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Abstract. In a paper [2] some kinds of f− projections of a planar set E has been defined for
a function f : R → R (where R is set of real numbers) and word ‘projection’ has been used
when f is linear. Some descriptive properties of projections (category and measure) of a planar
set has been established. The main result in this paper is answered a question raised by Ceder
and Ganguly [2].

1 Introduction

Let us take a subset A of R, where R is a set of real numbers and let D(A) denote the set
of all numbers |x − y| where x ∈ A and y ∈ A. Then D(A) is called the Distance set of
the set A. The investigation of the set of the distances between the points of a measurable set
was started by H. Steinhaus in 1920. H. Steinhaus [13] proved that if A is a measurable sub-
set of real line, with positive Lebesgue measure, then Distance set of A, that is, D(A) contains
an interval with origin as an left hand end point; and the Difference set of A represented as
A − A = {x − y : x ∈ A, y ∈ A} contains an interval with origin as an interior point. In 1925,
Ruziewicz [12] extended Steinhaus’s result. An alternative proof of Ruziewicz result was given
by D.K.Ganguly and M.Majumdar[4]. Also the category analogue of Ruziewicz result was es-
tablished by Ganguly and Majumdar [4].

The set A is said to have the property of Baire if A can be expressed as the symmetric dif-
ference of the set of non empty open set and set of first category (cf. [10, p.19]). The category
analogue of Steinhaus result was established by Piccard [11] when the sets are of second category
having the property of Baire. Ceder and Ganguly [2] provided an alternative way of interpreting
the Steinhaus result in terms of projection of the planar set and strengthened the Steinhaus result
by applying various kind of projections of planar sets. Inspiring by the paper [2] several authors
([1], [5], [7] ) were devoted to study the various properties of projections of planar sets.
Terminology:
Let f : R → R be a function and d ∈ R. The Lebesgue measure on measurable subsets of R
(R2) is denoted by λ1 (resp. λ2). Let E ⊂ R2. We define the f−projection, f−measure projec-
tion and f−category projection of E denoted by P (f,E), Pm(f,E) and Pc(f,E) respectively
as below.

• P (f,E) = {d : (f + d) ∩ E 6= ∅}

• Pm(f,E) = {d : λ1(dom[(f + d) ∩ E]) > 0}

• Pc(f,E) = {d : dom[(f + d) ∩ E] is second category}

In general, Pm(f,E) and Pc(f,E) are subsets of P (f,E). We use the word projection to
refer to any f−projection when f is linear. It is easy to verify with the help of Fubini’s theorem
that Pm(f,E) fills up all most all of P (f,E) in the sense of measure where E is of full measure
(i.e. its complement is a null set.)

In this article we shall prove some descriptive properties of P (f,A×B) and give an alterna-
tive answer based on Martin’s axiom to a question raised by Ceder and Ganguly [2] as follows:
“It is unknown whether or not a second category set A can be found whose Lebesgue mesure is
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not zero such that projection of this set on each line has empty interior". Some open questions
are also raised in this paper.

2 Some properties of projections of planar set

Proposition 2.1. Let A and B be measurable subsets of R and E = A × B. If f is continuous
and linear mapping from R into R, then

(i) P (f,E) = B − f(A)

(ii) P (f,E)′ = {c : c+ f(A) ⊂ B′} where the symbol B′ denotes the complement of B

(iii) Pm(f,E) = {c : λ1{A ∩ f−1
c (B)} > 0} where fc : R→ R is defined by fc(x) = f(x) + c

for all x ∈ R.

Proofs directly follow from the definition of projections.

Corollary 2.2. If E = A× B where A is of second category set and B a residual set in R, then
P (f,E) = R, where f is continuous and linear.

Proof. Here f maps a second category set into a second category set and hence f(A) + c is
also second category. As B is a residual set hence B′ is of first category. This implies that
P (f,E)′ = ∅ and hence P (f,E) = R. 2

Remark 2.3. The above corollary is no longer true when A and B are sets of second category
which follows from the following result established by Ceder and Ganguly [2].

Theorem 2.4. ([2]) There exists a second category set A such that projection of A×A onto any
line with rational slope and rational intercept does not contain any interval.

Theorem 2.5. Let f : R → R be a continuous function. If A and B are two compact subsets of
R, then P (f,A×B) is compact in R.

Proof. Since A and B are compact, P (f,A×B) is bounded. Let l be the limit point of P (f,A×
B). Then there exists a sequence {ln} of the elements of P (f,A×B) such that ln → l as n→∞.
Now for each ln ∈ P (f,A × B) there exist xn ∈ A and yn ∈ B such that yn = f(xn) + ln.
Since A and B are compact, we get subsequences {xnk} of {xn} and {ynk} of {yn} such that
{xnk} → p ∈ A and {ynk} → q ∈ B as k → ∞. Also ynk = f(xnk) + lnk . Taking limit as
k →∞ we have q = f(p) + l. Thus l ∈ P (f,A×B). Hence the theorem. 2

Theorem 2.6. Let f : R → R be a linear map. If A and B are non empty open subsets of R,
then P (f,A×B) is a non empty open set.

Proof. Let d ∈ P (f,A × B) and let ε(> 0) be given. Then there exists (x, y) ∈ A × B such
that y = f(x) + d. Sine A and B are open sets we can find two open intervals (x− ε, x+ ε) and
(y−ε, y+ε) such that (x−ε, x+ε) ⊆ A and (y−ε, y+ε) ⊆ B. Since y = f(x)+d ∈ B, y+ ε

2 =
f(x)+d+ ε

2 ∈ B and y− ε
2 = f(x)+d− ε

2 ∈ B. Thus for each c ∈ (d− ε
2 , d+

ε
2), f(x)+c ∈ B.

This shows that (d− ε
2 , d+

ε
2) ⊆ P (f,A×B). Hence the theorem. 2

Theorem 2.7. Let f : R → R be a continuous function. If A and B are two compact subsets of
R, then Pm(f,A×B) is a Borel set of additive class one in R.

Proof. By Theorem 2.5 P (f,A×B) is compact. Let α = infP (f,A×B) and β = supP (f,A×
B). Let us define a function g : [α, β] → R by g(d) = λ1{x ∈ A : (f(x) + d) ∩ B 6= ∅}.
Then Pm(f,A × B) = {d ∈ [α, β] : g(d) > 0}. Let {dk} be a sequence in [α, β] such that
dk → d ∈ [α, β] as k → ∞. Let us choose sets Zk = {x ∈ A : (f(x) + dk) ∩ B 6= ∅} for every
k = 1, 2, ...... We first show that

LSZk ⊂ {x ∈ A : (f(x) + d) ∩B 6= ∅} ..........(2.7.1)

where LSZk is the limit superior of the sequence {Zk} of sets as defined in [8] and shown to be
the set
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LSZk = {z : there exists a subsequence {Zi} of Zk and zi ∈ Zi for each i, such that zi → z as
i→∞ }.

Also LSZk ⊃ limZk ([8]). Let p ∈ LSZk. Then there is a subsequence {Zi} of {Zk} such that
xi ∈ Zi for each i and xi → p as i→∞. Now xi ∈ Zi implies that (f(xi)+di)∩B 6= ∅ for each
i. Since f is continuous and [α, β] closed and bounded, f(xi) + di converge to (f(p) + d) ∈ B.
Hence p ∈ {x ∈ A : (f(x) + d) ∩B 6= ∅}. Also,

g(d) = λ1{x ∈ A : {(f(x) + d) ∩B} 6= ∅}

≥ λ1(LSZk) , ( Using (2.7.1))

≥ λ1(limZk)

≥ limλ1(Zk) , (Using Fatou’s lemma)

= limg(dk) .

Thus g is an upper semicontinuous function. Hence, there is a a decreasing sequence {gn} of
upper semicontinuous functions defined over [α, β] such that g(x) = lim gn(x) for all x ∈ [α, β]
([6]). Then Pm(f,A × B) =

⋃∞
m=1

⋃∞
r=1

⋂∞
n=r{d ∈ [α, β] : gn(d) ≥ 1

m} ([6]). Since each gn
is upper semicontinuous, each of the set {d ∈ [α, β] : gn(d) ≥ 1

m} is closed. It follows that
Pm(f,A×B) is an Fσ set i.e. Borel set of additive class one ([8]). 2

We now strengthen the Theorem 1 of Ceder and Ganguly [2] as follows:

Theorem 2.8. Let f : R→ R be a continuous function not identically 0. If A and B measurable
subsets of R with finite positive Lebesgue measure, then Pm(f,A × B) is an open subset of
P (f,A×B).

Proof. Let us define a function h : R → R by h(d) = λ1{f−1(B − d) ∩ A}. Then h is a
continuous function (cf. [3]). Now Pm(f,A × B) = {d : h(d) > 0}. Also d ∈ Pm(f,A × B)
implies that h(d) > 0. Since h is continuous there is a neighbourhood Id of the point d such that
h(x) > 0 for all x ∈ Id. Then Pm(f,A×B) contains Id. Hence the result. 2

Corollary 2.9. ([2]) LetA andB be linear sets of finite positive measure. Suppose f be non-zero
linear continuous function. Then Pm(f,A×B) contains an open interval.

Theorem 2.10. IfA andB are the sets of second category at least one of which have the property
of Baire, then Pc(f,A×B) is a non-empty open set.

Proof. Assume first that A has the property of Baire but B is only second category. Then
A = G∆F , where G is a non-empty open set and F is a set of first category and ∆ stands for
symmetric difference. Then

Pc(f,A×B) = Pc(f,G×B) ............(2.10.1)

Let S = {x ∈ R : B is of first category at x} and T = Int(R \S). Then B is of second category
at each point of the open set T . Let B1 = B ∩ T . Then B1 is of second category at each point of
T and B \B1 is a set of first category. Hence

Pc(f,G×B) = Pc(f,G×B1) ..........(2.10.2)

In view of (2.10.1), (2.10.2) and Theorem 2.6 it is sufficient to prove that Pc(f,G × B1) =
P (f,G × T ). Since B1 ⊂ T , it is evident that Pc(f,G × B1) ⊆ P (f,G × B1) ⊆ P (f,G × T ).
Let c ∈ P (f,G × T ) then (f(G) + c) ∩ T 6= ∅ implies that (f(G) + c) ∩ B1 is a set of second
category because B1 is of the second category at each point of T . Therefore, c ∈ Pc(f,G×B1).
Thus P (f,G × T ) ⊆ Pc(f,G × B1). As P (f,G × T ) is an open set by Theorem 2.6, hence
Pc(f,A×B) is an open set.
The proof is similar when A is only second category but B is of second category having the
property of Baire. 2

Remark 2.11. The above theorem is no longer valid when A and B either have to property of
Baire or are of second category.
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The following example [1] supports the Remark 2.11.

Example 2.12. Let us take A as the set Q of rationals and B be that of set I of irrationals. Let
f : R→ R be a function defined by f(x) = mx for all x ∈ R, where m is a real number. Then
from the Proposition 2.1 we get P (f,A×B) = I −mQ and hence

P (f,A×B) =


I, if m = 0;

I −Q, if m ∈ Q, m 6= 0

R, if m /∈ Q.

Hence P (f,A×B) ⊂ I if m ∈ Q and this implies that P (f,A×B) does not contain an interval
although A being a set of rationals is an Fσ-set and B is a Gδ-set (the complement of Fσ set) and
so both of these sets have the property of Baire.

Answering a question raised by J.Ceder and D.K.Ganguly in [2] “It is unknown whether or
not a second category set A can be found such that projection (category) of A×B fails to have a
non-empty interior in each direction", Tomas Katkaniec [7] constructed with the help of Martin
axiom a linear set A of second category such that category projection of A × A onto each line
has empty interior.

We now constructed with the help of Martin axiom a planar second category set which does
not have Lebesgue measure zero such that projection of this set has empty interior in each line.
For Martin’s axiom the reader may consult with the paper [9].

3 Main Result

Theorem 3.1. Assuming Martin’s axiom, there exists a planar second category set which does
not have Lebesgue measure zero and whose projection on each line has non empty interior.

Proof. Let G be the family of all Borel sets in the plane which can not be covered by less
than c lines where c denotes the power of the continuum and let {Gα}α<c be a well-ordering
of G. Let {mα}α<c be a well-ordering of real number in [0, π) with m0 = 0. Also let Lα
denotes the line through (0, 0) and eimα . Further let {Pα}α<c be a well-ordering of ℵ0× c where
ℵ0 represents the power of the set of positive integers. Let us take Pα = (P

(1)
α , P

(2)
α ) and let

{Bn}∞n=0 be a countable open base for R. Pick E0 to be the line perpendicular to L
P

(2)
0

such that

E0 ∩ LP (2)
0
⊆ B

P
(1)
0
e
im

P
(2)
0 and choose a0 ∈ G0 \ E0. By transfinite induction, assume that for

each ξ < β we have picked a line Eξ and a point aξ such that aξ ∈ Gξ \
⋃
γ≤ξ Eγ and Eξ is

perpendicular to L
P

(2)
ξ

and Eξ ∩ LP (2)
ξ

⊆ B
P

(1)
ξ

e
im

P
(2)
ξ . Now we proceed to define Eβ and aβ as

follows:
Since the projection of {aα : α < β} on L

P
(2)
β

has cardinality less than c, we can find a line Eβ

perpendicular to L
P

(2)
β

such that L
P

(2)
β

∩ Eβ ⊆ B
P

(1)
β

e
im

P
(2)
β and Eβ ∩ {aα : α < β} = ∅. Pick

aβ ∈ Gβ \
⋃
{Eα : α ≤ β} and put A = {aα : α < c}. For each α, the projection of A upon Lα

misses the set
⋃
{Lα ∩ Eβ : α = P

(2)
β } which is countable dense in Lα. By Martin’s axiom, it is

clear that the set A is of second category.
If A is of positive outer measure, then there exists a unit square I2 such that I2 ∩ A has positive
outer measure. If not, then I2 \A has positive outer measure and contains a Fσ set, B, of positive
measure. Then B ∈ G, contradict the fact A∩B = ∅. Hence A is not Lebesgue measure zero. 2

4 Some open questions

We now arise some open questions in this regard.
Question 1: If A and B are of second category, does the projection of A× B on each line con-
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tains an interval?
Question 2: Let {Lx}x∈R be a family of lines such that slope Lx = x. Is

⋃
{Lx : x ∈ R} second

category?
Question 3: If {Lx}x∈R be a family of lines with slope Lx = x, does

⋃
{Lx : x ∈ R} have

measure zero?
Question 4: Does planar set of full measure (or even positive Lebesgue measure) have a projec-
tion with non-empty interior?

Note: If the answer of Question 2 is yes, then we have the following theorem.

Theorem 4.1. Every residual set has a projection containing an interval.

Proof. Suppose there exists a residual setA having no projection with non-empty interiors. Then
there exist a family of lines {Lx}x∈R with slope lx = x each misses A. By the Question 2, R2

\A must be second category and hence contradiction. Hence the theorem. 2
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