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Abstract Traditional concepts such as a metric space is fascinating since it facilitates a notion
that measures distance between two points. Recently, many mathematicians have been interested
in generalizing the notion of various spaces by extending it from two points to n points, n >
2. These new n-dimensional generalized spaces leave room for further development in fixed
point theory and allow for new fixed point theorems to emerge. In this paper we introduce M -
menger spaces defined on n > 2 points and a fixed point theorem in an M -menger space is also
established and validated.

1 Introduction

Menger spaces are probabilistic metric spaces equipped with a t-norm that associates a pair
of points with a distribution function. The presumption of Menger was to create a metric by
substituting real numbers in the definition of metric spaces with distribution functions. More
precisely, in place of distance between two points, Menger proposed a distribution function
Fab(α) that can be understood as probability that the distance or length between the pair of points
a and b is less than some positive value α. Menger initially called this new space a statistical
metric space [1]. Shortly after, Wald suggested minor improvements to statistical metric spaces
[2]. A statistical metric space with Wald improvements began to be referred to as a Menger
space by subsequent authors including Schweizer and Sklar who released a book that details
probabilistic metric spaces [3].

In 2016, Gupta and Kanwar introduced V -fuzzy metric spaces [4]. A V -fuzzy metric space
as a generalized version of a fuzzy metric space. In order to achieve this generalization they built
upon the existing literature and extended the concepts further.

We begin the same approach as Gupta and Kanwar and extend the concepts involving menger
spaces in order to introduce a generalized version of the menger space which we shall call an
M -menger space.

2 Menger Space

Definition 2.1. [3] A t-norm is a function ∗ : [0, 1] × [0, 1] → [0, 1] such that the following are
satisfied for all p, q, r, s ∈ [0, 1],

(i) p ∗ 1 = p (1 acts as the identity element)

(ii) p ∗ q = q ∗ p (symmetry)

(iii) p ∗ q ≤ r ∗ s whenever p ≤ r and q ≤ s (non-decreasing)

(iv) p ∗ (q ∗ r) = (p ∗ q) ∗ r. (associative).

Additionally, we say that a t-norm ∗ is a continuous if for every sequence {xn} and {yn} in
[0, 1] whose limit exist,

lim
n→∞

(xn ∗ yn) = lim
n→∞

xn ∗ lim
n→∞

yn, for all n ∈ N.
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Definition 2.2. [3] F : [−∞,∞] → [0, 1] is said to be a distribution function or simply a distri-
bution provided that it is left continuous, non-decreasing, F (−∞) = 0 and F (∞) = 1.

Example 2.3. Define H : [−∞,∞]→ [0, 1] by,

H(t) =

{
0, t ≤ 0
1, t > 0

.

H is called the Heaviside function and it is a distribution function.

Definition 2.4. [3] A function F : X ×X → S is called a probabilistic distance on X where X
be a non-empty set and S be the set of all distribution functions on [−∞,∞]. F (x, y) is usually
denoted by Fxy for all x, y ∈ X .

Definition 2.5. [3] A probabilistic metric space is a pair (X,F ) where X is a non-empty set and
F is a probabilistic distance such that following conditions holds for all x, y, z ∈ X ,

(i) Fxy(t) = 1, for all t > 0 if and only if x = y

(ii) Fxy(0) = 0

(iii) Fxy(t) = Fyx(t) for all t ≥ 0

(iv) If Fxy(t) = 1, Fyz(s) = 1 then Fxz(t+ s) = 1 for all t, s > 0.

Remark 2.6. [1] Fab(t) can be interpreted as probability of the distance between a and b is less
than t

Definition 2.7. [3] Suppose (X,F ) is a probabilistic metric space and ∗ is a continuous t-norm.
(X,F, ∗) is a Menger space if

Fxy(t+ s) ≥ Fxz(t) ∗ Fzy(s),

where x, y, z ∈ X with t, s ≥ 0.

3 Convergence, Cauchy Sequences and Completeness in a Menger Space

In this section (X,F, ∗) denotes a Menger space and * to mean a continuous t-norm, X a non-
empty set and F : X ×X → S where S is the set of all distribution functions.

Definition 3.1. A sequence {xn} in (X,F, ∗) is said to be convergent and converges to x ∈ X
if and only if for every ε > 0 and λ ∈ (0, 1), there exists an integer N = N(ε, λ) such that,
Fxnx(ε) > 1− λ for n ≥ N and we write, xn → x as n→∞ or limn→∞ xn = x.

Definition 3.2. A sequence {xn} in (X,F, ∗) is Cauchy sequence if for every 0 < λ < 0 and
ε > 0, there exist N ∈ N such that Fxnxm

(ε) > 1− λ for all for n,m ≥ N .

Definition 3.3. A Menger space is complete if every sequence that is Cauchy is also convergent.

4 M -Menger Space

Definition 4.1. Suppose that ∗ a continuous t-norm, X a non-empty set and F : Xn → S, where
S is the set of all distribution functions. Then the triple (X,F, ∗) is an M-menger space provided
that for all xi ∈ X, i = 1, 2, ..., n,

(i) Fx1x2...xn
(t) = 1 for all t > 0 if and only if x1 = x2 = · · · = xn,

(ii) Fx1x1...x1x2(t) ≥ Fx1x2...xn(t) with x2 6= x3 6= · · · 6= xn, where t ≥ 0,

(iii) Fx1x2...xn(0) = 0,

(iv) Fx1x2...xn(t) = Fp(x1x2...xn)(t) where p(x1x2...xn) is a permutation of {x1x2...xn} for all
t ≥ 0,
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(v) If Fx1x2...xn−1a(t) = 1, Faa...axn(t) = 1 then Fx1x2...xn−1xn(t) = 1, where t > 0,

(vi) Fx1x2...xn
(t) = 1 as t→∞,

(vii) Fx1x2...xn−1xn
(t+ s) ≥ Fx1x2...xn−1z(t) ∗ Fzz...zxn

(s), where t, s ≥ 0.

Remark 4.2. Fx1x2...xn
(t) can be interpreted as probability of the distance between the points

x1, x2, ..., xn is less than t.

5 Convergence, Cauchy Sequences and Completeness in an M -Menger
Space

In this section (X,F, ∗) will be understood to be an M -menger space where ∗ a continuous
t-norm, X a non-empty set and F : Xn → S, where S is the set of all distribution functions.

Definition 5.1. A sequence {xn} is convergent and converges to x ∈ X if for all t > 0 and
0 < λ < 1, there exist N ∈ N such that,

Fxnxn...xnx(t) > 1− λ,

for all n ≥ N . That is Fxnxn...xnx(t)→ 1 as n→∞.

Definition 5.2. A sequence {xn} is Cauchy if for all t > 0 and 0 < λ < 1, there is an N ∈ N
such that

Fxnxn...xnxm
(t) > 1− λ,

for all n,m ≥ N . That is Fxnxn...xnxm(t)→ 1 as n,m→∞.

Definition 5.3. If every sequence that is Cauchy is also convergent then the M -menger space is
complete.

Lemma 5.4. Fx1x2...xn
(·) is non-decreasing. That is for all 0 < r < t,

Fx1x2...xn(r) ≤ Fx1x2...xn(t).

Proof. Since r < t we have that t− r > 0. Now

Fx1x2x3...xn
(r) ∗ Fxnxnxn...xn

(t− r) ≤ Fx1x2x3...xn
(t).

Hence for all 0 < r < t we have

Fx1x2...xn
(r) ≤ Fx1x2...xn

(t).

Lemma 5.5. If for all t > 0 and x1, x2, ..., xn ∈ X there exist 0 < k < 1 such that

Fx1x2...xn(kt) ≥ Fx1x2...xn(t),

then x1 = x2 = · · · = xn.

Proof. Since kt < t, by the previous lemma and our hypothesis, we have Fx1x2...xn
(kt) ≤

Fx1x2...xn
(t) ≤ Fx1x2...xn

(kt).
This implies Fx1x2...xn

(kt) = Fx1x2...xn
(t). In a similar manner since t < t

k < t
k2 < ..., we

get

Fx1x2...xn
(kt) = Fx1x2...xn

(t) = Fx1x2...xn

(
t

k

)
= · · · =→ 1.

Hence x1 = x2 = · · · = xn.

We denote the set of closed, bounded and non-empty subsets of X by CBM (X).
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Lemma 5.6. If for every t > 0 and x ∈ X with k ∈ (0, 1) and A ⊆ CBV (X) we have,

Fx,A,...,A(kt) ≥ Fx,A,...,A(t),

then x ∈ A.

Proof. Assume for a contraction that
x /∈ A. (5.1)

Let a ∈ A. Then Fx,a,...,a(kt) ≥ Fx,a,...,a(t). This implies x = a ∈ A by Lemma 5.5. This
contradicts (5.1). Hence x ∈ A.

Definition 5.7. Let A1, A2, ..., An ⊆ CBM (X) and t > 0. The Hausdorff M -menger space
distance we denoted by HA1A2...An

(t) and defined it as

HA1A2...An
(t) = max


Supx∈A1FxA2A3...An(t),

Supx∈A2FA1xA3...An
(t),

...,
Supx∈AnFA1A2...An−1x(t)

 ,

where
FxA2...An(t) = inf{Fxa2a3...an(t) : a2 ∈ A2, a3 ∈ A3, ..., an ∈ An},

...,
FA1A2...An−1x(t) = inf{Fa1a2...an−1x(t) : a1 ∈ A1, a2 ∈ A2, ..., an−1 ∈ An−1},

Definition 5.8. Γ : X → CBM (X) is called a q multivalued quasi-contraction mapping provided
that there exist 0 ≤ q < 1 such that

HΓa1Γa2...Γan
(t) ≤ r.max



Fa1a2...an
(t),

Fa1Γa1Γa1...Γa1(t),

Fa1Γa2Γa3...Γan
(t),

Fa2Γa2Γa2...Γa2(t),

Fa2Γa1Γa3...Γan
(t),

...,
FanΓanΓan...Γan

(t),

FanΓa1Γa2...Γan−1(t)



.

for all ai ∈ Ai, i = 1, 2, ..., n,

6 Fixed Point Theorem in an M -Menger Space

Theorem 6.1. Suppose (X,F, ∗) is anM -menger space that is complete and Γ : X → CBM (X)
is a q-multivalued quasi-contraction. Then there exist u ∈ X with u ∈ Γu. That is Γ admits a
fixed point.

Proof. By definition of a q-multivalued quasi-contraction, there exist
0 ≤ q < 1 such that for all ai ∈ X, i = 1, 2, ..., n,

HΓa1,Γa2,...,Γan
(t) ≤ q.max



Fa1,a2,...,an
(t),

Fa1,Γa1,Γa1,...,Γa1(t),

Fa1,Γa2,Γa3,...,Γan
(t),

Fa2,Γa2,Γa2,...,Γa2(t),

Fa2,Γa1,Γa3,...,Γan
(t),

...,
Fan,Γan,Γan,...,Γan(t),

Fan,Γa1,Γa2,...,Γan−1(t)



. (6.1)
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It is clear that for some a1 ∈ A1, with a2 ∈ A2, a3 ∈ A3, ..., an ∈ An we have

Fa1,a2,...,an(t) ≤ HA1,A2,...,An(t).

Using this fact and setting x1 ∈ Γx0 with x2 ∈ Γx1, · · · , xn ∈ Γxn−1, Inequality 6.1 be-
comes,

Fx1x2...xn
(t) ≤ HΓx0,Γx1,...,Γxn−1(t)

≤ q.max



Fx0,x1,x2,...,xn−1(t),

Fx0,Γx0,Γx0,...,Γx0(t),

Fx0,Γx1,Γx2,...,Γxn−1(t),

Fx1,Γx1,Γx1,...,Γx1(t),

Fx1,Γx0,Γx2,...,Γxn−1(t),
...,

Fxn−1,Γxn−1,Γxn−1,...,Γxn−1(t),

Fxn−1,Γx0,Γx1,...,Γxn−2(t)



.

Similarly setting x2 ∈ Γx1, with x3 ∈ Γx2, · · · , xn+1 ∈ Γxn, Inequality 6.1 becomes,

Fx2,x3,...,xn+1(t) ≤ HΓx1,Γx2,...,Γxn(t)

≤ q.max



Fx1,x2,x3,...,xn
(t),

Fx1,Γx1,Γx1,...,Γx1(t),

Fx1,Γx2,Γx3,...,Γxn
(t),

Fx2,Γx2,Γx2,...,Γx2(t),

Fx2,Γx1,Γx3,...,Γxn
(t),

...,
Fxn,Γxn,Γxn,...,Γxn(t),

Fxn,Γx1,Γx1,...,Γxn−1(t)



.

Continuing in a similar fashion by Mathematical Induction we get a sequence {xk}∞k=0 such that

Fxk,xk+1,...,xk+n−1(t) ≤ HΓxk−1,Γxk,...,Γxk+n−2(t)

≤ q.max



Fxk−1,xk,xk+1,...,xk+n−2(t),

Fxk−1,Γxk−1,Γxk−1,...,Γxk−1(t),

Fxk−1,Γxk,Γsk+1,...,Γxk+n−2(t),

Fxk,Γxk,Γxk,...,Γxk
(t),

Fxk,Γxk−1,Γxk+1,...,Γxk+n−2(t),
...,

Fxk+n−2,Γxk+n−2,Γxk+n−2,...,Γxk+n−2(t),

Fxk+n−2,Γxk−1,Γxk,...,Γxk+n−3(t)



.

We now show that {xk}∞k=0 is Cauchy. If a = b (trivial case) we get Fxa,xa,...,xa,xb
(t) = 1 > 1−ε

where ε ∈ (0, 1) and therefore {xk} is Cauchy. Assume a < b and a 6= b. We have,
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Fxa,xa,...,xa,xb
(t) ≤ HΓxa−1,Γxa−1,...,Γxa−1,Γxb−1(t)

≤ q.max



Fxa−1,xa−1,...,xa−1,xb−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxa−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxb−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxa−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxb−1(t),
...,

Fxb−1,Γxb−1,...,Γxb−1,Γxb−1(t),

Fxb−1,Γxa−1,...,Γxa−1,Γxa−1(t)



= q.max



Fxa−1,xa−1,...,xa−1,xb−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxa−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxb−1(t),

Fxb−1,Γxb−1,...,Γxb−1,Γxb−1(t),

Fxb−1,Γxa−1,...,Γxa−1,Γxa−1(t)


.

Now we consider the five cases:
Case I: If

max



Fxa−1,xa−1,...,xa−1,xb−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxa−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxb−1(t),

Fxb−1,Γxb−1,...,Γxb−1,Γxb−1(t),

Fxb−1,Γxa−1,...,Γxa−1,Γxa−1(t)


= Fxa−1,xa−1,...,xa−1,xb−1(t).

Then as a, b→∞ and using the fact that q ∈ (0, 1) we have,

1 ≥ Fxa−1,xa−1,...,xa−1,xb−1(t) ≥
1
q
Fxa,xa,...,xa,xb

(t)

≥ 1
q2Fxa+1,xa+1,...,xa+1,xb+1(t)

≥ · · ·

≥ 1
qs+1Fxa+s,xa+s,...,xa+s,xb+s

(t), s ∈ N

≥ · · ·
≥ 1.

This implies that Fxa,xa,...,xa,xb
(t)→ 1 as a, b→∞. Therefore {xk}∞k=0 is Cauchy.

Case II: If

max



Fxa−1,xa−1,...,xa−1,xb−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxa−1(t),

Fxa−1,Γxa−1,...,Γxa−1,Γxb−1(t),

Fxb−1,Γxb−1,...,Γxb−1,Γxb−1(t),

Fxb−1,Γxa−1,...,Γxa−1,Γxa−1(t)


= Fxa−1,Γxa−1,...,Γxa−1,Γxa−1(t).
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Then as a, b→∞ and using the fact that q ∈ (0, 1) we have,

1 ≥ Fxa−1,Txa−1,...,Txa−1,Txa−1(t) ≥
1
q
Fxa,xa,...,xa,xb

(t)

≥ 1
q2Fxa+1,xa+1,...,xa+1,xb+1(t)

≥ · · ·

≥ 1
qs+1Fxa+s,xa+s,...,xa+s,xb+s

(t), s ∈ N

≥ · · ·
≥ 1.

This implies that Fxa,xa,...,xa,xb
(t) → 1 as a, b → ∞. Therefore {xk}∞k=0 is Cauchy. There

are three more cases that can be done similarly. In all five cases {xk}∞k=0 is Cauchy. By the
completeness property, there exist u ∈ X such that

Fxn,xn,...,xn,u(t)→ 1 as n→∞.

That is xn → u as n→∞. Now let p ∈ (0, 1). Then

Fu,Γu,...,Γu(t) ≤ 1 = Fu,u,,...,u(pt)

= lim
n→∞

Fxn,xn,...,xn(pt)

= lim
n→∞

Fxn,Γxn−1,...,Γxn−1(pt) since xn ∈ Γxn−1.

= Fu,Γu,...,Γu(pt).

Hence using Lemma 5.6, u ∈ Γu.
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