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Abstract The problem of �nding solutions to a system of linear quaternion or octonion equa-

tions arises from many practical applications. This paper studies the systems of linear real octo-

nion equations

ax+ yb = c

xa+ yb = d
,
ax+ yb = c

ax+ by = d
,
ax+ ya = c

xb+ yb = d
,

ax+ by = c

xa+ by = d
,
ax+ yb = c

xb+ yb = d
,
ax+ yb = c

xa+ by = d
.

We present some necessary and suf�cient conditions for the existence of solutions to these sys-

tems and give expressions of the general solutions to these systems when the solvability condi-

tions are satis�ed.

1 Introduction

It is known that linear equations and systems have been one of the main topics in linear and

nonlinear algebra theory and its applications. The primary work in the investigation of a lin-

ear equation (system) is to give solvability conditions and general solutions to the equation(s).

Among other concerns with a linear equation (system) are the uniqueness of solution, minimal

norm solutions, least-squares solutions, various symmetric solutions, the maximal and minimal

ranks of solutions.

Various kinds of linear quaternion and octonion equations and systems have received much

attention in the literature. (see, for example, [1, 2, 6-17] and the references therein). Due to

the nonassociative and noncommutativity, one cannot directly extend various results on real and

complex numbers to octonions. The book by Conway and Smith [3] gives a great deal of useful

background on octonions, much of it based on Coxeter's paper [4]. The linear equation ax+by =
c called as the Sylvester equation plays a very vital role in control systems design, such as

eigenstructure assignment [8, 12], pole assignment [14, 18] and observer design [5]. In [11]

authors have described the set of solutions of the equation xα = x+β over an algebraic division

ring. The author of the paper [13] has classi�ed solutions of the quaternionic equation ax+xb =
c. In [16] it is solved the linear equations of the forms ax = xb and ax = xb in the real

Cayley�Dickson algebras (quaternions, octonions, sedenions), and established a form of roots

of such equations. In [6] it is investigated the solutions of the equations of the forms ax = xb
and ax = xb for some generalizations of quaternions and octonions. In [15], the general linear

quaternionic equation with one unknown and systems of linear quaternionic equations with two

unknown are solved. In [9], the quaternionic equation ax + xb = c is studied. In [1], Bolat

and �Ipek �rst have considered the linear octonionic equation with one unknown of the form

α(xα) = (αx)α = αxα = ρ,with 0 ̸= α ∈ O, second, they have presented a method which

allows to reduce any octonionic equation with the left and right coef�cients to a real system of
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eight equations and �nally reached the solutions of this linear octonionic equation from this real

system. In [2], some complex quaternionic equations in the type ax− xb = c are investigated.
Although there is a considerable interest in studying linear quaternion and octonion equations

(see, for example, [1, 2, 6, 9, 11, 13, 15, 17], only few papers have studied systems of linear

quaternion and octonion equations so far [15, 17].

This paper aims to study the systems of linear real octonion equations

ax+ yb = c

xa+ yb = d
,
ax+ yb = c

ax+ by = d
,
ax+ ya = c

xb+ yb = d
,

ax+ by = c

xa+ by = d
,
ax+ yb = c

xb+ yb = d
,
ax+ yb = c

xa+ by = d
.

 (1.1)

over the real number �eld, discussing solvability conditions and giving explicit expressions of the

solutions when these systems is solvable. Some preliminaries about the basic idea of this paper

are provided in Section 2. In Section 3, we present some necessary and suf�cient conditions for

the existence of a solution to these systems and give an expression of the general solution to the

systems when the solvability conditions are satis�ed. Some conclusions are given in Section 4.

2 Some Preliminaries

In this section, we shortly review some de�nitions, notations and basic properties which we need

to use in the presentations and proofs of our main results.

The octonions in Clifford algebra C are a normed division algebra with eight dimensions

over the real numbers larger than the quaternions. The �eld O ∼= C4 of octonions

α = α0e0 + α1e1 + α2e2 + α3 e3 + α4e4 + α5e5 + α6e6 + α7e7, ai(i = 0, 1, ..., 7) ∈ R

is an eight-dimensional non-commutative and non-associative R-�eld generated by eight base

elements e0, e1, ..., e6 and e7. The multiplication rules for the basis ofO are listed in the following

table

× 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

Table: The multiplication table for the basis of O.

The conjugate of α is de�ned by

α = α0e0 − α1e1 − α2e2 − α3 e3 − α4e4 − α5e5 − α6e6 − α7e7

and the octonions α and β satisfy (αβ) = βα.
The real and the imaginary parts of α are given by

α+ α

2
= α0e0

and

α− α

2
=

7∑
k=1

αkek,

respectively.
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The product of an octonion with its conjugate, αα = αα, is always a nonnegative real number:

αα =
7∑

k=0

α2

k. (2.1)

Using this, the norm of an octonion can be de�ned as

∥α∥ =
√
αα.

This norm agrees with the standard Euclidean norm on R8 and the octonions α and β satisfy

∥αβ∥ = ∥α∥ ∥β∥.
The existence of a norm on O implies the existence of inverses for every nonzero element of

O. The inverse of α ̸= 0 is given by

α−1 =
α

∥α∥2
(2.2)

and it satis�es α−1α = αα−1 = 1.

For k ∈ R, the octonion k.α is the octonion

k.α =
7∑

i=0

(kαi) ei. (2.3)

The scalar product of the octonions α, β ∈ O is

⟨α, β⟩=
7∑

i=0

αiβi. (2.4)

Also, although O is nonassociative, for all α, β ∈ O, the following equalities hold:

α (αβ) = α2β, (βα)α = βα2, (αβ)α = α (βα) = αβα. (2.5)

A useful method for investigating the problems of equations in octonions is to use real matrix

representations. This method has widely been employed for quaternionic equations in some

recent papers [16] and [17]. We now present matrix representations of octonions and some basic

results related to these representations, which will be serve as a tool for our examination in the

sequel.

De�nition 2.1. Let x =
7∑

i=0

xiei ∈ O. Then −→x = [x0, x1, x2, x3, x4, x5, x6, x7]
T
is called as the

vector representation of x.

De�nition 2.2. [17] Let α = α′ + α′′e ∈ O, where α′ = α0 + α1i + α2j + α3k, α
′′ =

α4 + α5i+ α6j + α7k ∈ H. Then the 8× 8 real matrix

w (α) =



α0 −α1 −α2 −α3 −α4 −α5 −α6 −α7

α1 α0 −α3 α2 −α5 α4 α7 −α6

α2 α3 α0 −α1 −α6 −α7 α4 α5

α3 −α2 α1 α0 −α7 α6 −α5 α4

α4 α5 α6 α7 α0 −α1 −α2 −α3

α5 −α4 α7 −α6 α1 α0 α3 −α2

α6 −α7 −α4 α5 α2 −α3 α0 α1

α7 α6 −α5 −α4 α3 α2 −α1 α0


(2.6)

is called the left matrix representation of α over R.

Let c1w(α) be the �rst column of the matris w (α) . Then, it is obviously that −→α = c1w(α).
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Theorem 2.3. [17] Let α, x ∈ O be given. Then

−→αx = w (α)−→x . (2.7)

De�nition 2.4. [17] Let α = α′+α′′e ∈ O, where α′ = α0+α1i+α2j+α3k, α
′′ = α4+α5i+

α6j + α7k ∈ H. Then the 8× 8 real matrix

v (α) =



α0 −α1 −α2 −α3 −α4 −α5 −α6 −α7

α1 α0 α3 −α2 α5 −α4 −α7 α6

α2 −α3 α0 α1 α6 α7 −α4 −α5

α3 α2 −α1 α0 α7 −α6 α5 −α4

α4 −α5 −α6 −α7 α0 α1 α2 α3

α5 α4 −α7 α6 −α1 α0 −α3 α2

α6 α7 α4 −α5 −α2 α3 α0 −α1

α7 −α6 α5 α4 −α3 −α2 α1 α0


(2.8)

is called the right matrix representation of α over R.

Let c1v(α) be the �rst column of the matris v (α) . Then, it is obviously that −→α = c1v(α).

Theorem 2.5. [17] Let α, x ∈ O be given. Then

−→xα = v (α)−→x . (2.9)

Next we give the properties of the obtained left and right real matrix representations for the

octonions.

Theorem 2.6. [17] Let α, x ∈ O, λ ∈ R be given. Then

(i) α = β ⇔ w (α) = w (β) ,

(ii) w (α+ β) = w (α) + w (β) ,

(iii) w (λα) = λw (α) , w (1) = I8,

(iv) w (α) = wT (α) ,

(v) α = β ⇔ v (α) = v (β) ,

(vi) v (α+ β) = v (α) + v (β) ,

(vii) v (λα) = λv (α) , v (1) = I8,

(viii) v (α) = vT (α) ,

(ix) w−1 (α) = w
(
α−1

)
, for α ̸= 0,

(x) v−1 (α) = v
(
α−1

)
, for α ̸= 0.

Theorem 2.7. [17] Let α ∈ O be given. Then the two matrix representations satisfy the following

three identities

w(α2) = w2(α), v(α2) = v2(α), w(α)v(α) = v(α)w(α).

Theorem 2.8. [17] Let α, β ∈ O be given. Then their matrix representations satisfy the follow-

ing identities

w(αβ) + w(βα) = w(α)w(β) + w(β)w(α),

v(αβ) + v(βα) = v(α)v(β) + v(β)v(α),

w(αβ) + v(αβ) = w(α)w(β) + v(β)v(α),

w(α)v(β) + w(β)v(α) = v(α)w(β) + v(β)w(α),

w(αβ) = w(α)w(β) + w(α)v(β)− v(β)w(α)

v(αβ) = v(β)v(α) + w(β)v(α)− v(α)w(β).
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Also, note that the Moore-Penrose inverse of a matrix A ∈ Cm×n, denoted by A†, is de�ned

to be the unique matrix X ∈ Cn×m satisfying the four matrix equations

(i) AXA = A, (ii)XAX = X , (iii)(AX)∗ = AX , (iv)(XA)∗ = XA,

and a matrix is called as a g-inverse of A, denoted by X = A−, if it satis�es AXA = A.
Throughout this paper, let the symbol δ(α, β) stand for the matrix w(α)− v(β).
The following theorem gives a formula for the g-inverse of δ(α, α).

Theorem 2.9. [17] Let α ∈ O be given with α /∈ R. Then

δ3(α, α) = −4 |Imα|2 δ(α, α), (2.10)

and δ(α, α) has a generalized inverse as follows

δ−(α, α) = − 1

4 |Imα|2
δ(α, α). (2.11)

Theorem 2.10. [17] Let α, β ∈ O be given. Then the linear equation αx = xβ has a nonzero

solution if and only if

Reα = Reβ and |Imα| = |Imβ| . (2.12)

a) In that case, if β ̸= α, i.e. Imα + Imβ ̸= 0, then the general solution of αx = xβ can be

expressed as

x = (Imα) p+ p (Imβ) , (2.13)

where p ∈ A(α, β), the subalgebra generated by α and β, is arbitrary, or equivalently

x = λ1 (Imα+ Imβ) + λ2 [|Imα| |Imβ| − (Imα) (Imβ)] , (2.14)

where λ1, λ2 ∈ R are arbitrary.

b) If β = α, then the general solution of αx = xβ is

x = x1e1 + x2e2 + ...+ x7e7, (2.15)

where x1 − x7 satisfy α1x1 + α2x2 + ...+ α7x7 = 0.

In [17], two octonions α and β are called to be similar if there is a nonzero p ∈ O such that

α = pβp−1, which is written as α ∼ β. Thus, Theorem 2.10 shows that two octonions are similar

if and only if Reα = Reβ and |Imα| = |Imβ|.

Theorem 2.11. [17] Let α, β ∈ O be given with α /∈ R . Then the linear equation αx− xα = β
has a solution in O if and only if the equality αβ = βα holds. In this case, the general solution

of αx− xα = β is

x =
1

4 |Imα|2
(βα− αβ) + p− 1

|Imα|2
(Imα) p (Imα) , (2.16)

where p ∈ O is arbitrary.

3 Solving some kinds of two-sided systems of linear equations overO

In this section, we present some necessary and suf�cient conditions for the existence of a solution

to the systems given in (1.1) and give an expression of the general solution to the systems when

the solvability conditions are satis�ed.

Proposition 3.1. Consider a system of linear octonionic equations of the form

ax+ yb = c

xa+ yb = d

}
(3.1)
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where a, b, c, d ∈ O− {0} are given octonions and x, y are unknown octonions. Then the linear

equation system (3.1) has a solution in O. In this case, the vector representations of the general

solution of system (3.1) are

−→x = δ− (a, a)
(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p ,

−→y = v−1 (b)
(−→c − w(a)

[
δ− (a, a)

(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p ])
,

where −→p is an arbitrary vector in O.

Proof. From the system of linear octonionic equations (3.1) , we obtain

ax− xa = c− d. (3.2)

According to Eqs. (2.7) and (2.9), the equation (3.2) can equivalently be written as

[w(a)− v(a)]−→x = δ (a, a)−→x =
−−−→
c− d. (3.3)

Since a ∼ a, we know by Theorem 2.11 that ax = xa has a nonzero solution. Thus δ (a, a) is
singular since a ∼ a. In that case, Eq. (3.2) is solvable if and only if

δ (a, a) δ− (a, a)
−−−→
c− d =

−−−→
c− d,

and in this case the general solution of Eq. (3.3) can be expressed as

−→x = δ− (a, a)
(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p , (3.4)

where −→p is an arbitrary vector in O. From the system of linear octonionic equations (3.1) , the
equation ax+ yb = c, can equivalently be written as

w(a)−→x + v(b)−→y = −→c . (3.5)

Then, substituting in the equation (3.5) of the solution −→x , we obtain

−→y = v−1 (b)
(−→c − w(a)

[
δ− (a, a)

(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p ])
.

2

Proposition 3.2. Consider a system of linear octonionic equations of the form

ax+ yb = c

ax+ by = d

}
(3.6)

where a, b, c, d ∈ O− {0} are given octonions and x, y are unknown octonions. Then the linear

equation system (3.6) has a solution in O. In this case, the vector representations of the general

solution of system (3.6) are

−→x = w−1 (a)
(−→c − v(b)

[
δ− (b, b)

(−−−→
d− c

)
+ 2

[
I8 − δ− (b, b) δ (b, b)

]−→p ])
,

−→y = δ− (b, b)
(−−−→
d− c

)
+ 2

[
I8 − δ− (b, b) δ (b, b)

]−→p ,

where −→p is an arbitrary vector in O.

Proof. From the system of linear octonionic equations (3.6) , we obtain

by − yb = d− c. (3.7)

According to Eqs. (2.7) and (2.9), the equation (3.7) can equivalently be written as

[w(b)− v(b)]−→y = δ (b, b)−→y =
−−−→
d− c. (3.8)
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Since b ∼ b, we know by Theorem 2.11 that by = yb has a nonzero solution. Thus δ (b, b) is
singular since b ∼ b. In that case, Eq. (3.7) is solvable if and only if

δ (b, b) δ− (b, b)
−−−→
d− c =

−−−→
d− c,

and in this case the general solution of Eq. (3.8) can be expressed as

−→y = δ− (b, b)
(−−−→
d− c

)
+ 2

[
I8 − δ− (b, b) δ (b, b)

]−→p , (3.9)

where −→p is an arbitrary vector in O. From the system of linear octonionic equations (3.6) , the
equation ax+ yb = c, can equivalently be written as

w(a)−→x + v(b)−→y = −→c . (3.10)

Then, substituting in the equation (3.10) of the solution −→y , we obtain

−→x = w−1 (a)
(−→c − v(b)

[
δ− (b, b)

(−−−→
d− c

)
+ 2

[
I8 − δ− (b, b) δ (b, b)

]−→p ])
.

2

Proposition 3.3. Consider a system of linear octonionic equations of the form

ax+ ya = c

xb+ yb = d

}
(3.11)

where a, b, c, d ∈ O− {0} are given octonions and x, y are unknown octonions. Then the linear

equation system (3.11) has a solution inO. In this case, the vector representations of the general

solution of system (3.11) are

−→x = w−1 (a)
(−→c − v(b)

[
δ− (a, a)w (a) v−1 (b)

(−→
d − v (b)w−1 (a)−→c

)
+2

[
I8 − δ− (a, a) δ (a, a)

]−→p ])
,

−→y = δ− (a, a)w (a) v−1 (b)
(−→
d − v (b)w−1 (a)−→c

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p ,

where −→p is an arbitrary vector in O.

Proof. According to Eqs. (2.7) and (2.9), the system of linear octonionic equations (3.6) can
equivalently be written as

w(a)−→x + v(a)−→y = −→c
v(b)−→x + v(b)−→y =

−→
d

}
. (3.12)

Then, from �rst equation in here we have

w(a)−→x = −→c − v(a)−→y .

Since a ̸= 0, thus w(a) is invertible matrix, and so a direct calculation gives

−→x = w−1(a) [−→c − v(a)−→y ] .

From the −→x obtained in here and the equation

v(b)−→x + v(b)−→y =
−→
d ,

it is easily derived that

v(b)w−1(a) [−→c − v(a)−→y ] + v(b)−→y =
−→
d .
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With right distributive law in octonions, we can easily obtain

−v(b)w−1(a)v(a)−→y + v(b)−→y =
−→
d − v(b)w−1(a)−→c

or

v(b)
[
−w−1(a)v(a) + I8

]−→y =
−→
d − v(b)w−1(a)−→c .

Since b ̸= 0, thus v(b) is invertible matrix, and therefore, it is easily obtained[
−w−1(a)v(a) + I8

]−→y = v−1(b)
[−→
d − v(b)w−1(a)−→c

]
.

With right distributive law in octonions, the relation in here can be equivalently rewritten as

w−1(a) [−v(a) + w(a)]−→y = v−1(b)
[−→
d − v(b)w−1(a)−→c

]
.

So we can obtain the following conclusion

[−v(a) + w(a)]−→y = w(a)v−1(b)
[−→
d − v(b)w−1(a)−→c

]
(3.13)

Since a ∼ a, we know by Theorem 2.11 that ax = xa has a nonzero solution. Thus δ (a, a) is
singular since a ∼ a. In that case, Eq. (3.13) is solvable if and only if

δ (a, a) δ− (a, a)−→e = −→e with −→e = w(a)v−1(b)
[−→
d − v(b)w−1(a)−→c

]
,

and in this case the general solution of equation (3.13) can be expressed as

−→y = δ− (a, a)w(a)v−1(b)
[−→
d − v(b)w−1(a)−→c

]
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p , (3.14)

where −→p is an arbitrary vector in O. Then, substituting in the equation

−→x = w−1(a) [−→c − v(a)−→y ]

of the solution −→y , we obtain

−→x = w−1 (a)
(−→c − v(b)

[
δ− (a, a)w (a) v−1 (b)

(−→
d − v (b)w−1 (a)−→c

)
+2

[
I8 − δ− (a, a) δ (a, a)

]−→p ])
.

Thus, the proof has been completed. 2

Proposition 3.4. Consider a system of linear octonionic equations of the form

ax+ by = c

xa+ by = d

}
(3.15)

where a, b, c, d ∈ O− {0} are given octonions and x, y are unknown octonions. Then the linear

equation system (3.15) has a solution inO. In this case, the vector representations of the general

solution of system (3.15) are

−→x = δ− (a, a)
(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p
−→y = w−1 (b)

(−→c − w(a)
[
δ− (a, a)

(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p ])
,

where −→p is an arbitrary vector in O.
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Proof. From the system of linear octonionic equations (3.15) , we obtain

ax− xa = c− d. (3.16)

According to Eqs. (2.7) and (2.9), the equation (3.16) can equivalently be written as

[w(a)− v(a)]−→x = δ (a, a)−→x =
−−−→
c− d. (3.17)

Since a ∼ a, we know by Theorem 2.11 that ax = xa has a nonzero solution. Thus δ (a, a) is
singular since a ∼ a. In that case, Eq. (3.16) is solvable if and only if

δ (a, a) δ− (a, a)
−−−→
c− d =

−−−→
c− d,

and in this case the general solution of equation (3.17) can be expressed as

−→x = δ− (a, a)
(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p , (3.18)

where −→p is an arbitrary vector inO. From the system of linear octonionic equations (3.15) , the
equation ax+ by = c, can equivalently be written as

w(a)−→x + w(b)−→y = −→c . (3.19)

Then, substituting in the equation (3.19) of the solution −→x , we obtain

−→y = w−1 (b)
(−→c − w(a)

[
δ− (a, a)

(−−−→
c− d

)
+ 2

[
I8 − δ− (a, a) δ (a, a)

]−→p ])
.

2

Proposition 3.5. Consider a system of linear octonionic equations of the form

ax+ yb = c

xb+ yb = d

}
(3.20)

where a, b, c, d ∈ O− {0} are given octonions and x, y are unknown octonions. Then the linear

equation system (3.20) has a solution in O. If a is similar to b then the vector representations of

the general solution of system (3.20) are

−→x = δ− (a, b)
(−−−→
d− c

)
+ 2

[
I8 − δ− (a, b) δ (a, b)

]−→p ,

−→y = v−1 (b)
[−→c − w (a)

[
δ− (a, b)

(−−−→
d− c

)
+ 2

[
I8 − δ− (a, b) δ (a, b)

]−→p ]]
,

where −→p is an arbitrary vector in O, and if a is not similar to b then the vector representations

of the solution of system (3.20) are

−→x = δ−1 (a, b)
(−−−→
c− d

)
,

−→y = v−1 (b)
[−→c − w(a)

(
δ−1 (a, b)

(−−−→
c− d

))]
.

Proof. From the system of linear octonionic equations (3.20) , we obtain

ax− xb = c− d. (3.21)

According to Eqs. (2.7) and (2.9), the equation (3.21) can equivalently be written as

[w(a)− v(b)]−→x = δ (a, b)−→x =
−−−→
c− d. (3.22)

Under a ∼ b, we know by Theorem 2.11 that ax = xb has a nonzero solution. Thus δ (a, b) is
singular under a ∼ b. In that case, Eq. (3.21) is solvable if and only if

δ (a, b) δ− (a, b)
−−−→
c− d =

−−−→
c− d,
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and in this case the general solution of equation (3.22) can be expressed as

−→x = δ− (a, b)
(−−−→
c− d

)
+ 2

[
I8 − δ− (a, b) δ (a, b)

]−→p , (3.23)

where −→p is an arbitrary vector inO. From the system of linear octonionic equations (3.20) , the
equation ax+ yb = c, can equivalently be written as

w(a)−→x + v(b)−→y = −→c . (3.24)

Then, substituting in the equation (3.24) of the solution −→x , we obtain

−→y = v−1 (b)
(−→c − w(a)

[
δ− (a, b)

(−−−→
c− d

)
+ 2

[
I8 − δ− (a, b) δ (a, b)

]−→p ])
.

If a is not similar to b, clearly the equation (3.22) has a unique solution

−→x = δ−1 (a, b)
(−−−→
c− d

)
.

Thus, substituting in the equation (3.24) of the solution −→x , we obtain

−→y = v−1 (b)
[−→c − w(a)

(
δ−1 (a, b)

(−−−→
c− d

))]
.

2

Proposition 3.6. Consider a system of linear octonionic equations of the form

ax+ yb = c

xa+ by = d

}
(3.25)

where a, b, c, d ∈ O− {0} are given octonions and x, y are unknown octonions. Then the linear

equation system (3.25) has a solution in O. If ab is similar to ba then the vector representations

of the general solution of system (3.25) are

−→x = w−1 (a)
(−→c − v(b)

[
δ− (ab, ba)w(a)

(−→
d − v(a)w−1(a)−→c

)
+2

[
I8 − δ− (ab, ba) δ (ab, ba)

]−→p ])
−→y = δ− (ab, ab)

(
w (a)

−→
d − v (a)−→c

)
+ 2

[
I8 − δ− (ab, ab) δ (ab, ab)

]−→p ,

where−→p is an arbitrary vector inO, and if ab is not similar to ba then the vector representations

of the solution of system (3.25) are

−→x = w−1 (a)
(−→c − v(b)

[
δ−1 (ab, ba)w(a)

(−→
d − v(a)w−1(a)−→c

)])
,

−→y = δ−1 (ab, ba)w(a)
(−→
d − v(a)w−1(a)−→c

)
.

Proof. According to Eqs. (2.7) and (2.9), the system of linear octonionic equations (3.25) can
equivalently be written as

w(a)−→x + v(b)−→y = −→c
v(a)−→x + w(b)−→y =

−→
d

}
.

Then, from �rst equation in here we have

w(a)−→x = −→c − v(b)−→y .

Since a ̸= 0, thus w(a) is invertible matrix, and so a direct calculation gives

−→x = w−1(a) (−→c − v(b)−→y ) .
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Substituting the −→x obtained in here into the equation

v(a)−→x + w(b)−→y =
−→
d

it is easily derived that

v(a)w−1(a) (−→c − v(b)−→y ) + w(b)−→y =
−→
d .

With right distributive law in octonions, we can easily obtain

−v(a)w−1(a)v(b)−→y + w(b)−→y =
−→
d − v(a)w−1(a)−→c

or

w−1(a) [−v(a)v(b) + w(a)w(b)]−→y =
−→
d − v(a)w−1(a)−→c . (3.26)

Using the facts in Theorem 2.8

w(ab) + w(ba) = w(a)w(b) + w(b)w(a) and w(ab) + v(ab) = w(a)w(b) + v(b)v(a)

we get the following:

w(ba)− v(ab) = w(b)w(a)− v(b)v(a).

Thus, from here and by the invertibility of the matrix w−1(a) we get

[w(ab)− v(ba)]−→y = w(a)
(−→
d − v(a)w−1(a)−→c

)
. (3.27)

Under ab ∼ ba, we know by Theorem 2.11 that (ab)x = x(ba) has a nonzero solution. Thus

δ (ab, ba) is singular under ab ∼ ba. In that case, Eq. (3.27) is solvable if and only if

δ (ab, ba) δ− (ab, ba)−→e = −→e with −→e = w(a)
(−→
d − v(a)w−1(a)−→c

)
.

Hence, the general solution of equation (3.8) can be expressed as

−→y = δ− (ab, ba)w(a)
(−→
d − v(a)w−1(a)−→c

)
+ 2

[
I8 − δ− (ab, ba) δ (ab, ba)

]−→p , (3.28)

where −→p is an arbitrary real vector. Then, substituting in the equation

−→x = w−1(a) (−→c − v(b)−→y )

of the solution −→y , we obtain

−→x = w−1 (a)
(−→c − v(b)

[
δ− (ab, ba)w(a)

(−→
d − v(a)w−1(a)−→c

)
+2

[
I8 − δ− (ab, ba) δ (ab, ba)

]−→p ])
If ab is not similar to ba, clearly the equation (3.27) has a unique solution

−→y = δ−1 (ab, ba)w(a)
(−→
d − v(a)w−1(a)−→c

)
.

Then, substituting in the equation

−→x = w−1(a) (−→c − v(b)−→y )

of the solution −→y , we obtain

−→x = w−1 (a)
(−→c − v(b)

[
δ−1 (ab, ba)w(a)

(−→
d − v(a)w−1(a)−→c

)])
.

2
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4 Conclusions

In this paper, a new computational method based on the left and right matrix representations of

octonions is used for solving the systems given in (1.1). This method transforms the equation

into a matrix equation and the unknown of this equation is a real vector. Solutions are easily

acquired by using this matrix equation, which corresponds to a system of linear algebraic equa-

tions. Employing the left and right matrix representations to solve systems of linear real octonion

equations is very simple and effective.
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