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Abstract. In this paper, we deal with the uniqueness problems of meromorphic functions

when certain nonlinear differential polynomials generated by them share a nonconstant polyno-

mial counting multiplicities by considering that the functions share in�nity, ignoring multiplici-

ties. The research �ndings also include IM-analogues of the theorem in which the nonconstant

polynomial is allowed to be shared ignoring multiplicities. Though the main concern of the

paper is to �nd out a possible answer of an open question posed by Zhang and Xu [Computer

Math. with Appl., 61(2011), 722-730], as a consequence of the main results we also improves

the concerning results of Zhang - Xu and the present author [Bull. Math. Anal. Appl., 2(2010),

106-118].

1 Introduction, De�nitions and Results

In this paper, by meromorphic functions we will always mean meromorphic functions in the

complex plane. We assume that the reader is familiar with the classical value distribution theory

of meromorphic functions as described in, say, the standard monograph [7, 19]. For a noncon-

stant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic of f and by

S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ outside of a possible exceptional

set E of �nite linear measure. The meromorphic function a(z) is called a small function of f if

T (r, a) = S(r, f).
Two nonconstant meromorphic functions f and g share a small function a CM (counting mul-

tiplicities) provided that f−a and g−a have the same set of zeros with the same multiplicities; f
and g share a IM (ignoring multiplicities) if we do not consider the multiplicities. A �nite value

z0 is called a �xed point of f(z) if f(z0) = z0.
The following result is well known in the value distribution theory (see [3, 4]).

TheoremA. Let f be a transcendental meromorphic function, and let n(≥ 1) be an integer. Then
fnf ′ = 1 has in�nitely many solutions.

Corresponding to Theorem A the following result was obtained by Yang and Hua [16] in

1997.

Theorem B. Let f and g be two nonconstant meromorphic functions, and let n(≥ 11) be an

integer. If fnf ′ and gng′ share the value 1 CM, then either f(z) = c1e
cz , g(z) = c2e

−cz , where

c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f = tg for a constant t such that
tn+1 = 1.

Regarding �xed point the following result was proved by Fang [5] in 2000.

Theorem C. Let f be a transcendental meromorphic function, and let n be a positive integer.

Then fnf ′ − z = 0 has in�nitely many solutions.

In the same year Fang and Qiu [6] proved the following result which corresponded to Theo-

rem C.
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Theorem D. Let f and g be two nonconstant meromorphic functions, and let n(≥ 11) be an

integer. If fnf ′ and gng′ share z CM, then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2
and c are three nonzero complex constants satisfying 4(c1c2)n+1c2 = −1 or f = tg for a complex
number t satisfying tn+1 = 1.

A new trend in this direction is to consider the uniqueness of a meromorphic functions con-

cerning the value sharing of the k-th derivative of a linear expression of a meromorphic function.
For the last decade many research works regarding the value sharing of nonlinear differential

polynomials which are mainly the k-th derivative of some linear expressions of f and g have

been done. (See [2], [12], [13] and [14], for example). We recall the following results of Xu,

Lu and Yi [14] where an additional condition namely the sharing of poles by the meromorphic

functions are taken into account.

Theorem E. Let f and g be two nonconstant meromorphic functions, and let n, k be two positive
integers satisfying n > 3k + 10. If (fn)(k) and (gn)(k) share z CM, f and g share ∞ IM,

then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants satisfying

4n2(c1c2)nc2 = −1 or f = tg for a constant t such that tn = 1.

Theorem F. Let f and g be two nonconstant meromorphic functions satisfying Q(∞, f) > 2

n ,

and let n, k be two positive integers such that n ≥ 3k+ 12. If (fn(f − 1))(k) and (gn(g − 1))(k)

share z CM, f and g share∞ IM, then f = g.

The following question is inevitable.

Question 1.What happened if one do not consider the multiplicity into account for sharing �xed

point in Theorems E and F ?

Keeping in mind the above question, the present author [11] obtained the following result in

2010 for some general nonlinear differential polynomial.

Theorem G. Let f and g be two transcendental meromorphic functions, and let n, k and m be

three positive integers with n > 9k + 4m + 13. Let P (z) = amzm + ... + a1z + a0, where
a0(̸= 0), a1, ... , am(̸= 0) are complex constants. Suppose that [fnP (f)](k) and [gnP (g)](k)

share z IM, f and g share ∞ IM. Then either f = tg for a constant t such that td = 1, where

d = gcd(n+m, ..., n+m − i, ..., n), am−i ̸= 0 for some i ∈ {0, 1, 2, ...,m} or f and g satisfy
the algebraic equation R(f, g) = 0, where

R(f, g) = fn(amfm + ...+ a1f + a0)− gn(amgm + ...+ a1g + a0). (1.1)

It is now quite natural to ask the following question.

Question 2.What can be said if sharing �xed point in Theorems E - G is replaced with sharing

a nonzero polynomial ?

In 2011 Zhang and Xu [21] obtained the following result which dealt with Question 2.

Theorem H. Let f and g be two transcendental meromorphic functions, let p(z) be a nonzero
polynomial with deg(p) = l ≤ 5, n, k and m be three positive integers with n > 3k +m + 7.

Let P (w) = amwm + ... + a1w + a0 be a nonzero polynomial. If [fnP (f)](k) and [gnP (g)](k)

share p(z) CM, f and g share∞ IM, then one of the following three conclusions hold:

(i) f = tg for a constant t such that td = 1, where d = gcd(n+m, ..., n+m− i, ..., n), am−i ̸= 0

for some i ∈ {0, 1, 2, ...,m};
(ii) f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) is given by (1.1);
(iii) P (w) is reduced to a nonzero monomial, namely, P (w) = aiw

i ̸≡ 0 for some i ∈ {0, 1, ...,m};
if p(z) is not a constant, then f(z) = c1e

cQ(z), g(z) = c2e
−cQ(z), where Q(z) =

∫ z

0
p(z)dz, c1,

c2 and c are three constants satisfying a2i (c1c2)
n+i[(n + i)c]2 = −1, if p(z) is a nonzero con-

stant b, then f(z) = c3e
cz , g(z) = c4e

−cz , where c3, c4 and c are three constants such that

(−1)ka2i (c3c4)n+i[(n+ i)c]2k = b2.

In the same paper the authors posed the following question, as far as we know, this remains

open.
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Question 3. Is it really possible in any way to remove the condition deg(p) = l ≤ 5 in Theorem

H ?

In the paper, taking the possible answer of the above question into background we will prove

following two theorems �rst one of which improves Theorem H. Our second theorem will not

only improves Theorem G at the same time provide an IM-analogues result of Theorem H. The

following are the main results of the paper.

Theorem 1.1. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant

polynomial of degree l, and let n(≥ 1), k(≥ 1) andm(≥ 0) be three integers with n > max{3k+
m + 6, k + 2l}. In addition we suppose that either k, l are co-prime or k > l when l ≥ 2. Let

P (w) be de�ned as in Theorem H. If [fnP (f)](k) and [gnP (g)](k) share p(z) CM; f and g share

∞ IM, then the following conclusions hold:

(i) If P (w) = amwm + ...+ a1w+ a0 is not a monomial, then either f = tg for a constant t that
satis�es td = 1, where d = gcd(n+m, ..., n+m−i, ..., n), am−i ̸= 0 for some i ∈ {0, 1, 2, ...,m};
or f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) is given by (1.1). In

particular when m = 1 and Q(∞, f) +Q(∞, g) > 4/n then f = g.
(ii) When P (w) = c0 or P (w) = amwm, then either f = tg for a constant t that satis�es

tn+m∗
= 1, or f(z) = b1e

bQ(z), g(z) = b2e
−bQ(z), where Q(z) is a polynomial without constant

such that Q′(z) = p(z), b1, b2 and b are three constants satisfying c2
0
(nb)2(b1b2)n = −1 or

a2m((n+m)b)2(b1b2)n+m = −1, where

m∗ =

{
m if P (w) ̸= c0;

0 if P (w) = c0.

Remark 1.2. Theorem 1.1 improves Theorem H by reducing the lower bound of n.

Theorem 1.3. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant

polynomial of degree l, and let n(≥ 1), k(≥ 1) andm(≥ 0) be three integers with n > max{9k+
4m+ 11, k + 2l}. In addition we suppose that either k, l are co-prime or k > l when l ≥ 2. Let

P (w) be de�ned as in Theorem H. If [fnP (f)](k) and [gnP (g)](k) share p(z) IM; f and g share

∞ IM, then the conclusions of Theorem 1.1 hold.

Remark 1.4. Theorem 1.3 improves Theorem G by reducing the lower bound of n as well as

by generalizing the concept of �xed point sharing with sharing a nonzero polynomial. Thus

Theorem 1.3 is a two fold improvement of Theorem G. Also it provide an IM-analogues result

of Theorem H.

We now explain the following de�nitions and notations which are used in the paper.

De�nition 1.5. [8] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting function of

simple a points of f . For a positive integer p we denote by N(r, a; f |≤ p) the counting function
of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater

than p. ByN(r, a; f |≤ p) we denote the corresponding reduced counting function. Analoguesly
we can de�ne N(r, a; f |≥ p) and N(r, a; f |≥ p).

De�nition 1.6. Let a be any value in the extended complex plane, and let k(≥ 0) be an integer.
We denote byNk(r, a; f) the counting function of a-points of f , where an a-point of multiplicity
m is countedm times ifm ≤ k and k times ifm > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k).

De�nition 1.7. [8] Let k be a nonnegative integer or in�nity. For a ∈ C ∪ {∞} we denote by

Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m times if

m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with

weight k.

The de�nition implies that if f , g share a value a with weight k, then z0 is an a-point of f
with multiplicitym(≤ k) if and only if it is an a-point of g with multiplicitym(≤ k) and z0 is an
a-point of f with multiplicitym(> k) if and only if it is an a-point of g with multiplicity n(> k),
where m is not necessarily equal to n.
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We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g
share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g share a

value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

De�nition 1.8. [1] Let f and g be two nonconstant meromorphic functions such that f and g
share the value a IM where a ∈ C ∪ {∞}. Let z0 be an a-point of f with multiplicity p and also
an a-point of g with multiplicity q. We denote byNL(r, a; f) (NL(r, a; g)) the reduced counting
function of those a-points of f and g, where p > q ≥ 1 (q > p ≥ 1).

De�nition 1.9. [8] Let f and g be two nonconstant meromorphic functions such that f and g
share the value a IM. We denote by N∗(r, a; f, g) the reduced counting function of those a-
points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.
Then

N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

2 Lemmas

Let F and G be two nonconstant meromorphic functions de�ned in the complex plane C. We

denote by H the following function:

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G− 1

)
.

Lemma 2.1. [20] Let f be a nonconstant meromorphic function, and p, k be two positive inte-

gers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.2)

By the similar arguments to the proof of Lemma 3 [16] we get the following lemma.

Lemma 2.2. Let F , G be two nonconstant meromorphic functions sharing 1 CM and∞ IM, and

assume that H ̸≡ 0. Then

(i) T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,∞;F ) + S(r, F ) + S(r,G);
(ii) T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,∞;G) + S(r, F ) + S(r,G).

Lemma 2.3. [11] Let F , G be two nonconstant meromorphic functions that share 1, ∞ IM and

H ̸≡ 0. Then

(i) T (r, F ) ≤ N2(r, 0;F ) + N2(r, 0;G) + 3N(r,∞;F ) + 2N(r,∞;G) + N∗(r,∞;F,G) +
2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G);
(ii) T (r,G) ≤ N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F ) + 3N(r,∞;G) + N∗(r,∞;F,G) +
N(r, 0;F ) + 2N(r, 0;G) + S(r, F ) + S(r,G).

Lemma 2.4. [15] Let f be a nonconstant meromorphic function and let an(z)(̸≡ 0), an−1(z), ...
, a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.5. [7] Suppose that f is a nonconstant meromorphic function, k ≥ 2 is an integer. If

N(r,∞; f) +N(r, 0; f) +N(r, 0; f (k)) = S

(
r,
f ′

f

)
,

then f = eaz+b, where a(̸= 0), b are constants.

The following lemma can be proved in the line of the proof of Lemma 9 [21].
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Lemma 2.6. Let f and g be two transcendental meromorphic functions, p(z) be a nonconstant

polynomial of degree l, and let n(≥ 1), k(≥ 1) and m(≥ 0) be three integers with n > k+ 2l. If
f , g share ∞ IM and

(fnP (f))(k)(gnP (g))(k) = p2(z),

where P (w) is same as in Theorem H, then P (w) is reduced to a nonzero monomial, namely

P (w) = aiw
i ̸≡ 0 for some i ∈ {0, 1, ...,m}.

Lemma 2.7. Let f and g be two nonconstant meromorphic functions, p(z) be a nonconstant

polynomial of degree l, and let n, m and k be three positive integers with n > k + 2l. Futher

assume that either k, l are coprime or k > l when l ≥ 2. If f , g share ∞ IM and

(fnP (f))(k)(gnP (g))(k) = p2(z), (2.3)

where P (z) = amzm or P (z) = c0, then f(z) = b1e
bQ(z), g(z) = b2e

−bQ(z), where b1, b2 and b
are three constants satisfying a2m((n+m)b)2(b1b2)n+m = −1 or c2

0
(nb)2(b1b2)n = −1 andQ(z)

is same as in Theorem 1.1.

Proof. Let P (z) = amzm. The case P (z) = c0 can be proved similarly. First we assume that

k = 1. Then (2.3) becomes

(amfn+m)′(amgn+m)′ = p2(z). (2.4)

Noting that f and g share ∞ IM and n > k + 2l, we deduce from (2.4) that f and g have no

zeros. We put

f = eα, g = eβ , (2.5)

where α and β are two nonconstant entire functions. Therefore from (2.4) we get

a2m(n+m)2α′β′e(n+m)(α+β) = p2(z).

From this it follows that α, β must be polynomials and α+ β ≡ k1, where k1 is a constant. Thus
deg(α) = deg(β). Therefore α′ + β′ ≡ 0 and

a2m(n+m)2α′β′e(n+m)k1 = p2(z).

Simplifying we obtain α′ = bp(z) and β′ = −bp(z), where b(̸= 0) is a constant. This gives

α = bQ(z) + d1 and β = −bQ(z) + d2, where Q(z) is a polynomial without constant such that
Q′(z) = p(z) and d1, d2 are constants. Therefore

f = b1e
bQ(z), g = b2e

−bQ(z),

where b1, b2 and b are three constants satisfying

a2m((n+m)b)2(b1b2)
n+m = −1.

If k ≥ 2 then (2.3) becomes

(amfn+m)(k)(amgn+m)(k) = p2(z). (2.6)

Since f and g are transcendental meromorphic functions sharing∞ IM , from (2.6) we obtain

N
(
r, 0; (amfn+m)(k)

)
= O{log r}.

From this and (2.5) we get

N(r,∞; amfn+m) +N(r, 0; amfn+m) +N
(
r, 0; (amfn+m)(k)

)
= O{log r}.
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Suppose that α is a transcendental entire function. Then by Lemma 2.5 we deduce that α is

a polynomial, a contradiction. Next we assume that α, β are polynomials of degree p1 and p2
respectively. If p1 = p2 = 1, then

f = eAz+B , g = eCz+D,

where A(̸= 0), B, C (̸= 0) and D are constants. So from (2.6) we obtain

a2m(AC)k(n+m)2ke(n+m){(A+C)z+(B+D)} = p2(z),

which is impossible. Thus max{p1, p2} > 1. We assume that p1 > 1. Then (λfn+m)(k) =
Q1e

(n+m)α and (λgn+m)(k) = Q2e
(n+m)β , where Q1, Q2 are polynomials of degree k(p1 − 1)

and k(p2−1) respectively. Therefore from (2.6) we obtain α+β ≡ k2, a constant, and therefore
p1 = p2 and k(p1 − 1) = l. This shows that l ≥ k ≥ 2, contradicting with the assumption that k,
l are prime to each other. This proves the lemma.

Lemma 2.8. [18] Let f and g be two nonconstant meromorphic functions that share 1 IM. Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f).

The similar result holds for g also.

Lemma 2.9. [17] Suppose that F and G be two nonconstant meromorphic functions, and

V =

(
F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

)
. (2.7)

If F , G share ∞ IM and V ≡ 0, then F ≡ G.

Lemma 2.10. Let f and g be two nonconstant meromorphic functions, and let n(≥ 1), k(≥ 1)

and m(≥ 0) be three integers. Suppose that V is given as in (2.7), where F = (fnP (f))(k)

p(z) ,

G = (gnP (g))(k)

p(z) , P (w), p(z) are de�ned as in Theorem 1.1. If V ̸≡ 0, F and G share 1 CM, f

and g share ∞ IM, then the poles of F and G are zeros of V and(
n+m∗ − k − 1

)
N(r,∞; f |≥ 1) =

(
n+m∗ − k − 1

)
N(r,∞; g |≥ 1)

≤ (k +m∗ + 1){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

where m∗ is de�ned as in Theorem 1.1.

Proof. We note that the order of the possible poles of F and G are at least n+m∗ + k as f and

g share∞ IM. Thus F and G share (∞, n+m∗ + k − 1). Now using the Milloux theorem (See

[7], p. 55) and Lemma 2.4, we obtain from the de�nition of V that

m(r, V ) = S(r, f) + S(r, g).

Thus using (2.2) we get(
n+m∗ + k − 1

)
N(r,∞; f |≥ 1) =

(
n+m∗ + k − 1

)
N(r,∞; g |≥ 1)

=
(
n+m∗ + k − 1

)
N
(
r,∞;F |≥ n+m∗ + k

)
≤ N(r, 0;V )

≤ T (r, V ) +O(1)

≤ N(r,∞;V ) +m(r, V ) +O(1)

≤ N(r, 0;F ) +N(r, 0;G) + S(r, f) + S(r, g)

≤ Nk+1(r, 0; f
nP (f)) + kN(r,∞; f |≥ 1)

+Nk+1(r, 0; g
nP (g)) + kN(r,∞; g |≥ 1)

+S(r, f) + S(r, g).
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This gives(
n+m∗ − k − 1

)
N(r,∞; f |≥ 1) =

(
n+m∗ − k − 1

)
N(r,∞; g |≥ 1)

≤ (k +m∗ + 1){T (r, f) + T (r, g)}
+S(r, f) + S(r, g).

This completes the proof of the lemma.

Arguing similarly as in the proof of Lemma 2.10 above and using Lemma 2.8 we obtain the

following lemma.

Lemma 2.11. Suppose that f and g be two nonconstant meromorphic functions. Let V be given

by (2.7), F , G are de�ned as in Lemma 2.10 and V ̸≡ 0. If f and g share ∞ IM, F and G share

1 IM, then the poles of F and G are zeros of V and(
n+m∗ − 3k − 3

)
N(r,∞; f |≥ 1) =

(
n+m∗ − 3k − 3

)
N(r,∞; g |≥ 1)

≤ 2(k +m∗ + 1){T (r, f) + T (r, g)}
+S(r, f) + S(r, g),

where m∗ is de�ned as in Theorem 1.1.

Lemma 2.12. Let f and g be two transcendental meromorphic functions, and let n(≥ 1), k(≥ 1),
m(≥ 0) be three integers. Suppose that F andG are de�ned as in Lemma 2.10. If there exist two

nonzero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) = N(r, 0;F ),
then n ≤ 3k +m∗ + 3.

Proof. We omit the proof since it can be carried out in the line of Lemma 2.14 [11].

Lemma 2.13. Let f and g be two nonconstant meromorphic functions such that

Q(∞, f) +Q(∞, g) >
4

n
,

where n(≥ 3) is an integer. Then

fn(af + b) = gn(ag + b)

implies f = g, where a, b are two nonzero constants.

Proof. The proof of the lemma can be carried out in the line of Lemma 6 [10]. Here we omit the

details.

3 Proof of the Theorem

Proof of Theorem 1.3. We discuss the following three cases separately.

Case (i) Let P (z) = amzm + am−1z
m−1 + ... + a1z + a0 is not a monomial. Suppose that F

and G are de�ned as in Lemma 2.10. Then F , G are transcendental meromorphic functions that

share (1, 0) and (∞, n+m+ k − 1). Therefore

N∗(r,∞;F,G) ≤ N(r,∞;F |≥ n+m+ k) = N(r,∞; f |≥ 1).

We assume that H ̸≡ 0. Then F ̸≡ G. So from Lemma 2.9 we have V ̸≡ 0. From Lemma 2.4

and (2.1) we obtain

N2(r, 0;F ) ≤ N2

(
r, 0; (fnP (f))(k)

)
+ S(r, f)

≤ T
(
r, (fnP (f))(k)

)
− (n+m)T (r, f) +Nk+2(r, 0; f

nP (f))

+S(r, f)

≤ T (r, F )− (n+m)T (r, f) +Nk+2(r, 0; f
nP (f))

+O{log r}+ S(r, f). (3.1)
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Similarly

N2(r, 0;G) ≤ T (r,G)− (n+m)T (r, g) +Nk+2(r, 0; g
nP (g)) +O{log r}+ S(r, g). (3.2)

Again by (2.2) we have

N2(r, 0;F ) ≤ Nk+2(r, 0; f
nP (f)) + kN(r,∞; f) + S(r, f), (3.3)

and

N2(r, 0;G) ≤ Nk+2(r, 0; g
nP (g)) + kN(r,∞; g) + S(r, g). (3.4)

From (3.1) and (3.2) we get

(n+m){T (r, f) + T (r, g)} ≤ T (r, F ) + T (r,G) +Nk+2(r, 0; f
nP (f))

+Nk+2(r, 0; g
nP (g))−N2(r, 0;F )

−N2(r, 0;G) +O{log r}+ S(r, f) + S(r, g). (3.5)

Then using Lemma 2.3, Lemma 2.4, (3.3) and (3.4) we obtain from (3.5)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) + 5N(r,∞;F ) + 5N(r,∞;G)

+2N∗(r,∞;F,G) + 3N(r, 0;F ) + 3N(r, 0;G)

+Nk+2(r, 0; f
nP (f)) +Nk+2(r, 0; g

nP (g))

+O{log r}+ S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; f
nP (f)) + 2Nk+2(r, 0; g

nP (g))

+3Nk+1(r, 0; f
nP (f)) + 3Nk+1(r, 0; g

nP (g))

+(4k + 5)N(r,∞; f) + (4k + 5)N(r,∞; g)

+2N∗(r,∞;F,G) +O{log r}+ S(r, f) + S(r, g)

≤ (5k + 5m+ 7){T (r, f) + T (r, g)}+ (4k + 6)(N(r,∞; f)

+N(r,∞; g)) +O{log r}+ S(r, f) + S(r, g). (3.6)

We note that as f and g are transcendental meromorphic functions

log r = o{T (r, f)}.

Therefore using Lemma 2.4 and Lemma 2.11 we deduce from (3.6)

(n− 9k − 4m− 7){T (r, f) + T (r, g)} ≤ 12N(r,∞; f |≥ 1)

≤ 24(k +m+ 1)

n+m− 3k − 3
{T (r, f) + T (r, g)}

+S(r, f) + S(r, g).

This gives

[(n− 9k − 4m− 7)(n+m− 3k − 3)− 24(k +m+ 1)]{T (r, f) + T (r, g)}
≤ S(r, f) + S(r, g),

a contradiction as n > max{9k + 4m+ 11, k + 2l}.
Next we assume that H = 0. Then(

F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B, (3.7)



54 Pulak Sahoo

where A(̸= 0), B are constants. We now discuss the following three subcases.

Subcase (i) Let B ̸= 0 and A = B. Then from (3.7) we get

1

F − 1
=

BG

G− 1
. (3.8)

If B = −1, then from (3.8) we obtain

FG = 1,

i.e.,

(fnP (f))(k)(gnP (g))(k) = p2(z),

a contradiction by Lemma 2.6.

If B ̸= −1, from (3.8), we have 1

F = BG
(1+B)G−1

and so N(r, 1

1+B ;G) = N(r, 0;F ). Now from

the second fundamental theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1+B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G).

Using (2.1) and (2.2) we obtain from above inequality

T (r,G) ≤ Nk+1(r, 0; f
nP (f)) + kN(r,∞; f) + T (r,G) +Nk+1(r, 0; g

nP (g))

−(n+m)T (r, g) +N(r,∞; g) +O{log r}+ S(r, g).

Hence

(n+m)T (r, g) ≤ (2k +m+ 1)T (r, f) + (k +m+ 2)T (r, g) + S(r, g).

Similarly

(n+m)T (r, f) ≤ (k +m+ 2)T (r, f) + (2k +m+ 1)T (r, g) + S(r, g).

Combining the above two inequality we obtain

(n− 3k −m− 3){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > max{9k + 4m+ 11, k + 2l}.
Subcase (ii) Let B ̸= 0 and A ̸= B. Then from (3.7) we get F = (B+1)G−(B−A+1)

BG+(A−B) and so

N(r, B−A+1

B+1
;G) = N(r, 0;F ). Proceeding as in Subcase (i) we arrive at a contradiction.

Subcase (iii) Let B = 0 and A ̸= 0. Then (3.7) gives F = G+A−1

A and G = AF − (A − 1). If

A ̸= 1, we have N(r, A−1

A ;F ) = N(r, 0;G) and N(r, 1 − A;G) = N(r, 0;F ). Using Lemma

2.12 we have n ≤ 3k +m+ 3, a contradiction. Thus A = 1 and hence F = G. Then

[fnP (f)](k) = [gnP (g)](k).

Integrating we get

[fnP (f)](k−1) = [gnP (g)](k−1) + ck−1,

where ck−1 is a constant. If ck−1 ̸= 0, using Lemma 2.12 we deduce that n ≤ 3k + m, a

contradiction. Thus ck−1 = 0. Repeating the process k-times, we obtain

fnP (f) = gnP (g).

That is

fn(amfm + ...+ a1f + a0) = gn(amgm + ...+ a1g + a0). (3.9)
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Whenm = 1 the theorem follows from Lemma 2.13. Whenm ≥ 2, let h = f
g . If h is a constant,

putting f = gh in (3.9) we get

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + ...+ a0g

n(hn − 1) = 0,

which implies hd = 1, where d = gcd(n +m, ..., n +m − i, ..., n + 1, n), am−i ̸= 0 for some

i ∈ {0, 1, ...,m}. Thus f = tg for a constant t such that td = 1, d = gcd(n + m, ..., n + m −
i, ..., n+ 1, n), am−i ̸= 0 for some i ∈ {0, 1, ...,m}.

If h is not a constant, then from (3.9) we see that f and g satisfy the algebraic equation

R(f, g) = 0, where R(f, g) is given by (1.1).

Case (ii) Now we assume that P (z) = amzm, where am (̸= 0) is a complex constant. Let

F = (amfn+m)(k)

p(z) andG = (amgn+m)(k)

p(z) . Then F andG are transcendental meromorphic functions

that share (1, 0) and (∞, n +m + k − 1). Proceeding in the like manner as Case (i) above we

obtain either FG = 1 or F = G.
If FG = 1, then

(amfn+m)(k)(amgn+m)(k) = p2(z).

So by Lemma 2.8 we obtain f(z) = b1e
bQ(z), g(z) = b2e

−bQ(z), where b1, b2 and b are three
constants satisfying a2m((n + m)b)2(b1b2)n+m = −1 and Q(z) is same as in Theorem 1.1. If

F = G, then using Lemma 2.12 and proceeding similarly as in Case (i) we obtain f = tg for a
constant t such that tn+m = 1.

Case (iii) Let P (z) = c0 where c0 is a complex constant. Taking F = (c0f
n)(k)

p(z) , G = (c0g
n)(k)

p(z) and

arguing similarly as in Case (ii) we obtain either f(z) = b1e
bQ(z), g(z) = b2e

−bQ(z), where b1,
b2 and b are three constants satisfying c2

0
(nb)2(b1b2)n = −1, Q(z) is same as in Theorem 1.1 or

f = tg for a constant t satisfying tn = 1. This completes the proof of the theorem.

Proof of Theorem 1.1. Let P (z) = amzm + am−1z
m−1 + ... + a1z + a0 is not a monomial.

Suppose that F andG are de�ned as in Lemma 2.10. Then F ,G are transcendental meromorphic

functions that share (1,∞) and (∞, n+m+ k − 1). Therefore

N∗(r,∞;F,G) ≤ N(r,∞;F |≥ n+m+ k) = N(r,∞; f |≥ 1).

If possible, we assume that H ̸≡ 0. Then F ̸≡ G. So from Lemma 2.9 we have V ̸≡ 0. Then

using Lemma 2.2, Lemma 2.4, (3.3) and (3.4) we deduce from (3.5)

(n+m){T (r, f) + T (r, g)} ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,∞;F ) + 3N(r,∞;G)

+Nk+2(r, 0; f
nP (f)) +Nk+2(r, 0; g

nP (g))

+O{log r}+ S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; f
nP (f)) + 2Nk+2(r, 0; g

nP (g))

+(k + 3)N(r,∞; f) + (k + 3)N(r,∞; g)

+O{log r}+ S(r, f) + S(r, g)

≤ (2k + 2m+ 4){T (r, f) + T (r, g)}+ (k + 3)(N(r,∞; f)

+N(r,∞; g)) +O{log r}+ S(r, f) + S(r, g). (3.10)

Noting that f and g are transcendental meromorphic functions, using Lemma 2.4 and Lemma

2.10 we deduce from (3.10)

(n− 2k −m− 4){T (r, f) + T (r, g)} ≤ 2(k + 3)N(r,∞; f |≥ 1)

≤ 2(k + 3)(k +m+ 1)

n+m− k − 1
{T (r, f) + T (r, g)}

+S(r, f) + S(r, g).

This gives

[(n− 2k −m− 4)(n+m− k − 1)− 2(k + 3)(k +m+ 1)]{T (r, f) + T (r, g)}
≤ S(r, f) + S(r, g),
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which leads to a contradiction as n > max{3k + m + 6, k + 2l}. If H = 0, arguing similarly

as in the proof of Theorem 1.3 above we obtain the conclusions of Theorem 1.1. The case when

P (z) = amzm, where am (̸= 0) is a complex constant or P (z) = c0 the theorem follows from

Case (ii) and Case (iii) of Theorem 1.3. This proves the theorem.
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