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Abstract We consider a bounded lattice (L,∧,∨) with the smallest element 0 and the greatest
element 1. In this paper, we deal with the essentiality concepts associated with a lattice. For an
arbitrary element θ of L, we define a θ-e-irreducible element in L, which is an analogy to the con-
cept of the e-irreducible submodule in a module over a ring. It is well known that e-irreducible
submodules have no proper essential extension. Indeed, we prove this remains true for elements
in a bounded lattice. We establish a relation between the θ-complement and θ-e-irreducible el-
ement with suitable examples. We define the notion θ-socle and prove several properties when
a lattice is compactly generated. Further, we construct a generalized complement graph of a
distributive lattice and relate the properties such as connectedness, diameter, and cut vertices to
atoms in a lattice.

1 Introduction

Many lattice theoretical aspects originated from the study of ideal theory in rings or associated
submodules in modules over rings. Few of these notions include essential elements, uniform
elements, superfluous elements, etc. The study naturally found connections with the lattice prop-
erties using chains of submodules of a module. The notion of ‘essential submodule’ of a module
over a ring is an analogy to the concept of ‘dense subspace’ in a topological space [2]. Unlike
in topological spaces, in algebraic systems such as module over rings, there can be a situation
where if a submodule is not essential in a given module, then it is possible to hold the essentiality
with respect to (or relative to) an appropriate proper submodule. Nevertheless, the concept of a
module over a ring is well interpreted in terms of the lattice structure of its submodules.
Grzeszczuk and Puczylowski [13] established the idea of the Goldie dimension from the mod-
ule theory, to the modular lattices. They defined an essential element in a lattice with the least
element 0. Later many developments were found in Calugareanu [9], wherein several ideas
from modules over rings were generalized to the lattice theory. The notion of complement plays
an important role in modules [5], to establish the dimension of a quotient submodule and the
dimension of the sum of two submodules. Similarly, in a lattice with 0, the notion of pseudo-
complement has been defined in [9], and some recent developments can be seen in [10]. The
authors [17] have explored irreducible elements in almost semilattices. The s-complement undi-
rected graph of lattice modules has been studied by Phadatare et.al [16], and we refer to Badawi
[3] for the graph-theoretical properties linked to modules over commutative rings.
The study of graphs associated with algebraic structures is important to understand their struc-
tural aspects. The graphs obtained from various algebraic structures, namely, zero divisor graphs,
annihilator graphs, and intersection graphs are the significant ones [11, 4, 3]. Amjadi [1], de-
fined an essential ideal graph with respect to a commutative ring. However, in lattices, atoms
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play a role to find some important connections between the lattice-theoretic properties and those
of corresponding graph-theoretic properties. We consider a lattice (L,∧,∨) with the smallest
element 0, and whenever necessary we assume 1 to be the greatest element in L.
For x, y ∈ L, and x ≤ y, the interval between x and y is denoted by [x, y] = {a ∈ L | x ≤ a ≤ y}.
If a 6= 1 in L, then a is called proper. In a bounded lattice an element a is called an atom (re-
spectively, dual atom) if there is no x ∈ L such that 0 < x < a (respectively, a < x < 1). In
a sublattice [m,n], an element a is called an atom (respectively, dual atom) if there is no x ∈ L
such that m < x < a (respectively, a < x < n). The sum of all simple submodules of a module
is called as its socle [5], and its lattice equivalent is the join of atoms in a lattice with 0.
The paper is organized into four sections. In section 2, we define θ-e-irreducibility in a lattice and
show that a θ-complement is θ-e-irreducible but not the converse. We observe that in a bounded
modular lattice, θ-e-irreducible elements are θ-essentially closed. In section 3, we define the
notion θ-socle and prove several properties when a lattice is compactly generated. In section 4,
we construct a generalized complement graph and relate the properties such as connectedness,
diameter and cut vertices to atoms in a lattice.
For detailed literature in lattice theory, we refer to [8, 12].

2 θ-e-Irreducible

We start with some definitions and notions from [8, 9, 12]. Throughout, θ ∈ L is an arbitrary
fixed element. An element a of a lattice L is proper if a 6= 1. A subset C of a poset is said to
be upper directed, if every S ⊆ C, where S is finite and has an upper bound in C. A complete
lattice L is called upper continuous if a ∧ (

∨
C) =

∨
d∈C

(a ∧ d) holds for every a ∈ L and every

upper directed subset C ⊆ L. An element x of a complete lattice L is called compact if for every
subset X of L and x ≤

∨
X there is a finite subset F ⊆ X such that x ≤

∨
F and S-compact if

for each upper directed subset C ⊆ L and c ≤
∨
C there is an element d0 ∈ C such that c ≤ d0.

A complete lattice L is called compactly generated if each of its elements is a join of compact
elements. If y ∈ L is maximal with respect to the property x ∧ y = 0, then y is called a pseudo-
complement of x in L, and if for every x ∈ L, there exists a pseudo-complement in L, then L is
pseudo-complemented. In a lattice with 0 and 1, an element y is called a complement of x in L
if x ∧ y = 0 and x ∨ y = 1. θ 6= x ∈ L is θ-essential in y, if x ∧ y 6= θ, for every θ 6= y ∈ L. We
denote it as x ≤eθ y.

Definition 2.1. [9, 14] An element x ∈ L is irreducible if for each y, z ∈ L, y ∧ z = x implies
y = x or z = x.

We define θ-e-irreducible element analogue to the notion, e-irreducible submodule in a module
over a ring.

Definition 2.2. An element a ∈ L is said to be θ-e-irreducible, if a = b ∧ c, where b, c ∈ L and
a ≤eθ b implies a = b or a = c.

Lemma 2.3. Every irreducible element of L is θ-e-irreducible.

Proof. Suppose a is irreducible. Let a = b ∧ c and a ≤eθ b. Then a = b or b = c.

Remark 2.4. The converse of the Lemma 2.3 need not be true, in general. Consider the lattice
given in Figure 1.

Since d ∧ f = b, b 6= f and b 6= d. Therefore, b is not irreducible. But b is θ-e-irreducible, since
d ∧ f = b and b �eθ d, b �eθ f , where θ = 0.

Definition 2.5. If c ∈ L is maximal with respect to b∧c = θ, then we say that c is a θ-complement
of b.

Definition 2.6. An element x ∈ L is closed (or θ-essentially closed) in y, if x has no proper
θ-essential extension in (θ, y], we denote it by x ≤clθ y.
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Figure 1.

Lemma 2.7. In a upper continuous modular lattice L, θ < a ∈ L is a θ-complement (of an
element) if and only if a ≤clθ L.

Theorem 2.8. A θ-complement element in L is θ-e-irreducible, but the converse need not be true.

Proof. Let a be a θ-complement in L. Suppose a = b ∧ c, for b, c ∈ L and a ≤eθ b. We show
that a = b or a = c. Since a is θ-complement, by Lemma 2.7, we have a is θ-essentially closed.
Now, since a ≤eθ b, we have a = b. Therefore, a is e-irreducible.

Converse of the Theorem 2.8 need not be true. Consider the following Example.

Example 2.9. Let L be a lattice given in Figure 2.
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Figure 2.

Clearly, c = d ∧ e and c �eθ d. Therefore, c is θ-e-irreducible. But c is not a θ-complement
element, because c is not maximal with respect to c ∧ x = θ, for every θ 6= x ∈ L.

Theorem 2.10. Let L be a bounded modular lattice and a ∈ L. Then a = 1 or a ≤eθ L, but a is
θ-e-irreducible if and only if a is θ-essentially closed.

Proof. If a = 1, then nothing to prove. Suppose a �eθ L, but θ-e-irreducible. We show that
a �eθ b, for any 1 6= b ∈ L. Clearly a 6= b. Let c ∈ L be such that b ∧ c = θ. By modular law,
b∧(a∨c) = a∨(b∧c) = a∨θ = a. Since a is θ-e-irreducible, a 6= b, and a ≤eθ b, we get a = a∨c,
which implies c ≤ a < b. So, c = b ∧ c = θ. Therefore, b ≤eθ L. Since a ≤eθ b and b ≤eθ L,
we get a ≤eθ L, a contradiction. Therefore, a is θ-essentially closed. Conversely, suppose a is
θ-essentially closed. Clearly a = 1. It remain to show that a �eθ L, but θ-e-irreducible. Since
a �eθ b, for any 1 6= b ∈ L, we have a ∧ c = θ, but c 6= θ, where c ∈ [θ, b]. Then a ∧ c = θ, but
c 6= θ, where c ∈ L. Therefore, a �eθ L. Also, since a �eθ b, for any 1 6= b ∈ L, we have a is
θ-e-irreducible.

The conditions in the Theorem 2.10 are equivalent to a θ-complement if L is upper continuous
([9], Corollary 4.3).

3 θ-socle

Definition 3.1. Let θ ∈ L. If θ is covered by a ∈ L, then a is said to be a θ-atom (means that,
θ < a and θ < x ≤ a implies x = a). The set of all θ-atoms in L is denoted by Aθ(L). Further,
the join of all θ-atoms is called the θ-socle of L, we denote it by Socθ(L). If Socθ(L) = 1, then
L is called θ-semiatomic.
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Note 3.1. If a ∈ Aθ(L), then for every θ ≤ b ∈ L, either a ∧ b = a or a ∧ b ≤ θ.

Remark 3.2. Every θ-semiatomic need not be semiatomic (as defined in [8]).

Consider the following example.

Example 3.3. Consider the lattice given in Figure 3. Let θ = a. Then, c, d, e are the θ-atoms,
and so Socθ(L) = c ∨ d ∨ e = 1. Hence, L is θ-semiatomic. But L is not semiatomic, as the
atoms of L are a, b, and Soc(L) = a ∨ b = e 6= 1.
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Figure 3.

Proposition 3.4. In any lattice L,

(i) Socθ[θ, a] ≤ a;

(ii) a ≤ b implies Socθ[θ, a] ≤ Socθ[θ, b];

(iii) Socθ[θ, (
∧
i∈I

ai)] ≤
∧
i∈I

Socθ[θ, ai];

(iv)
∨
i∈I

Socθ[θ, ai] ≤ Socθ[θ, (
∨
i∈I

ai)];

for all θ < a, b, ai (i ∈ I) in L.

Proof. (i) Socθ[θ, a] =
∨

x∈Aθ [θ,a]

x =
∨

θ<x≤a

x ≤ a.

(ii) Suppose a ≤ b. Then

Socθ[θ, a] =
∨

x∈Aθ [θ,a]

x ≤
∨

x∈Aθ [θ,b]

x = Socθ[θ, b].

(iii)

Socθ[θ, (
∧
i∈I

ai)] =
∨

x∈Aθ
[
θ,∧ai

]x
≤

∨
x∈Aθ [θ,ai]

x, for all i ∈ I

=
∧
i∈I

( ∨
x∈Aθ [θ,ai]

x
)

=
∧
i∈I

Socθ[θ, ai].
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(iv) ∨
i∈I

Socθ[θ, ai] =
∨
i∈I

( ∨
x∈Aθ [θ,ai]

x
)

≤
∨

x∈Aθ [θ,ai]

x, for some i ∈ I

=
∨

x∈Aθ [θ,∨ai]
x

= Socθ[θ, (
∨
i∈I

ai)].

Lemma 3.5. [9] L is upper continuous if and only if for every a ∈ L, X ⊆ L and X = P0(X),
all the finite subsets of X ,

a ∧
(∨

X
)
=
∨
F∈X

(a ∧ (∨F ))

holds.

Definition 3.6. [18] Let θ ∈ L. S = {ai | i ∈ I} be a finite subset of L \ {θ}. S is said to be
θ-∨-independent if ai ∧

(∨
j 6=i

aj
)
= θ, for every i ∈ I .

Lemma 3.7. In an upper continuous lattice L, a subset is θ-∨-independent if and only if each
finite subset is θ-∨-independent.

Proof. Let S = {ai}i∈I be θ-∨-independent set. That is, ai ∧
( ∨
i 6=k∈I

ak

)
= θ. Let J ⊆ I .

Now,

ai ∧
( ∨
i 6=j∈J

aj

)
≤ ai ∧

( ∨
i 6=k∈I

ak

)
= θ,

shows that J is θ-∨-independent.
Conversely, let θ 6= {ai}i∈I ∈ L and i0 be arbitrary (fixed) in I .
Using the equality ∨

j 6=i0

aj =
∨

i0 /∈F⊆I

( ∨
i∈F

ai

)
,

and by Lemma 3.5, we obtain

ai0 ∧
( ∨
j 6=i0

aj

)
=

∨
i0 /∈F⊆I

(
ai0 ∧

∨
i∈F

ai

)
= θ.

Definition 3.8. If y ∈ L is maximal with respect to the property x ∧ y = θ, then y is called a
θ-complement of x in L, and if for every x ∈ L, there exists a θ-complement in L, then L is
θ-complemented.

Definition 3.9. An element a in L is called weak-θ-complement (abbr. ω-θ-complement) if
there exists an element a′ in L such that a ∧ a′ = θ and a ∨ a′ = 1. Further, L is called
ω-θ-complemented if every l ∈ L has at least one ω-θ-complement. L is called relative ω-θ-
complemented if for every θ ≤ x ∈ L the quotient sublattice [x, y] is ω-θ-complemented.

Example 3.10. Consider the lattice given in Figure 4:

L = {0, a, b, c, d, e, f, g, h, 1}.

Here, f is a ω-(θ = c)-complement of g, but f is not a pseudo-complement of g, since f ∧ g =
c 6= 0.
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Figure 4.

Corollary 3.11. A ω-θ-complemented lattice is relative ω-θ-complemented.

Theorem 3.12. Every θ < a ∈ L has a ω-θ-complement, when L is upper continuous and θ-
semiatomic modular.

Proof. Let L be a upper continuous θ-semiatomic modular lattice. Let θ < a 6= 1 ∈ L. We show
that a has a ω-θ-complement. Since L is θ-semiatomic, there exists a θ-atom s such that a∧s = θ
(otherwise, by Note 3.1, we get a ∧ s = s for every s ∈ Aθ(L), and so a = 1, a contradiction).
Let Aθ(L) = {si}i∈I .
Consider

P = {J ⊆ I : {si}i∈I is θ- ∨ -independent and a ∧
( ∨
j∈J

sj

)
= θ}.

Then, P 6= φ, and P is partially ordered under set inclusion. Then by Lemma 3.7, the union
of a chain {{si}i∈Ik}k∈K of θ-∨-independent subsets is also θ-∨-independent. If bk =

∨
i∈Ik

si,

then a ∧ bk = θ, k ∈ K. Also, since {bk}k∈K is a chain, we get a ∧
( ∨
k∈K

bk

)
= θ. Hence, by

Zorn’s lemma, there is a maximal θ-∨-independent family {si}i∈J of θ-atoms, with respect to
a∧
( ∨
i∈J

si

)
= θ. Take c =

∨
i∈J

si. Then a∧c = θ. We now show that a∨c = 1. Since the lattice

is θ-semiatomic, it is enough to show that x ≤ a ∨ c, for every θ-atom x in L. Let t ∈ Aθ(L)
such that t � a ∨ c. Then by Note 3.1, t ∧ (a ∨ c) = θ.
Now,

a ∧ (c ∨ t) ≤ (a ∨ c) ∧ (c ∨ t)
= [(a ∨ c) ∧ t] ∨ c, since c ≤ a ∨ c, and modular law

= θ ∨ c = c

and a ∧ (c ∨ t) ≤ c ∧ a = θ.
Now, t ∧ c ≤ t ∧ (a ∨ c) = θ, and by Lemma 3.7, the subset t ∪ {si}i∈J ∈ P , which is a
contradiction to the maximality of J in P .

Theorem 3.13. [9] In a modular lattice L, [q, p ∨ q] and [p ∧ q, p] are isomorphic, for every p
and q in L.

Lemma 3.14. In a ω-θ-complemented modular lattice L, a ∈ Aθ(L) if and only if every ω-θ-
complement of a is maximal in L.

Proof. Let a ∈ L be a θ-atom. Since L is ω-θ-complemented, a has a ω-θ-complement in L, say
a′. That is, a ∧ a′ = θ and a ∨ a′ = 1. Now

[θ, a] = [a ∧ a′, a]
∼= [a′, a ∨ a′], by Theorem 3.13,

= [a′, 1].

Therefore, a′ is a dual atom.
Converse follows dually.
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Lemma 3.15. [9] Let 1 6= a ∈ L, where L is a compactly generated lattice. Then [a, 1] has at
least one maximal element 6= 1.

Lemma 3.16. If L is compactly generated and a ∈ L, then [θ, a] is also compactly generated.

Proof. By ([9], Proposition 2.4), L is upper continuous, and so it suffices to show the compact
elements in [θ, a] are same as the compact elements in [θ, a] ⊆ L. If c ∈ [θ, a] is compact in L,
then clearly it is also compact in [θ, a].
On the other hand, let c ∈ [θ, a] compact in [θ, a], and c ≤

∨
C, be an upper directed cover of

c ∈ L.
Then

c = a ∧ c ≤ a ∧ (
∨
C) =

∨
x∈C

(a ∧ x), where a ∧ x ∈ [θ, a],

which is a cover of c in [θ, a]. Then there exists x1 ∈ C such that c ≤ a ∧ x1 ≤ x1.

Theorem 3.17. Each compactly generated ω-θ-complemented modular lattice is θ-semiatomic.

Proof. Let L be a compactly generated ω-θ-complemented modular lattice. To show L is θ-
semiatomic, let 0 6= θ 6= a ∈ L. By hypothesis, it is enough to prove for compact elements only.
To show there exist a θ-atom in [θ, a]. By Lemma 3.16 we have [θ, a] is compact, then by Lemma
3.15, there is a maximal element m 6= a, m ∈ [θ, a]. Further, if n ∈ L is a ω-θ-complement of m
in L then by modularity, a∧n is a (relative) θ-complement ofm in [θ, a]. That is, (a∧n)∧m = θ
and (a∧n)∨m = a. Also, by Lemma 3.14, it is a θ-atom in [θ, a]. If Socθ(L) 6= 1, let p 6= θ be a
ω-θ-complement of Socθ(L) in L. In a similar way, we can show that [θ, p] contains one θ-atom,
a contradiction to Socθ(L)∧ p = θ. This shows that Socθ(L) = 1, and so L is θ-semiatomic.

Proposition 3.18. [9] Each compactly generated lattice is upper continuous.

Definition 3.19. L is called θ-inductive, if every quotient sublattice [x, y] of L satisfies the con-
dition that: for any chain {bi}i∈I in L and for any a ∈ [x, y] with a ∧ bi = θ, for all i ∈ I , imply
a ∧ (

∨
i∈I

bi) = θ.

If θ = 0, θ-inductive coincides with the inductive defined in [9].
Clearly each upper continuous lattice is θ-inductive.

Lemma 3.20. Let L be θ-inductive lattice. Then every θ < a ∈ L has a θ-complement in L.

Corollary 3.21. Every θ < a ∈ L has a θ-complement in a upper continuous lattice L.

Proof. Follows from Lemma 3.20.

Lemma 3.22. In a compactly generated lattice, every θ < a ∈ L is θ-complemented.

Proof. Follows from the Proposition 3.18 and the Corollary 3.21.

Note 3.2. Let x, y be elements of L. If x ∨ y ≤eθ L, then x ∨ y ∈ [θ, 1].

Lemma 3.23. Let 1 ∈ L, and a, b ∈ L. Then b is a θ-complement of a in L if and only if a∧b = θ
and a ∨ b ≤eθ [b, 1].

Proof. Let b be a θ-complement of a in L. Clearly, b ∧ a = θ, and for any d ∈ L, b < d implies
d ∧ a 6= θ. In particular, d ∈ [b, 1], d 6= b implies d 6= θ. Then by modular law and since
d ∧ a ≤ d � b, we have θ ≤ b < b ∨ (d ∧ a) = (a ∨ b) ∧ d. Hence (a ∨ b) ∧ d 6= θ, shows that
a ∨ b ≤eθ [b, 1]. Conversely, suppose that a ∧ b = θ and a ∨ b ≤eθ [b, 1]. Then, for every d ∈ [b, 1],
d 6= b, we have b < (a ∨ b) ∧ d = b ∨ (a ∧ d). That is, a ∧ b = θ, and for every b < d, we have
a ∧ d � b. This implies a ∧ d 6= θ, showing that b is a θ-complement of a.

Theorem 3.24. A compactly generated modular lattice is θ-semiatomic if and only if it has no
proper θ-essential elements.
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Proof. If L is θ-semiatomic and a ≤eθ L, then by Theorem 3.12, a has a ω-θ-complement in L,
say b. That is a∧ b = θ and a∨ b = 1. Since a ≤eθ L, we get b = θ. This implies a∧ θ = θ. This
shows that θ < a. Now, 1 = a ∨ b = a ∨ θ = a.
Conversely, let L has no proper θ-essential element. Since L is compactly generated, by Lemma
3.22, we have L is θ-complemented. To show L is θ-semiatomic, by Theorem 3.17, it is enough
to show that L is ω-θ-complemented. Let a be a θ-complement of b in L. Then by Lemma
3.23, a ∧ b = θ and a ∨ b ≤eθ L. Now by hypothesis, we get a ∨ b = 1. Therefore, L is
ω-θ-complemented.

Corollary 3.25. IfL is modular compactly generated θ-semiatomic, thenL is ω-θ-complemented.

Proof. Follows from the Theorem 3.24.

Proposition 3.26. In an arbitrary lattice, Socθ(L) ≤
∧

m∈Eθ(L)

m, where Eθ(L) is the set of all

θ-essential elements of L.

Proof. Let θ 6= l be a θ-atom, and θ 6= m, be an θ-essential element in L. Then l ∧m 6= θ. But
θ < l ∧m ≤ l and l is a θ-atom, we have l ∧m = l, implies l ≤ m.
Therefore,

Socθ(L) =
∨

ai∈Aθ(L)

ai ≤ m.

Since m is arbitrary, we get
Socθ(L) ≤

∧
m∈Eθ(L)

m.

Proposition 3.27. Each θ-atom in a upper continuous lattice is a compact element.

Proof. Let L be an upper continuous lattice, and a ∈ L be a θ-atom. Let a ≤
∨
C, where C ⊆ L

be upper directed. If a � x, for each x ∈ C, then a ∧ x 6= a. Since a is a θ-atom, by Note 3.1 we
get a ∧ x ≤ θ. Now, a = a ∧ (

∨
C) =

∨
x∈C

(a ∧ x) ≤
∨
θ = θ, a contradiction to a is θ-atom.

Therefore, a ≤ x, for some x ∈ C.

Lemma 3.28. Let L be a compactly generated ω-θ-complemented modular lattice. Then each
element θ < p ∈ L is a join of θ-atoms.

Proof. Clearly, L is upper continuous. Then by Proposition 3.27, each θ-atom is a compact
element. Let θ < l be a compact element, which is not a θ-atom. We show that [θ, l] contains
a dual atom. Let K = {k ∈ L : θ ≤ k < l}. Clearly, θ ∈ K, and so K 6= ∅. By Lemma
3.15, for each l 6= k ∈ K, the sublattice [k, l] has at least one maximal element < l. Then by
Zorn’s lemma, there exists a dual atom d such that d < l. Since d is maximal in [k, l] and L is
ω-θ-complemented, by Corollary 3.11, we have L is relative ω-θ-complemented, and so d has a
ω-θ-complement in [k, l], say t. Then by Lemma 3.14, t is a θ-atom. Since t ≤ l, [k, l] contains at
least one θ-atom. Since L is compactly generated, we have each element is a compact element.
Since l is arbitrary, each θ < l ∈ L has at least one θ-atom.
Let

m =
∨

t∈Aθ [θ,x]

t,

where θ ≤ x ∈ L is arbitrary.
If m < x and let n be the ω-θ-complement of m in [θ, x], we get m ∧ n 6= θ, a contradiction.
Hence m = x.

Theorem 3.29. In a compactly generated modular lattice, Socθ(L) =
∧

e∈Eθ(L)

e.



140 Tapatee,Panackal,Kedukodi,Kuncham

Proof. Let k =
∧

ai∈Eθ(L)

ai. To show, Socθ(L) = k. Clearly, by Lemma 3.26, Socθ(L) ≤ k. To

show [θ, k] is ω-θ-complemented, let a ∈ [θ, k]. Then by Lemma 3.22, a is θ-complemented in L.
Let c be the θ-complement of a in L. Then by Lemma 3.23, we have a∨c ≤eθ L, and so k ≤ a∨c.
Now a ∧ (c ∧ k) ≤ a ∧ c = θ, and since a ≤ k, by modular law, a ∨ (c ∧ k) = (a ∨ c) ∧ k = k.
Therefore, c∧ k is a ω-θ-complement for a in [θ, k]. Then by Lemma 3.28, each element in [θ, k]
is a join of θ-atoms, including k itself. So, k ≤ Socθ(L). Therefore, k = Socθ(L).

4 Generalized complement graph of a lattice

We consider a simple finite graph G, whose vertex set is V (G) and the edge set is E(G). We use
ab to represent the edge between a, b ∈ V (G), and we denote by deg(v) the number of vertices
associated with v. If a vertex is adjacent to all other vertices in G, then we refer it as a universal
vertex. G is called disconnected if ab /∈ E(G), for some a, b ∈ V (G). G is called a null graph if
V (G) = ∅, and is called an empty graph if E(G) = ∅. The length of the shortest path between
two vertices a, b inG, is denoted by d(a, b), and d(a, b) =∞, if such a path doesn’t exist between
a and b. Evidently, d(a, a) = 0. The diameter of a graph G, denoted by diam(G), is equal to
sup{d(a, b) : a, b ∈ V (G)}. A vertex x of a connected graph G is a cut vertex of G if G − {x}
is disconnected. G is said to be k-regular (k ∈ N), if every vertex is of degree k. S ⊆ V (G) is
said to be independent if E(S) = ∅, and the maximum size of an independent set is called as
independence number α(G). A vertex whose neighborhood contains exactly one vertex is called
pendant vertex.
For standard definitions and notations in graph theory, we refer to [6, 7].

Definition 4.1. An element 0 6= x 6= 1 of L is called semi-complement (abbr. s-complement)
x ∧ y = 0, for some 0 6= y ∈ L.

Evidently, every pseudo-complement is a semi-complement. Now we construct a graph on semi-
complement elements in a distributive lattice which we will refer it as generalized complement
graph in the rest of the paper. We also study the properties such as connectedness, diameter and
cut vertices relating to atoms in a lattice.

Definition 4.2. Let L be a distributive lattice. We define the generalized complement graph
gc(L), whose vertex set

V (gc(L)) = {a : a is a s-complement element of L}

and the edge set

E(gc(L)) = {ab : a ∨ b is a s-complement element of L}.

Example 4.3. Consider the lattice given in Figure 3. Then graph gc(L) corresponding to L is
given in Figure 5:

c

a

d

b

f

Figure 5.

Lemma 4.4. [7, 8] Let L be a distributive lattice. Then every non-zero element a of L is either
an atom or there exists an atom b of L such that b < a.

Definition 4.5. An element 0 6= a 6= 1 of L is said to non s-complement if for any 0 6= b ∈ L,
a ∧ b 6= 0.

Lemma 4.6. (1) Let a ∈ L. Then a is a non s-complement if and only if Soc(L) ≤ a;
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(2) If x is an atom in L with x ≤ a ∨ b for 0 6= a, b ∈ L, then x ≤ a or x ≤ b.

Proof. (1) Suppose a ∈ L is non s-complement. Then a ∧ p 6= 0, for every 0 6= p ∈ L. In
particular, a ∧ xi 6= 0, for every xi ∈ A(L). Now, 0 6= a ∧ xi ≤ xi implies a ∧ xi = xi, and
so xi ≤ a. This is true for all xi ∈ A(L). Therefore, Soc(L) ≤ a. Conversely, suppose that
Soc(L) ≤ a and a is s-complement. Then there is an element 0 6= x ∈ L with a ∧ x = 0.
Then by Lemma 4.4, there exists an ai ∈ A(L) such that ai ≤ x. Now, a ∧ ai ≤ a ∧ x = 0.
Hence, a ∧ ai = 0 implies ai � a, a contradiction.

(2) Let 0 6= x ∈ L be an atom and 0 6= a, b ∈ L such that x ≤ a ∨ b. If x � a and x � b, then
x ∧ a 6= x and x ∧ b 6= x. Since x is an atom, we have x ∧ a = 0 and x ∧ b = 0. Then
there exists a diamond sublattice in L, a contradiction as L is distributive. Therefore, x ≤ a
or x ≤ b.

Lemma 4.7. Let A(L) = {ai}i∈I and T ⊂ I . Then,
∨
i∈T

ai is s-complement.

Proof. On a contrary, suppose
∨
i∈T

ai is non s-complement. Then
∨
i∈T

ai ∧ x 6= 0, for all 0 6= x ∈

L. In particular,
∨
i∈T

ai ∧ aj 6= 1, for every aj ∈ A(L). Since aj is an atom, we have
∨
i∈T

ai ≤ aj ,

for each j ∈ I \ T . Then by Lemma 4.6 (2) we have ai ≤ aj , for some i ∈ I , a contradiction as
ai is an atom.

Theorem 4.8. The following statements are equivalent.

(1) gc(L) has more than one component.

(2) |A(L)| = 2.

(3) gc(L) = gc1(L) ∪ gc2(L), where gc1(L) and gc2(L) are complete and disjoint subgraphs.

Proof. (1)⇒ (2): Suppose gc(L) is disconnected. Clearly, |A(L)| 6= 1, since gc(L) has at least
two components. Since gc(L) is disconnected, without loss of generality we may assume that
gc(L) has two components, say C1 and C2. Let a, b ∈ L such that a ∈ V (C1) and b ∈ V (C2).
Since ab is not an edge, we have a ∨ b is non s-complement. Choose x1, x2 ∈ A(L) such that
x1 ≤ a and x2 ≤ b. Then x1 ∨ a = a is s-complement in L1 and x2 ∨ b = b is s-complement in
L2. That is, x1a and x2b are edges in C1 and C2 respectively.
Case (i): If x1 = x2, then we have a− x1 − b is a path in gc(L), a contradiction.
Case (ii): If x1 6= x2, then since |A(L)| > 2, by Lemma 4.7 we have x1 ∨ x2 is a s-complement.
Then x1x2 ∈ E(gc(L)) in a path a − x1 − x2 − b, which is a contradiction as gc(L) is discon-
nected. Therefore, |A(L)| = 2.

(2)⇒ (3): Assume that |A(L)| = 2, and A(L) = {x1, x2}. Define

V (gci(L)) = {t ∈ L : xi ≤ t and t is s-complement},

for i = 1, 2. In order to show gc(L) = gc1(L) ∪ gc2(L), where gc1(L), gc2(L) are subgraphs of
gc(L), first we show that gc1(L) is complete subgraph, that is, for any a, b ∈ V (gc1(L)), ab ∈
E(gc1(L)). On a contrary, suppose that there exist a, b ∈ V (gc1(L)) such that ab /∈ E(gc1(L)).
That is, a∨ b is non s-complement. Then by Lemma 4.6 (1), we have x1 ∨ x2 = Soc(L) ≤ a∨ b.
Since x2 ≤ x1∨x2 ≤ a∨b, and x2 is an atom, by Lemma 4.6 (2), we have x2 ≤ a or x2 ≤ b. Also,
since a, b ∈ V (gc1(L)), we have x1 ≤ a and x1 ≤ b. Thus, x1 ∨x2 ≤ a or x1 ∨x2 ≤ b. Again, by
Lemma 4.6 (1) we get a or b is non s-complement, a contradiction to a, b ∈ V (gc1(L)). Therefore
ab ∈ E(gc1(L)), for every a, b ∈ V (gc1(L)). The case for gc2(L) is similar. Now to prove that
gc1(L) and gc2(L) are disjoint, let y1 ∈ V (gc1(L)) and y2 ∈ V (gc2(L)). Since A(L) = {x1, x2}
and y1, y2 are vertices, we have Soc(L) = x1 ∨ x2 ≤ y1 ∨ y2. Therefore, by Lemma 4.6 (1),
we have y1 ∨ y2 is non s-complement. Hence, y1y2 are not adjacent. Consequently, gc1(L) and
gc2(L) are disjoint subgraphs.

(3)⇒ (1): Obvious.
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Example 4.9. Consider the lattice given in Figure 6. Then graph gc(L) corresponding to L is
given in Figure 7: Here a and b are atoms, and so gc(L) is disconnected. Also, gc(L) =
gc1(L) ∪ gc2(L), where gc1(L) and gc2(L) are complete and disjoint subgraphs.

Theorem 4.10. If gc(L) is a connected graph, the diameter of gc(L) is at most 2.

Proof. Suppose that gc(L) is a connected graph and a, b ∈ V (gc(L)). If ab ∈ E(gc(L)), then
d(a, b) < 2. Suppose that ab /∈ E(gc(L)). Since a, b ∈ L, by Lemma 4.4, there exist x1, x2 ∈
A(L) such that x1 ≤ a and x2 ≤ b. If a ∨ x2 is s-complement, there is a path a− x2 − b, and so
d(a, b) = 2. Similarly, if b ∨ x1 is s-complement, there is a path b− x1 − a, and so d(a, b) = 2.
Now, suppose both a ∨ x2 and b ∨ x1 are not s-complements. Then by Lemma 4.6 (1), we have
Soc(L) ≤ a ∨ x2 and Soc(L) ≤ b ∨ x1. Since gc(L) is connected, by Theorem 4.8, we have
|A(L)| > 2. Therefore, we have x3 ∈ A(L) other than x1 and x2 with x3 ≤ Soc(L) ≤ a∨x2 and
x3 ≤ Soc(L) ≤ b ∨ x1. Then by Lemma 4.6 (2), we have x3 ≤ a and x3 ≤ b. Hence, a− x3 − b
is a path. Therefore, d(a, b) = 2.

Lemma 4.11. Let 0 6= a, b 6= 1 ∈ L be such that a ≤ b. If b is an s-complement, then a is also
s-complement.

Proof. Straightforward.

Theorem 4.12. If gc(L) is a connected graph, then gc(L) has no cut vertex.

Proof. Suppose that gc(L) is a connected graph and a ∈ V (gc(L)) is a cut vertex of gc(L). Then
by definition, gc(L) \ {a} is disconnected. This implies that for some b, c ∈ V (gc(L)), a lies
in each path between b and c. Since gc(L) is connected, by Theorem 4.10, diam(gc(L)) ≤ 2.
Therefore, we have a path b − a − c. If a is not an atom, by Lemma 4.4 there exists x ∈ A(L)
such that x < a and so x∨ b ≤ a∨ b. Since a and b are adjacent, we have a∨ b is s-complement.
Then by Lemma 4.11, x ∨ b is also s-complement. Similarly, x ∨ c ≤ a ∨ c. Hence x ∨ c is
s-complement. Therefore, b − x − c is a path, a contradiction. Thus, a is an atom. Also, there
exists x 6= yi ∈ A(L) with yi � b. For if each yi ∈ A(L), yi ≤ b, then Soc(L) ≤ b ∨ a and by
Lemma 4.6 (1), we have b ∨ a is non s-complement, a contradiction. Similarly, x 6= yj ∈ A(L)
with yi � c. Since b ∨ c is non s-complement, by Lemma 4.6 (1), for each yk ∈ A(L), we have
yk ≤ Soc(L) ≤ b ∨ c, and so by Lemma 4.7, yk ≤ b or yk ≤ c. Thus, for distinct yi, yj ∈ A(L)
other than a, if yi � b and yj � c, then yj ≤ b and yi ≤ c. Hence b − yj − yi − c is a path in
gc(L) \ {a}, a contradiction. Therefore, gc(L) has no cut vertex.

Theorem 4.13. If |A(L)| ≤ ∞, then no vertex is a universal vertex in gc(L).

Proof. Suppose that |A(L)| ≤ ∞ and there exists a vertex a ∈ V (gc(L)) which is universal.
Then xi ∈ A(L) such that xi ≤ a, and by Lemma 4.7 for xj ∈ A(L), t =

∨
j 6=i

xj is s-complement.
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Since a is universal, t ∨ a is s-complement. Now, xi ≤ a implies Soc(L) =
∨
j 6=i

xj ∨ xi ≤ t ∨ a.

Hence by Lemma 4.6 (1), we have t ∨ a is non s-complement, a contradiction. Therefore, no
vertex in gc(L) is universal.

Lemma 4.14. If gc(L) has a pendant vertex, then |A(L)| = 2.

Proof. Suppose that a ∈ V (gc(L)) is a pendant vertex and |A(L)| > 2. By Lemma 4.7, for
distinct xi, xj ∈ A(L), xi ∨ xj is s-complement. This implies that deg(xi) ≥ 2, for each xi, and
so a /∈ A(L). Then by Lemma 4.4, there exists x1 ∈ A(L) such that x1 < a. Hence x1 ∨ a = a
is s-complement, implies x1 is the only element which is adjacent to a, as a pendant vertex.
Thus, for x2 ∈ A(L), a ∨ x2 is non s-complement, and so by Lemma 4.6 (1), Soc(L) ≤ a ∨ x2.
This shows that xj 6= x1, x2, xj ≤ a ∨ x2, and hence by Lemma 4.6 (2), we have xj ≤ a, a
contradiction.

Theorem 4.15. gc(L) is not a star graph.

Proof. On a contrary, suppose that gc(L) is a star graph. Then by definition, gc(L) has a pendant
vertex. Then by Lemma 4.14, |A(L)| = 2, and hence by Theorem 4.8, gc(L) is disconnected, a
contradiction.

Corollary 4.16. If gc(L) is a k-regular graph, then |A(L)| = 2 and |V (gc(L))| = 2k + 2.

Proof. Suppose that gc(L) is a k-regular graph. If |A(L)| ≥ 3, then deg(x1 ∨ x2) ≤ deg(x1),
where x1, x2 ∈ A(L). Note that deg(x1∨x2) 6= deg(x1), because by Lemma

∨
i 6=2

xi is adjacent to

x1, however, by Lemma 4.6 (1),
∨
i6=2

xi is not adjacent to x1 ∨x2. Hence deg(x1 ∨x2) < deg(x1),

and so deg(x1 ∨ x2) < k, a contradiction to the given hypothesis. Therefore |A(L)| ≤ 2. Since
gc(L) is not a null graph, |A(L)| 6= 1 and therefore |A(L)| = 2. Hence, by Theorem 4.8,
|V (gc(L))| = 2k + 2.

Theorem 4.17. |A(L)| <∞. Then α(gc(L)) = |A(L)|.

Proof. Suppose that A(L) = {x1, x2, · · · , xn}. Then by Lemma 4.6 (1),
n∨

j 6=i=1

is an independent

set. This implies α(gc(L)) ≥ n. Suppose that α(gc(L)) = m > n. Then we have maximal
independent set X = {x1, x2, · · · , xm}. Since m > n, for xt ∈ A(L), there exists xi, xj ∈ X
such that xt 6= xi and xt � xj , where 1 ≤ i, j ≤ n. Note that xi, xj ∈ X andX is an independent
set, therefore xi ∨ xj is non s-complement, and so by Lemma 4.6 (1), xt ≤ Soc(L) ≤ xi ∨ xj .
Since xt ∈ A(L), we have by Lemma 4.6 (2), xt ≤ xi or xt ≤ xj , a contradiction. Therefore,
m = n = α(gc(L)).
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