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Abstract In this paper, we introduce a descendant of ¢-fixed points, naturally termed as
¢-coincidence points. In follow, we present a ¢-fixed point theorem and a ¢-coincidence point
theorem, via b-simulation functions, in the turf of b-metric spaces; subsequently, we provide
some interesting examples using MATLAB. As a closure, we give an application, in the field of
quantum mechanics, to ensure the unique existence of a coincidence quantum state for
two quantum operations on the Bloch sphere.

1 Introduction

In recent decades, many fixed point results are obtained, by extending Banach contraction,
using control functions, to a general setup. Khojasteh et al.[13] posted the notion of simulation
functions, which is one of the renowned class of control functions; the notion is later modified
by Argoubi et al.[1] in 2015. Bakhtin[4] developed the notion of b-metric space to investigate
pattern matching problems; the first ever fixed point theorem, in this setup is proved by
Czerwik[9].

Bota et al.[7], Demmaa et al.[10], Babu and Mosissa[3], and Zada et al.[17] are some others,
who posted certain significant works in the context of b-metric spaces. In 2013, Samet et al.[16]
established that fixed point results on partial metric spaces can be derived directly from the
results in metric spaces, using a new lower semi-continuous mapping ¢ : X — [0,00). Later,
Jleli et al.[12] extended the results of Samet et al., by proposing the concept of ¢-fixed points.
The notion of p-coupled fixed point is defined and discussed by Fan et al.[11].

Quantum mechanics plays a vital role in cryptography; it enables two communicating
parties to detect whether the transmitted message has been intercepted by an eavesdropper. In
the domain of quantum theory, a unit of quantum information is known as a qubit, which can be
represented by a point on a sphere of unit radius called the Bloch sphere; a self mapping on the
Bloch sphere is often referred as a quantum operation. Many significant works are carried out,
in finding the conditions that ensures the existence of fixed states of certain quantum operations
(see [2, 5, 6, 8, 15, 18, 19]).

In section 2, we give all important prerequisites to go through the theory. In section 3, we
define the notion of (p-coincidence point; after that we present a ¢-fixed point theorem and a
(p-coincidence point theorem via b-simulation functions in the domain of b-metric spaces; further
we present some interesting examples, using MATLAB, in order to validate our results. In
section 4, we apply the theory, to attest the unique existence of a coincidence quantum state of
two quantum operations on the Bloch sphere.

2 Preliminaries

We start with the definition of a ¢-fixed point. Let f be a self mapping on S and let
¢ S — [0,00). An element u € S is said to be a ¢-fixed point[12] of f if f(u) = u
and p(u) = 0.
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Definition 2.1. [9] Let S be a nonempty set and b > 1. A mapping p : S* — [0, oc) is called as
a b-metric if it satisfies

B1) p(u,v) =0 u=m1;
(B2) p(u,v) = p(v,u);
(B3) p(u, w) < blp(u,v) + p(v, w)],
for all u, v, w € S. The pair (S, p) is called a b-metric space.
Definition 2.2. [1] A simulation function is a mapping ¢ : [0, c0)? — R that satisfies:

(1) ¢(p,v) <v—p,forall u,v>0;
(2) if {pn}, {vn} are two sequences in (0, co) so that

lim p, = lim v, =1>0,
n— o0 n—oo

then lim sup ¢ (pn, v) < 0.

n—oo
Definition 2.3. [10] Let b > 1. A b-simulation function is a mapping ¢ : [0,00)> — R that
satisfies the following conditions:
) ¢(p,v) <v—p,forall u,v>0;
(€2) if {pn}, {vn} are two sequences in (0, 0o) so that

0 < lim p, <liminfy, <limsupv, <b lim p, < oo,
n—oo n—oo n—oo n—oo

then lim sup ¢ (byn, v,) < 0.

n— oo

Example 2.4. Let b = 2 and let ¢ : [0,00)?> — R be defined as

{; —pif () €[0,1] x [0, 1];

y .
547 — # otherwise.

C(p,v) =

Then clearly, ¢(u, v) < v — u. We wish to show that, ¢ is a 2-simulation function. For, suppose
{pn}, {vn} are two sequences in (0, c0) so that

0< lim p, <liminfy, <limsupv, <2 lim u, < co.
n—o0 n—oo n—oo n—oo

If ¢(2ptn, vn) € 10, 1] x [0, 1] except for finitely many n, then

limsup ¢(2pn,vn,) = limsup (%l - Zyn)
n— 00 n—0o0
= limsup Un 2 liminf L
n—o0o n—0o0
< 0.

On the other hand, if ¢(2u,, vy) € [0, 1] x [0, 1], except for finitely many n, then

Un
limsup ((2un,v,) = limsup | ——m— —2
msup () = timsup (37 = 2
1Z
= 1l 2 _2liminf p,,
im P 3~ 2l
< 0.

Finally, suppose there exist subsequences {{(24tn,,Vn;)} and {¢(2pn;,vn,;)} such that
{C(2pn;,vm,)} € [0,1] x [0,1] and {(24tn,, vm,) ¢ [0, 1] x [0, 1]. Then we have

lim sup ¢ (24t , vn,;) < 0 and limsup ¢(24n,, vy;) <0,

1—+00 j—o0

which in turn implies that lim sup ¢ (2p,,, vy,) < 0, as desired.

n—oo
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3 Main results
We start this section, by proving a ¢-fixed point theorem involving b-simulation functions, in the
context of b-metric space.

Theorem 3.1. Let f be a self map on S. Let ¢ : S — [0, 00) be bijective and ( be a b-simulation
function so that

¢ (bp(u, f(u)), max{p(u), p(v)}) >0, forall u,v € S. 3.1
Then f has a unique p-fixed point.

Proof. Let up € S. Then p(uo, f(ug)) € [0,00). Since ¢ is onto, there exists u; € S such that
o(ur) = p(uog, f(ug)). Likewise construct a sequence {u, } so that o(u,) = p(un—1, f(un—1)).
Then from the contractive condition (3.1), we have

0 < ¢(bp(tn, f(un)), max{e(un), e(un)}) = C(bp(tuni1), ©(un)).
But by (¢1), we have ((bp(un+1),p(un)) < @(un) — bo(ups1), which in turn results that
bp(un+1) < @(uy). Also since b > 1, we have
O(tnt1) < bp(tni1) < @(un).

Thus it is clear to observe that, {¢(u,, )} is a decreasing sequence that is bounded below by 0 and
hence it has to converges to some limit /(say).

We wish to show that [ = 0. Suppose not, that is [ # 0, then by the contractive condition
(3.1), we have

0 < C(bp(un—1, f(un—1)), max{p(un—1), p(un-1)}) = C(bp(un), ¢(un-1)).
Now by taking lim sup on both sides, we get

n—roo

0 < limsup {(bp(un), p(un—1)),

n—oo

that contradicts (¢2) and hence [ = 0. Therefore

lim p(u,) =0.

n—oo

Sequentially, since ¢ is onto, there must exists u € S such that ¢(u) = 0. Thus all that it
remains to prove that f(u) = u. Now by using the contractive condition (3.1), we get that

0 < C(bp(u, f(u)), max{p(u), p(un)}) = C(bp(u, f(u)), ¢(un))-

Further, by using (¢1), we have bp(u, f(u)) < ¢(uy,), for all n. Hence by letting n — oo on both
sides, it is easy to see that, bp(u, f(u)) = 0 which in turn implies that f(u) = u. Now suppose
u’ is an other ¢-fixed point of f, then we have ¢(v’) = 0 and f(u') = «’. But since  is one-one,
we have u = ’ as desired. |

Corollary 3.2. Let f be a self map on S. Let ¢ : S — [0, 00) be bijective and { be a simulation
Sfunction such that

¢ (p(u, f(u)), max{e(u),p(v)}) 2 0, for all u,v € S.
Then f has a unique p-fixed point.
Proof. The proof follows trivially, by letting b = 1 in Theorem 3.1. O
Corollary 3.3. Let f be a self map on p. Let ¢ : S — [0, 00) be bijective such that
bp(u, f(u))
Y(z)dr < max{p(u),o(v)}, forall u,v € S,
0

where 1 : [0,00) — [0,00) is a mapping so that for every ¢ > 0, [(x)dx exists and
0

Y(x)dzx > e. Then f has a unique p-fixed point.

C—=an
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o
Proof. The proof follows obviously, if we let {(u,v) = v — [ 4(z)dz in Theorem 3.1. |
0

Example 3.4. Let S = [0, 1) and let

u—v?

p(uvv) = ‘U—U|2+1

be a b-metric. Then clearly (S, p) is a b-metric space, where b = 2. Let f : S — S be a mapping
defined by
f(u) =u?, forallu e S

and ¢ : S — [0, 00) be a mapping defined by

2
o(u) = ﬂ, forallu € S.
1—u

Then ¢ is bijective. Now if we let

Cluv) = {1 if (. v) = (0,0);

5 — pn otherwise,

then clearly ( is a simulation function. We claim that f, ¢ and ( satisfies the contractive condition
(3.1). Suppose both v and v are equal to zero, then we have

¢ (bp(u, f(u)), max{e(u), ¢(v)}) = (0,0) = 1> 0.

If both « and v are not equal to zero, then we have

COplu S maxl ol ) = ¢ (2 { 200 200 )

lu — w2241’

1 { 20u  20v } 2|u — u?|?
= -~ max - .

2 1—u' 1—w

I 0 5max(20uw/(
[ PR

u-

z axis

X axis y axis

Figure 1.

Therefore, from Fig. 1, we can conclude that

¢ (bp(u, f(u)), max{p(u), (v)}) = 0.

Sequentially, if we let w = 0 and v # 0, then we have

> 0.

1—wv 1—wv

¢ (bplu F(u)max{itu). o(0))) = ¢ (0725 ) = 12
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Similarly, suppose we let u # 0 and v = 0, then

w— w22 .
C(bP(Uvf(U)),maX{go(u),cp(v)}) = ¢ <| 2| ‘ 20 )

u—u22+1"1—-u
10u 20w — u?|?
l—u Ju—u?+1
0

v

as desired. Therefore, by Theorem 3.1, f has a unique ¢-fixed point 0 € S.

Note that, if we exclude the condition that ¢ is one-one in the hypothesis of Theorem 3.1,
then the inference that “ there exist a unique ¢-fixed point" in the theorem becomes questionable.
We justify our claim through the following example.

Example 3.5. Let S = (—oo, —1] U {0} and let p(u,v) = |u — v|*> be a b-metric. Then clearly
(S, p) is a b-metric space, with b = 2. Let f : S — Sand ¢ : S — [0,00) be the mappings
defined by

0 ifu=0

u* — 1 otherwise.

f(u) = wand p(u) = {

Then ¢ is not one-one. If we let {(u,v) = o7 — t. then clearly ( is a simulation function.
We claim that f, ¢ and ( satisfies the contractive condition (3.1). Now suppose v = 0 and
v = 0, then

¢ (bp(u, f(u)), max{p(u), o(v)}) = ¢(0,0) = 0.
If u # 0 and v = 0, then

U4 -
¢ (ol (), max{io(u), o)) = CO.u* ~ 1) = "2 L >0
Suppose u = 0 and v # 0, then
U4 —
¢ (ol (), max{ip(u), o (0)}) = C(0,0* ~ 1) = "L >0

Finally, If © # 0 and v # 0, then

¢ (bplon £ (), max{p(u), o(0)}) = € (0, maxfuit — 1,o* — 1})
max{u* — 1,v* — 1}
max{u* — 1,v* — 1} + 1

0.

Y

Thus we have
¢ (bp(u, f(u)), max{p(u), ¢(v)}) = 0
for all u,v € S as desired. But it is easy to see that —1 and O are y-fixed points of f.
Further, we note that, if we exclude the condition that “p is onto" in the hypothesis of

Theorem 3.1, then the existence of a p-fixed point becomes questionable. We justify our claim
through the forthcoming example.

Example 3.6. Let S = [0, 1] and let p(u,v) = |u — v|* be a b-metric. Then clearly (S, p) is a
b-metric space withb = 2. Let f : S — S and ¢ : S — [0, 00) be the functions defined by

fu) = % and o(u) = u+ 1,

then clearly ¢ is not onto. If we let

C(p,v) = % — p,for all p, v € [0, 00)
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to be the simulation function, then

¢ (bplun, £ (), max{p(u), o(v)}) = 5 max{u+ 1w+ 1) — 2|2

forall y,v € S.

0.9 —

0.8 —|

0.7 —

0.6 —|

0.5 —

z axis

0.4 —

0.3 —

0.2 —

0.1 —

0 —1

1
0.8 0.9 1

1 09 J
08 07 06 05 o4 03 02 o4 00 01 02 03 0.4 05 06 07
y axis X axis

Figure 2.

Therefore, from Fig. 2, it is visible that ¢ (bp(u, f(u)), max{p(u),p(v)}) > 0 for all
u,v € S, whereas f has no p—fixed point.

Definition 3.7. Let f, g be two self maps on S and let ¢ be a mapping from S to [0,00). An
element u € S is said to be a p-coincidence point if f(u) = g(u) and p(u) = 0.

Theorem 3.8. Let f, g be two self maps on S. Let o : S — [0, 00) be onto and ¢ be a b-simulation
Sfunction such that

C(bp(f(u), g(v)), max{p(u), p(v)}) > 0 for all u,v € S. (3.2)

Then f and g have a p-coincidence point. In addition, if either f or g is injective, then the
existence is unique.

Proof. Let ug € S, then p(f(uo),g(uo)) € [0,00); also as ¢ is onto, there exists u; € S such
that o(u1) = p(f(uo), g(up)). By continuing the argument repeatedly, it is easy to construct a
sequence {u, } such that p(u,) = p(f(un_1),g(u,_1)). Now by using the contractive condition
(3.2), we have

0 < C(bp(f(un),g(un)), max{p(un,), p(un)}) = ((bp(tn+i1), p(un)).

Further, by using (¢1), we get that 0 < ¢(bo(un+1), ¢(un)) < @(un) — bp(un+1), Which implies
bo(unt1) < @(uy,). Also since b > 1, we have

‘P(UnJrl) < b@(unﬂ) < @(Un)

Thus it results that {(u,)} is a decreasing sequence of real numbers that bounded below by 0
and hence it converges to some limit /(say).

We wish to show that [ = 0. Suppose not, that is [ # 0, then by the contractive condition
(3.2), we have

0 < C(bp(f(un—1), g(un—1)), max{p(un—1), p(un—1)}) = ¢(bp(un), p(tn-1)).

Sequentially, by taking lim sup on both sides, we get

n—oo

0 < limsup ¢(bo(un), p(un—1)),

n—oo
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which contradicts (¢2) and therefore [ = 0. That is,

lim ¢(u,) =0.

n—oo

Now since ¢ is onto, there exists u € S such that p(u) = 0. Here we claim that f(u) = g(u).
By using the contractive condition (3.2) and (1) consecutively, we have

0 < ((bp(f(u), g(un)), max{e(u), p(un)}) = C(bp(f (), g(un)), p(un)})

and
bp(f(u), g(un)) < @(un).

Further, since b > 1 and lim ¢(u,) = 0, we get that
n— o0

p(f(u), g(un)) < ¢(u,) and nlgr;o p(f(u), g(un)) = 0.

Similarly, we can prove that li_>m p(g(u), f(un)) = 0. Therefore

[e.°]

p(f(u),g(u)) = nli)n;o p(f(“n)vQ(“n)) = lim @(un-i—l) =0

n—oo

which in turn implies that f(u) = g(u).

Now all that remains to prove is the uniqueness of . Without loss of generality, let us assume
that f is one-one. Suppose v’ is an other ¢-coincidence point of f and g, then f(u') = g(v’) and
@(u’") = 0. By the contractive condition (3.2), we have

0 < ((bp(f (u), g(u)), max{eo(u), p(u')}) = ¢(bp(f(u), g(u')),0)

and therefore by (1), we get p(f(u),g(v')) = 0. Thus it results that f(u) = g(v') = f(u),
which in turn implies © = v’ as desired. O

Corollary 3.9. Let f, g be two self maps on S, ¢ : S — [0,00) be onto and ¢ be a simulation
Sfunction which satisfies the contractive condition

Clp(f(u),g(v)), max{p(u), p(v)}) > 0 forall u,v € S.

Then f and g have a p-coincidence point. Further, the existence is unique whenever either f or
g is injective

Proof. The proof follows, if we let b = 1 in Theorem 3.8. O

Corollary 3.10. Let f be a self maps on S, ¢ : S — [0,00) be onto and ¢ be a b-simulation
function which satisfies the contractive condition

C(bp(f(u),v), max{p(u),o(v)}) > 0 forall u,v € S.
Then f have a unique p-fixed point.
Proof. We get the proof, by letting g(u) = u in Theorem 3.8. ]

Corollary 3.11. Let f, g be two self maps on S, ¢ : S — [0,00) be onto which satisfies the
contractive condition

bp(f(u),9(v))
/ Y(z)dz < max{e(u),o(v)}, forall u,v € S,
0

where 1) : [0,00) — [0,00) is a function so that [ (x)dx exists and [ (x)dz > €, for each
0 0

€ > 0. Then f and g have a p-coincidence point. Moreover, if any one of the self maps is
injective, then the existence is unique.
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“w
Proof. The proof follows, if we let ((y, v) = v — [ ¢(x)dz in Theorem 3.8. i
0

Here we give an example, to show that the extra condition that ** either f or g is injective" is
not mandatory in Theorem 3.8.

Example 3.12. Let S = R be a b-metric with p(u,v) = (u — v)?, where b =2. Let f,g: S — S
be the self maps defined by

0 ifue[-2,2 0 ifue[-22
fy =10, B0E A gy < 40 e 22
|4| otherwise |%4| otherwise.

Let ¢ : S — [0, 00) be the mapping defined by ¢(u) = u? forall w € S and let {(p,v) =% — p
be the simulation function.

We claim that, ¢(bp(f(u), g(v)), max{¢(u), p(v)}) > 0forall u,v € S. For, if u,v € [-2,2],
then we have

C(bo(f(u), g(v)), max{p(u), p(v)}) = ¢(0,max{u?,v*})

1
= Emax{uz,vz} > 0.

Suppose u, v ¢ [-2,2], then
C(bo . g0 max(ewp0))) = ¢ (2([3] = 5]) " maxtuz )

= %max{uz,’vz} *2(‘%‘ B ’%Dz

4500 —
4000 —
3500 —
3000 —|

2500 —|

z axis

2000 —|

1500 ~—|

1000 —|

500 —|

0=l

y axis

Figure 3.

Therefore, from Fig. 3, it is easy to observe that {(bp(f(u), g(v)), max{p(u), p(v)}) > 0.
Sequentially, if we let u € [—2,2] and v ¢ [—2,2], then we have

¢ (2 ‘%)2 ,max{uz,v2}>

= 1max{uz,vz} -2 ‘%‘2

C(bp(f(u), g(v)), max{p(u), p(v)})

\S)

2 2 30?2

8 8

.o[\.)‘@
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Finally, suppose u ¢ [—2,2] and v € [-2,2], then

((bp(f(w), g(v)), max{p(u),p(v)}) =

Ty

(2 ’%’2 ,max{u>, v2}>

1 2

= Emax{uz,vz} -2 ’%‘
22

B 2

ON‘:

as desired. Also it can be seen clearly that, 0 € S is the only ¢-coincidence point of f and g.

Here note that, the condition that “y is onto" in the hypothesis of Theorem 3.8, is mandatory.
Indeed, in Example 3.12, if we let p(u) = u? + 1, then clearly ¢ will not be onto, whereas f
will be satisfying the condition ¢ (bp(f (), g(v)), max{p(u),(v)}) > 0, for all u,v € S. But in
fact, it is easy to observe that, f and g have no y-coincidence point.

4 Application

The Bloch sphere is a geometrical representation of a two dimensional Hilbert space and a qubit
or a quantum state is a unit vector in that space. A positive linear map on the Bloch sphere is
often referred as a quantum operation. In our work, we consider the geometrical representation
of the Hilbert space C?, consider as a vector space over the field of complex numbers endowed
with standard inner product; the north and south poles of the Bloch sphere are typically chosen

1
0 ) In general, a qubit
|1) in the Bloch sphere, can be written as a linear combination of |0) and |1) as

. 0
to correspond to the standard basis vectors |0) = ) and |1) =

[t) = cos <g> |0) + (cos ¢ +isin¢) sin <z> 1)

where 0 < 6§ < 7 and 0 < ¢ < 2. Moreover, a qubit |¢) in the Bloch sphere can be represented
as a vector in the unit sphere as

(u,v,w) = (sin @ cos ¢, sin § sin ¢, cos ).

Here we apply our theory to find whether there is any coincidence between any two given
quantum operations.
For consider the Bloch sphere Z = {(u,v,w) : ||(u,v,w)|| < 1}. Let p be a metric on &
defined by
p(x,y) = |ur — wa| + o1 — vaf 4 w1 — wal,
where x = (u1,v1,w;) and y = (uz, v2, wy).
Let f,g : Z — £ be the quantum operations defined by

oo | |
_ 1 o (rrvw 2
f(X)—(U,”U,”UJ) 0 2 0 +<07074) (272»4_'_4)
0 0 1}
and
% 0 0 1 2u 2v 1
- 2 I
g(X)—(U,U,’LU) 0 5 E)l +<05074> (5 ) 5,4 4>
0 0 &

for all x = (u,v,w) € 4, then both f,g are one-one and for any x = (uy,vi,w),
y = (uz, vz, w,) belongs to B, we have

(%] 21}2

2 5

up  2up

2 5 +

p(F().9(y)) = T+ 7

1l
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We wish to show that there exist a unique ¢-coincidence qubit of f and g.

- ix,y z)
I Bioch Sphere

5

0.5

0
05
El
H

05
0

]

Z axis

05

05

05
y axis

R X axis

I x.y.2)
I Gloch Sphere

2z axis
°

05

o 05

Figure 5.

From Fig. 4 and Fig. 5, it is easy to note that the quantum operations f and g transform the
sphere into two ellipsoids:

2 2 w— 12 2 2 w— 12

T St
Now let ¢ : # — [0, o) be the map defined by
u+v+w if u,v,w > 0;
ﬁ ifu<0,v=w=0;
ﬁ ifv<0,u=w=0;
_ ﬁ if z<0,u=v=0;

plx) = Lt ifu<0,0%0andw=0oru0,v<0andw=0;
ﬁ—l—ﬁ ifu<O,w#0andv=0o0ru#0,w<0andv=0;
ﬁ—i—ﬁ ifu<0,w#0andu=0o0rv#0,w<0andu=0;
ﬁ + ‘71| + ﬁ otherwise.
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Then clearly ¢ is onto. Let ¢ be the simulation function defined by ¢(u,v) = 91—5 — . We wish
to show that ((p(f(x), 9(y)), max{p(x),p(y)}) > 0 for all x,y € A. For, let x = (uy, vy, w),
y = (uz, v2,w;) belongs to A. Suppose uy, uz, vi,v2, wy, wy > 0, then we have

max{¢(u,vi, w), p(uz, v2, w2) } = max{u; + vy + wy,up + v2 + wa}

and therefore

Clp(fx, gy), max{p(x), ¢(y)}) > 0.

Similarly, we can prove all the other cases. Therefore by corollary 3.9, f and g have a unique
p—coincidence qubit in 2. More precisely, (0, 0,0) is the unique p—coincidence point. Further,
it is easy to note that the point (0,0,0) is nothing but the vector representation of the qubit

(

S-S

) . Thus the quantum operations f and g have a coincidence qubit (

S-S

)
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