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Abstract This study presents the dynamics of a fraction-order SIR epidemic model using
the residual power series (RPS) method. The proposed SIR model is described by coupled
non-linear ordinary differential equations (NLDEs) with fractional order, where the fractional-
order derivative is defined in the Caputo sense. The RPS method is a semi-analytical method
based on the generalized Taylor series, which provides the approximate solution in the form of
a convergent series that usually converges to the exact solution. The solution obtained using the
RPS method is compared with the solution obtained by the fourth-order Runge-Kutta method
for o = 1 to demonstrate its accuracy, speed, and high order of convergence. The graphical and
numerical results indicate that the RPS method can be applied as a semi-analytical technique to
get the convergent series solutions of the proposed SIR model and some other coupled NLDEs
of fractional order in epidemiology.

1 Introduction

An epidemic is the rapid spread of infectious disease to a large number of people in a given
population of a particular area within a short period. Generally, an epidemic occurs when host
immunity to either a newly emerging novel pathogen or an established pathogen is suddenly
reduced.

Epidemiology is a branch of biology that studies the distribution and determinates of health-
related issues in specified communities or populations.It is applicable to control the health prob-
lems in communities. The components of epidemiology are frequency, distribution, and the
determinants of disease. Epidemiology aims to provide the data necessary for the planning, im-
plementation, and evaluation of services to prevent, control, and treat disease by setting up the
priorities among those services. The use of epidemiology is to study the rise and fall of the
disease historically in the population, community diagnosis, planning and evaluation, evaluation
of individual’s risks and chances, syndrome identification, and completing the natural history of
the disease.

The fractional calculus is about the theory of derivatives and integrals of arbitrary order,
which unite and generalize the concept of integer-order differentiation and integration [1, 2].
Also, it has many more applications in the field of sciences and engineering [3, 4, 5]. The frac-
tional order-based model can provide a more realistic interpretation for the real-world problem
[6, 7, 8, 9]. In the present paper, we use Caputo fractional derivative due to its advantage in
applied mathematics. The initial conditions for integer-order ordinary differential equations take
on the same form as fractional-order differential equations (FODEs) with Caputo derivatives
which avoids solvability issues.

Mathematical modeling is a process that uses the language of mathematics to analyze, make
predictions, and provide insight into real-world problems. It is helpful because technical, eco-
logical, economic, and other systems investigated by modern science can’t be studied adequately
using regular theoretical methods. Many real-world problems have been modeled in the form of
FODEs, and the system of FODEs [10].
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It is necessary to understand the mechanism of disease transmissions to control its spread
[6, 9, 11]. Various studies are available on the mathematical modeling in epidemiology. In 1927,
Kermack and McKendrick [10] introduced a fractional-order model to understand the dynamic
behavior of the infectious disease. Anderson and May [12] discussed the infectious diseases
of humans dynamics and control in 1992. In 2009, an analytical approximate solution of a SIR
epidemic model with a constant vaccination strategy was studied by Yildrim and Cherruault [13].
In 2011, Yildirim and Kocak [14] discussed an analytical approach to transmission dynamics of
infectious diseases with waning immunity. In 2019, the fractional-order Susceptible-Infected-
Recovered model has been developed and solved with constant population size[15]. To know
more about the epidemic models, their history, and methods to solve them, readers can refer to
the references [16, 17, 18, 19, 20].

In this paper, fractional-order Susceptible-Infected-Removed (SIR) epidemic model is for-
mulated with the impact of susceptible, infectious, and removal effects on the transmission dy-
namics of influenza epidemiology with the application of Caputo derivative for fractional-order

€ (0, 1]. To solve the mathematical model, a semi-analytical method, the residual power series
method, is used to obtain the approximate solution in the form of the infinite series. The obtained
results are compared with the fourth-order Runge-Kutta (RK4) method to validate the accuracy
and efficiency of the RPS method. The convergence of the infinite series is also shown in the
result.

2 Preliminaries

This section presents the definition of Riemann-Liouville, Riesz, Grunwald-Letnikov, and Ca-
puto derivatives and their properties.

Definition 2.1. [2] For ¢, & € R*, the Riemann-Liouville (RL) fractional derivative of order o
of function p(t) is defined as

m t
! d—/ (tp(y)dy, if(m—1)<a<meN,
o (t—

m a+l-m
RL Do(t) = Idgin «) dt Y)
" .
T p(t), fa=meN

Definition 2.2. [2] For t, « € R™, the Caputo fractional derivative of order o of function p(¢) is
defined as

1 A 0) .
d f(m—-1 N
F(m—a)/o = gyo-mt y, if(m—1)<a<meN,

m

dtm

Diyp(t) =

Definition 2.3. [21] The fractional power series about ¢t = ¢y can be defined as
Zdr(f' — to)ra =dy+ dl(t — t())a + dz(t — to)za +...,
where (m — 1) < « < m, m € N, t > to. The constants d,., r = 0,1,2,... are called the

coefficients of the power series.

Theorem 2.4. [2]] Let p(t) has a fractional power series representation at t = ty of the form

= de(t—to)",
r=0

to <t < (to+p). If D;*p(ty),Vr = 0,1,2,... are continuous on (to,to + p), then d, =
Diplto)

F(l Fra)’ where Di* = Dy Dy ... . Dy (r-times) and p is the radius of convergence.
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Property 2.5. [2] Let p(t) = t™, t > 0. The Caputo derivative of order « for function p(¢) can
be defined as
I'(m+1)
Dgtm = I'(m+1-a)
0, if m < [a].
Property 2.6. [2] Let p; (¢) and p,(¢) be the continuous functions. For (m — 1) < a < m, and
t > 0, we have,

" ifm > [al,

D§(ar.p1(t) + a2-p2(t)) = a1.D§p1(t) 4+ a2. D pa(t).
where a; and a, are constants.

3 The Fractional Order SIR Mathematical Model

We consider the SIR model of a short-termed influenza epidemic, assuming that

(i) the population is large and closed, i.e., there is no immigration, emigration, birth, and death
during the influenza epidemic,

(i1) the recovery does not guarantee immunity, i.e., recovered individuals may be reinfected,
and

(iii) the parameters do not vary seasonally and are fixed.

The total population N of a particular region consists of three groups, susceptible individuals
(S(t)), infected individuals (I(¢)), and removed individuals (R(t)) at time ¢. Let a susceptible
individual becomes infected from the disease through contact with infected individuals at a rate
of p;, and an infected individual suffers from the disease through contact with removed and
susceptible individuals at a rate of p, and ps, respectively.

plSI B

Suscept:_bles Infectlves Removed

Figure 1. SIR Epidemic Model.

Using the compartments mathematical model approach [22, 23, 24, 25, 26, 27], the proposed
SIR epidemic mathematical model of integer-order is formulated as

dtS( ) = —mS(t)I(t) + psI(t), (3.1a)
d

i 1(6) =pS@I() —psI(t) = p21(2), (3.1b)
d

I(t). .1
RO =pI() (3.10)
Similarly, the SIR mathematical model with fractional-order can be written as

Dy'S(t) = —p1S(4)1(t) + pal(t), (3.2a)
DI(t) = mS(OI(t) - psI(t) - pa (2), (3.2b)

DSER(t) = paI (t). (3.2¢)



Fractional SIR Epidemic Model using RPS method 15

Where a; € (0,1], Vi =1,2,3. p1, po, and p3 are positive constants known as the infection,
removal, and recovery rates, respectively. Initial conditions for Egs. (3.1a) to (3.1c) and (3.2a)
to (3.2c) are

5(0) = So, 1(0) = Iy, and R(0) = Ry. (3.3)
Since
S(t)+I(t) + R(t) = N,
we have
Dy'S(t) + D3 1(t) + D R(t) =

The above relation implies that one needs only to study the equations for two of the three
variables. Here, Dj'S(t), Dy?I(t), and Dg* R(t) are the Caputo derivatives of order o; € (0, 1]
,i=1,2,3for S(t), I(t), and R(t), respectively.

4 Solution Using Residual Power Series Method

We perform the following steps of the RPS method [28, 29, 30, 31, 32, 33] to construct the
approximate solution of the proposed fractional SIR model, which is described in Egs. (3.2a)
to (3.2¢) and (3.3).

Step (1): Suppose that S(¢), I(¢), and R(t) have the fractional power series (FPS) about ¢y = 0
as

o0

bktka2
=Sk 4.1
ZF 1+ kap)’ I(t) kz: L(1+ kay)’ F -I—k‘a @D
where ¢t € [0,p) , p > 0 being the radius of convergence. The n'" truncated series S, (t), I,(t),

and R, (t) of S(t), I(¢), and R(t), respectively, are defined as

n

LT e by the cxthe
Sn(t) = - 4.2
=2 Tt T hary Zr [+ kaa)’ Zr Tk 42

=S+ Z N 1 + ran)’ (4.32)
L =14y (4.3b)

T LTl f kas)” '

n thk}a3

(1) = 4.

R, (t) RO+;F(1+M3) (4.3¢)
Step (2): We define the residual functions for the model (Egs. (3.2a) to (3.2¢)) as

ResS(t) = Dy'S(t) +pi1S(t)I(t) — p3I(t), (4.4a)
ResI(t) = Dg?I(t) — p1S(t)I(t) + p3I(t) + pa (1), (4.4b)

ResR(t) = DS R(t) — paI(t). (4.4¢)
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Hence, the n'" residual functions of S(t), I(t), and R(t), respectively are

ResSy(t) = Dy Sy (t) + p1Sn(t)In(t) — p3ln(t), (4.5a)
ResI,,(t) = Dy I, (t) — p1Sn(t)In(t) + p3ln(t) + p2l,(t), (4.5b)
ResRy,(t) = Dy* Ry, (t) — paIn(t). (4.5¢)

For approximate solution, ResS(t) = ResI(t) = ResR(t) =0, V¢ > 0and

lim ResS,,(t) = ResS(t), lim Resl,(t) = ResI(t), lim ResR,(t) = ResR(t).

n—oo n— oo n— oo

Since the Caputo derivative of any constant is zero, we have

DV ResS(0) = DY Ressi(0),

Dy~ Res1(0) = D™ Resi (0),

DY~ ResR(0) = Di" ™ ResRy (0).
fork=1,...,n[28].

Step (3): To obtain the coefficients ay, , by, and ¢, for k = 1,2,3, ..., n. We substitute the n"
truncated series of S(¢), I(¢), and R(t) into Eqgs. (4.5a) to (4.5¢) and then apply the Caputo frac-

tional derivative operaltorsD(()”_1)0(l , D(()n_z)az, and D(()"_3) “ on ResS(t), ResI(t), and ResR(t),
respectively. Consequently, we have the equations

D{" V™ ResS,(0) =0, (4.62)
DYV ResI, (0) = 0, (4.6b)
D"V ResR,, (0) = 0. (4.6¢)

forn=1,2,3,....

Step (4): Solve the given algebraic Egs. (4.6a) to (4.6¢c) to obtain the values of ay, by, and ¢y, for
k=1,2,3,...,nto get the n'" residual power series. i.e., approximate solution of Egs. (3.2a)
to (3.2¢) and (3.3).

Step (5): Repeat the procedure to obtain a sufficient number of terms in series Eqgs. (4.3a)
to (4.3c). Higher accuracy in the solution can be achieved by evaluating more terms in the
series solution.

5 Numerical Solution

Consider a situation in which a small group of people is present and that group is suffering
from an infectious disease, which is kept into a large population capable of being infected with
p1 = 0.001, p, =0.072, and p3; = 0.005. Let Sy = 620, I, = 10, and Ry = 70, so, total human
population is (P) = 620 + 10 + 70 = 700, and let fractional order a; = ap = a3 = a € (0, 1].

Several steps of the RPS method to solve the fractional SIR epidemic model have been dis-
cussed in the previous section. The 15 truncated power series approximations from Egs. (4.3a)
to (4.3c) are

art® bit® ert®
= 62 - T =1 —_— = _.
S1(t) 6O+F(1+a)’ 1(t) O+r(1+a),andR1(t) 70+F(1+a)
From Step (3), 1°* residual functions of S(t), I(t), and R(t), respectively, are
ResSi(t) = D§'S1(t) +0.0015,(¢) I (t) — 0.0051,(t),

1
Resl)(t) = Dg*[l( ) — 0.0015; (t)I; (£) + 0.0051, (£) 4 0.0721,(t),
ResRy(t) = D§Ry(t) — 0.0721,(t).
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Substituting Sy (¢), I;(t), and R, (t) in above expression and equating ResS;(0), ResI;(0), and
ResR1(0) to zero give the values of ay, by, and ¢; as

a) = —6.15, b =543, and ¢; = 0.72.
Hence, S1(t), I;(t), and Ry (t) are

6.15t* 5.43t> 0.72¢~

Si(t) =6207m, Ii(t) =10+ T +a) Ru(t) :70+m'

The 2™ truncated power series approximation from Eqgs. (4.3a) to (4.3c) are

B 6.15t" art>® B 5.43t® byt
S =620 - g iz PO Fi g T 1 2a)
T2t 2c
Rot) = 70 + 272 el

I'l+a) I(l42a)
From Step (3), the 2"? residual functions of S(t), I(t), and R(t), respectively, are
ResSy(t) = D§ S (t) +0.0015:(¢) 2 (t) — 0.0051x(t),

ResI(t) = Dy I>(t) — 0.0015,(t)I(t) + 0.00515(t) + 0.0721(¢),
ResRy(t) = D§ Ry(t) — 0.072L(t).

Applying the operator D§ on ResS>(t), Resl>(t), and ResR;(t), we have
D§ ResS,(t) = D3*Ss(t) 4+ 0.001D§ S, (t) > (t) — 0.005DS I (t),
DS Resky(t) = DL (t) — 0.001D8 S (1) 1x(t) + 0.077D8 I (¢),
DS ResRy(t) = D3 Ry(t) — 0.072D§ I (t).

Substitute S>(t), I>(t), and R (t) in above expression and equating D§ ResS>(0), D§ ResI»(0),
and D§ ResR;(0) with zero, give the values of aj, b, and ¢, as

ap = —3.27795, by =2.88699, and c¢; =0.39096.
Hence, S,(t), I>(t), and R,(t) are

6.15t*  3.27795(20 543t 2.88699(20
£) = 620 - L(t) = 10
(1) Ti+a) Ta+2a PO+ 5y T T2
072t 0.390962

Tl +ta)  T(1+2a)

Rz(t) =70+

The coefficients of (k+ 1)'" truncations can be found using the following recurrence relation
between the coefficients

k

ajbkfjl—‘(l —l—k’a)
= — b
Q41 pljzo r(l —|—j0¢)F(1 +(k'—j)0() +p3 k>

k
a-bk, F(l + (k)a)

b _ jOk—j _ by = — — b

k+1 pljgo T+ () 1 (k- j)a) (p2 + p3)bi ak+1 — P20k,

Cry1 = p2by.

fork=0,1,2,3,....
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6 Result and Discussion

To check the convergence of the RPS solution, absolute errors | Sy, +1(t) — Sy ()], | Int1(E) — In(t)],
and |R,,+1(t) — R, (t)] are plotted in Figs. 2 to 4, respectively, for for n = 15,16,17, 18, and 19,
o = 1,and t € [0,2]. All the three absolute errors are O(10~'?) or less for n = 19 up to t = 2.
For the lesser value of ¢, the absolute error is even less with smaller n. Higher accuracy can be
achieved by considering more terms in the RPS solution. The results reported in these figures
confirm the effectiveness of the RPS method.

\

1.2 1.4 1.6 1.8 2
Time (1)

Figure 2. The absolute error between truncations (n = 15,16, 17,18, &19) for S(¢) using
RPS Methods for o = 1 in the interval ¢ € [0, 2].

1 1.2 1.4 1.6 1.8 2

Time (1)

Figure 3. The absolute error between truncations (n = 15,16,17,18,&19) for I(¢) using
RPS Methods for o = 1 in the interval ¢ € [0, 2].
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1.2

1.4 1.6

Time (-t)

1.8

Figure 4. The absolute error between truncations (n = 15,16,17,18, &19) for R(t) using
RPS Methods for a = 1 in the interval ¢ € [0, 2].

Now, we consider the 20" -truncation of the RPS solution, which is close enough to the actual
values of S(t), I(t), and R(t), in subsequent study.

S(t) =~ Sy(t),

I(t) ~ Igo(t), & R(t) ~ Rzo(t).

Thus, we can consider S(t), I(t), and R(¢) as

Table 1. Approximate value of S(¢) using RK4 and RPS Methods for o = 1.

ti

RK4 method

RPS method

AbsEr(S(t;))

RelEr(S(t:))

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

620.000000000000000
619.368327701129830
618.702153816378770
617.999682039910570
617.259032603941480
616.478239561945540
615.655248125904110
614.787912080138200
613.873991297021010
612.911149382834760
611.896951485213090

620.000000000000000
619.368327657510350
618.702153724652930
617.999681895280220
617.259032401282640
616.478239295794650
615.655247790443130
614.787911669181200
613.873990803999960
612.911148800787370
611.896950806769950

0
4.36195E-08
9.17258E-08

1.4463E-07
2.02659E-07
2.66151E-07
3.35461E-07
4.10957E-07
4.93021E-07
5.82047E-07
6.78443E-07

0
7.04258E-11
1.48255E-10

2.3403E-10
3.28321E-10
4.31728E-10
5.44884E-10
6.68453E-10
8.03131E-10
9.49644E-10
1.10875E-09

This gives the approximate solution for S(t), I(t), and R(t) in terms of fractional powers of
time ¢ for fractional order derivative o. For a = 1, the solutions in terms of polynomials in time
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t can be written as
S(t) =620 — 6.15t — 1.638975t> — 0.279321725t> — 0.03247663223125t* — 0.002310488164925¢>

+ 6.6300959583333 x 107 7t% + 2.85674678775794 x 107" 4 4.90413546036706 x 10~°¢
+4.9453805972773 x 10~7° 4 2.534703453373 x 10~%¢! — 1.65160080322 x 10~°¢!!

— 59173164612 x 10710412 — 8.164527064 x 10~ '1¢!® — 6.84286824 x 101244

— 1.8357466 x 107315 45,1703 x 10714416 + 1.11303 x 10~ 4+17 + 1.28567 x 10~ 15¢!3
+8.57039 x 1071719 — 9.08862 x 107192,

Table 2. Approximate value of I(¢) using RK4 and RPS Methods for a = 1.

t;

RK4 method

RPS method

AbsEr(I(¢;))

RelEr(I(t;))

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

10.000000000000000
10.557682415377140
11.145742665297318
11.765752718571312
12.419356430322715
13.108271733277171
13.834292759467655
14.599291870396474
14.599291870396474
16.254116280801693
17.148093929799238

10.000000000000000
10.557682454124135
11.145742746766953
11.765752847013921
12.419356610275818
13.108271969577906
13.834293057265034
14.599292235163372
15.405222008647254
16.254116797279011
17.148094531720652

0
3.8747E-08
8.14696E-08
1.28443E-07
1.79953E-07
2.36301E-07
2.97797E-07
3.64767E-07
4.37545E-07
5.16477E-07
6.01921E-07

0
3.67003E-09
7.30948E-09
1.09167E-08
1.44897E-08
1.80268E-08

2.1526E-08
2.49852E-08
2.84024E-08
3.17752E-08
3.51014E-08

Table 3. Approximate value of R(¢) using RK4 and RPS Methods for o = 1.

t;

RK4 method

RPS method

AbsEr(R(t;))

RelEr(R(¢;))

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

70.000000000000000
70.073989883493013
70.152103518323841
70.234565241518069
70.321610965735758
70.413488704777279
70.510459114628276
70.612796049465331
70.720787131876406
70.834734336363510
70.954954584987661

70.000000000000000
70.073989888365404
70.152103528579929
70.234565257705697
70.321610988441307
70.413488734627379
70.510459152291887
70.612796095655639
70.720787187352826
70.834734401933645
70.954954661509220

0
4.87239E-09
1.02561E-08
1.61876E-08
2.27055E-08
2.98501E-08
3.76636E-08
4.61903E-08
5.54764E-08
6.55701E-08
7.65216E-08

0
6.95321E-11
1.46198E-10
2.30479E-10
3.22882E-10
4.23926E-10
5.34156E-10
6.54135E-10
7.84443E-10
9.25678E-10
1.07845E-09

I(t) =10 + 5.43t + 1.443495t> + 0.244677845t> 4+ 0.02807243102125t* + 0.00190624515821667t>
— 2.35379514944444 x 1075% — 2.83253632335317 x 1077 — 4.64920719124504 x 10768
— 4.5734440219632 x 10~ 7t? — 2.205415483769 x 10~81 4179595527124 x 10~ ¢!
+5.8095591449 x 10719412 4 7842766865 x 101413 4 6.43952595 x 10~ 1214
+1.5266494 x 10713415 — 5239 x 1071441 — 1.090842 x 10~ 14+17 — 1.24203 x 1071318
—8.09972 x 10~17¢!2 + 1.20045 x 10718420,
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Figure 5. The value of S(t) for distinct value of o € (0, 1| using the RPS method.

22 - T T T

N
o

-
(oo}
T

Infected (I(t))

14
12
10 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Time (1)

Figure 6. The value of I(¢) for distinct value of « € (0, 1] using the RPS method.

R(t) =70 + 0.72t + 0.195481% + 0.03464388¢> + 0.00440420121¢* 4 0.000404243006708333¢>
+2.28749418986111 x 1075¢° — 2.4210464384921 x 10777 — 2.5492826909722 x 10~ "¢
—3.719365753142 x 10737 — 3.29287969577 x 10~%1 — 1.4435446802 x 10~ 10¢!!
+1.077573163 x 101412 +3.21760199 x 101213 4 4.0334230 x 1013414
+3.090972 x 10714415 + 6.86992 x 10716416 — 221887 x 1071947 — 4.36337 x 10~17¢!3
—4.70665 x 1071819 —2.9159 x 107194,
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We also compare the obtained results using the RPS method with the RK4 method. The
absolute and relative error of S(t) are defined as
AbsEr(S(t)) = |RK4(S(t)) — RPS(S(¢)

)

respectively. Similarly, the absolute and relative errors of (¢) and R(t) can be defined.

E

0 0.2 0.4 0.6 0.8 1

Time (1)

Figure 7. The value of R(t) for distinct value of o € (0, 1| using the RPS method.
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Figure 8. The values of S(t), I(t), and R(t) using RPS solution for o = 0.90.

The comparison between the 20'-RPS solution and the RK4 solution with & = 1 is presented
in Tables 1 to 3 for S(t), I(¢), and R(t), respectively. Here, we observe an absolute error
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O(107%) in S(t) and I(t) for t € [0, 1], while error is O(10~7) in R(t). The results presented
in Tables 1 to 3 are sufficient enough to approve the efficiency, accuracy of the RPS method for
SIR model.

Moreover, to exhibit the effect of the fractional-order derivative present n the SIR model,
S(t), I(t), and R(t) for different values of o € (0, 1] are plotted in Figs. 5 to 7 over the interval
t €[0,1].

Here, it is observed that the value of S(¢) is increasing with an increase in «, while the values
of I(t) and R(t) are decreasing with an increase in «. Further, as @ — 1, the solution for S(¢),
I(I), and R(t) is approaching the solution for o = 1.

Fig. 8, shows the behavior of S(t), I(¢), and R(t), respectively, using the RPS method for the
fractional-order o = 0.90, and n = 20 over the interval ¢ € [0, 1]. It is observed that at any time
t, the total population, i.e., sum of S(t), I(¢), and R(¢) is constant.

7 Conclusion

A mathematical model is an essential tool to describe the transmission dynamics of any disease.
In this paper, the SIR epidemic model of fractional order is defined as the generalization of the
SIR model of integer order. RPS method is a semi-analytical technique in which we get the
approximate solution of any linear and nonlinear differential equations in terms of a convergent
series. The results obtained for the proposed model for different values of « € (0, 1] are shown
graphically. It is observed that the proposed SIR epidemic model of fractional-order provides a
more realistic way to understand the dynamic of epidemiology.
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