] N. O. Smith, Planar zero-divisor graphs, Int. J. Commut. Rings, 2 (2003), 177Ű-186.
- [25] S. P. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, *Comm. Algebra*, 34 (2006), 2389–2401.
- [26] T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of commutative rings, J. Combin. Math. Combin. Comput., 88 (2014), 277–288.
- [27] T. Tamizh Chelvam and K. Selvakumar, On the connectivity of the annihilating-ideal graphs, *Discussiones Mathematicae General Algebra and Applications*, 35 (2) (2015), 195 204, doi:10.7151/dmgaa.1241.
- [28] S. Visweswaran and H. D. Patel, A graph associated with the set of all nonzero annihilating ideals, *Discrete Mathematics, Algorithms and Applications*, Vol. 6, No. 4 (2014) 1450047 (22 pages).
- [29] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam (1973).

Author information

R. Kala and S. Kavitha, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627 012, INDIA. E-mail: kavithaashmi@gmail.com

Received: March 24, 2015.

Accepted: July 4, 2015.