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Abstract This paper introduces the tax strategy in a random income risk model. The inter-
arrival times of independent claims and premiums are assumed to be Markovian arrival pro-
cesses, to which the independent amount sizes are assumed to follow Phase-type distributions.
We analyse the risk process using the corresponding Markovian fluid queue process. Under
the latent tax strategy, we deduce the differential equations from the integral equations satisfied
by survival probability, the Laplace transform of ruin time and the moments of discounted tax
payments up to ruin. Further, for the corresponding single-phase cash-flow model, we establish
the tax identity. Expressions for Laplace transform of ruin time and moments of discounted tax
payments up to ruin are also derived. Further, we investigate the existence of an optimal surplus
level for starting tax collection. Finally, the findings are illustrated numerically.

1 Introduction

This paper deals with an insurance risk process featuring random incomes. The classical constant
premium risk model found inefficient when the insurance portfolio will have a higher volatility
due to the premiums. This fluctuation is phenomenal in insurance businesses under a beginner
stage compared to that of established ones and in developing countries due to the count of in-
sured is squat in these situations and territories, respectively. More precisely, the assumption of
random income portrays risk models with more realistic cash inflows over classical models with
a constant premium rate.

Boucherie et al. [1] proposed the risk model with stochastic income in the classical risk model
as mathematical accessibility of M/G/1 queue with work removal of negative customers. To
model the uncertainty in premium arrival time and amount sizes, Boikov [2] and Melnikov [3]
replaced the time-homogeneous premium component in the classical risk process with a com-
pound Poisson process to analyse the survival probabilities. Later, Temnov [4] estimate the ruin
probabilities of this Boikov-Melnikov risk process. The analysis under random income strategy
was extended to the Gerber-Shiu function (See Gerber and Shiu [5]) by Bao and Ye [6] in the
delayed renewal model, and Labbé and Sendova [7] in the Boikov-Melnikov process. Further,
Hao and Yang [8] studied the Gerber-Shiu function in a compound Poisson risk model featur-
ing random incomes and delayed claims. In the barrier strategy, Dong et al. [9] analysed the
Gerber-Shiu function, and Zou et al. [10] dealt with an optimal dividend problem considering
inter-dependent claims. Recently, Su et al. [11] used the Laguerre numerical scheme to estimate
Gerber-Shiu function in the random income risk model.

An insurance risk process is a realisation of an insurer’s surplus. The pioneer model of
this process, detailed in Lundberg [12], is modified to incorporate several strategic industrial,
economic and regulatory features. In 1957, De Finetti [13] propose a risk model featuring the
instantaneous reflection of surplus if it exceeds a horizontal barrier. This strategy is considered
as the pioneer dividend strategy, in which the reflected amount that exceeds the barrier is paid
off as dividends to shareholders. Another kind of dividend payment is done via the threshold
strategy, in which a proportion of excess amount is given as dividend so that the process refracts
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(see Albrecher and Hartinger [14] and references therein) at multiple surplus levels establishing a
multi-step premium rate. Along with the reflection and refraction processes, an entirely different
class of process exists, reflecting partially under increasing barrier steps associated with the
profits of an insurer at new record highs. This kind of partial reflection corresponds to the tax
payments under loss-carry forward (latent) strategy in which the tax is a function of surplus,
without applying tax, which is collected only if the insurer is in a profitable condition. Our work
explicitly focuses on the latent tax scheme in a random income model.

Many authors have considered the risk models with tax payments since its inception by Al-
brecher and Hipp [15]. In this pioneer work, the latent tax strategy is assumed in the compound
Poisson risk model, and a simple but robust relation on survival probabilities between tax and
tax-free processes, so-called the tax identity, is established. Later, the tax identity was derived
for the Levy risk process by Albrecher et al. [16] and for the dual risk model by Albrecher et
al. [17]. However, Albrecher et al. [18] confirmed that the tax identity cannot hold good gen-
erally for Markov additive process but can exist definitely in the Sparre Anderson process with
Phase-type renewals and claims.

Under the assumption of surplus-dependent (natural) tax rates, Albrecher et al. [19] verified
the tax identity in the Cramer-Lundberg model. In an extension study, Cheung and Landri-
ault [20] analysed a reward-based generalisation of Geber-Shiu function in a compound Pois-
son process with surplus-dependent premiums, and Cui and Nguyen [21] analysed the Laplace
transform of time of bankruptcy in the Omega-diffusion process with surplus-dependent capital
injections. Remarkably, Al Ghanim et al. [22] investigated and proved the equivalence between
natural and latent tax systems. Distinguished from the works mentioned above, Schmidli [23]
extended the tax model with capital injection proposed by Albrecher and Ivanovs [24] to a tax-
able dividend and non-taxable capital injection strategy and shown that a double barrier dividend
strategy is optimal in the scenario. The aforementioned papers dealt with tax strategies for the
standard risk models with premium rate homogeneous to time. However, the homogeneous pre-
mium capture less volatility when the insurer is in a beginner stage as well as for a swat insured
count. The proposed model triggers the analysis of tax strategies with models suitable to more
volatile cash inflows. Henceforth, this paper analyse a random income risk model under the
latent tax strategy.

For the proposed model, the risk process is characterised by the Markovian Arrival Processes
(MAP) to govern the inter-arrival times of premiums and claims. The MAP risk model is quite
generally handled in the literature since it can be used to model multiple-phase transactions along
with phase correlations. In the literature, it is quite acceptable to fuse the Phase-type (PH) claim
sizes with the MAP inter-arrival times. The MAP/PH fusion allows furnishing correlations be-
tween claim amounts and arrival times. The classical analyses of MAP/PH risk process on the
Gerber-Shiu function can be seen in Ahn and Badescu [25]. The risk models under MAP struc-
ture were further studied by Cheung and Landriault [26] under perturbation and phase-dependent
barrier strategy, by Zhang et al. [27] under absolute ruin with debit interest, and Zhang et al. [28]
in a delayed dividend strategy.

We, in the upcoming sections, try to answer the question of the existence of tax identity in
a random income risk model. Further, the optimal surplus level to start tax collection, subject
to the maximisation of the expected discounted tax payments before ruin, is investigated. Under
strong Markov laws and utilising renewal theory, the corresponding governing (renewal) equa-
tions turned out to be (in)homogeneous Fredholm or Volterra equations for which expressions of
solutions in feasible forms are obtained.

We organise the rest of the paper as follows. In Section 2, we introduce the random income
tax risk process with the latent tax strategy under MAP/PH compound premiums and incomes.
The tax identity in the random income scenario is brought out in Section 3 when the premium
arrivals and sizes are exponentially distributed. The Laplace transform of the ruin time is derived
in Section 4 while the qth moment of discounted tax payments is deduced in Section 5. The
optimal surplus level for starting tax collection is investigated in Section 6. The expressions
derived are numerically illustrated in Section 7. Throughout this paper, we denote parameters,
vectors and matrices in bold scripts while that for single-phase variables and functions in unbold.
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2 Latent tax strategy with MAP premium arrivals

For the initial capital x > 0, a random income risk process is given by

R(t) = x+ Sp(t)− Sc(t), (2.1)

where Sp(t) and Sc(t) are independent aggregate pure jump processes for premiums and
claims respectively. The inter-premium times, T p follow an n−phased MAP with representation
MAPn(α,E0,E1) . Let {Np(t)}t>0 be the premium counting process and {Jp(t)}t>0, the un-
derlying Continuous Time Markov Chain (CTMC) with state space Ep = {1, 2, . . . , n}. The
premium sizes, W follow an m1-phased i.i.d. PH distribution with representation PHm1(µ,G).
The inter-claim times, T c of risk process (2.1) follow a m−phased MAP with representation
MAPm(β,F0,F1). In the MAP claim arrivals, let {Nc(t)}t>0 is the claim counting process and
{Jc(t)}t>0 is the underlying CTMC with state space Ec = {1, 2, . . . ,m}. The claim sizes, Z
follow an n1-phased i.i.d. PH distribution denoted by PHn1(ν,H)).

The random income risk process (2.1) can be now alternatively written as

R(t) = x+

Np(t)∑
j=1

Wj −
Nc(t)∑
k=1

Zk, (2.2)

which is renewed either by a premium or by a claim arrival. Let T = min(T p, T c) be the se-
quence of renewals for which we define {Ui = T0+T1+T2+· · ·+Ti}i∈N0 , with the understanding
that U0 = T0 = 0. Denoting ⊕ as Kronecker sum and ⊗ as Kronecker product, T will then fol-
low a nm−phased MAP with representation MAPnm([α ⊗ β],D0,D1) where D0 = E0 ⊕ F0
and D1 = E1⊕F1. The renewal point process, T will be then governed by the bi-variate Markov
process {N(t), J(t)}t>0 having state space, N× E where E = {1, 2, . . . , nm}. Then, {N(t)}t>0
denotes the number of renewals due to a premium or claim arrival and{J(t)}t>0 is the state of
underlying CTMC of renewals.

In this paper, we furnish correlated amount sizes with inter-arrival times of independent pre-
miums and claims. We fuse (see Example 2.4 of Badecu et al. [29]) the rate matrices of PH
amount sizes to that of MAP inter-renewal times to analyse the risk process (2.1) as a Markovian-
fluid Queue Process (M-FQP). Thus, by this fusion, the process (2.2) will be governed by an
irreducible CTMC with Transition Rate Matrix (TRM) T11nm×nm T12nm×nmm1

T13nm×nmn1

T21nmm1×nm
T22nmm1×nmm1

T23nmm1×nmn1

T31nmn1×nm
T32nmn1×nmm1

T33nmn1×nmn1

 =

 D0 µ⊗ [E1 ⊗ Im] ν ⊗ [F1 ⊗ In]
g> ⊗ Inm G⊗ Inm 0nmm1×nmn1

h> ⊗ Inm 0nmn1×nmm1 H⊗ Inm

 ,
(2.3)

where I . and 0. denote the identity matrix and matrix of zeroes of corresponding order respec-
tively, g> = −Ge>m1

and h> = −He>n1
, in which e>. denotes the column vector of ones with the

order suffixed. During the sojourn times, the elements of sub-TRM T11 represents the transition
rates of switching phases for which fluid level has void acceleration(deceleration). On the other
hand, the fluid process is characterised by positive jumps in the states governed by the sub-TRM
T22 and negative jumps in the states governed by the sub-TRM T33.

For the single-phased cash-flow model (SPCM) of risk process (2.2), we assume that T p ∼
exp(λp), W ∼ exp(κp), T c ∼ exp(λc) and Z ∼ exp(κc) (all mutually independent). Corre-
sponding, the TRM reduces toD0 E1 F1

g G 0
h 0 H

 =

− (λp + λc) λp λc

κp −κp 0
κc 0 −κc

 . (2.4)

We amend the risk process (2.2) by considering the latent tax strategy as in Figure 1. When-
ever the surplus is at the running maximum and in state a ∈ Ep, the tax is paid at rate γa ∈ [0, 1).
Let σ0 = 0 and define

σd = inf
l = u + v

u, v ∈ N

l > σd−1 :
u∑

j=Np(Uσd−1 )

Wj −
v∑

k=Nc(Uσd−1 )

Zk > 0

 (2.5)
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Figure 1: A realisation of the surplus Process RΓ(t)

to be the number of renewals up to the dth record high time point. We associate the same number
of phases in the premium arrivals to tax so that the tax matrix is taken as Γ = diag(γ1,γ2, . . . ,γn).
For K0 = x, let

Kd = Kd−1 + (1− γJp(Uσd ))

 Np(Uσd )∑
j=Np(Uσd−1 )

Wj −
Nc(Uσd )∑

k=Nc(Uσd−1 )

Zk

 (2.6)

be dth record high surplus. The resulting surplus process in the random income model with tax
is given by

RΓ(t) = KΞ(t) −

 Nc(t)∑
k=Nc(Uσd−1 )

Zk −
Np(t)∑

j=Np(Uσd−1 )

Wj

 , (2.7)

where Ξ(t) = sup{d ∈ N : Uσd 6 t}. For practical considerations, we assume the security
loading factor

θ =
AIF
AOF

− 1 (2.8)

in the system to be positive by taking the average cash-inflow (AIF) as

AIF = −πp [In − Γ] [µ⊗E1] [G⊗ In]−1
e>nm1

and the average cash-outflow (AOF) given by

AOF = −πc [ν ⊗ F1] [H⊗ Im]−1
e>mn1

,

where πp and πc are the stationary probability row vectors of the CTMC, {Jp(t)}t>0 and
{Jc(t)}t>0 respectively.

Let the ultimate ruin time for the tax risk process (2.7) be τΓ = inf{t > 0 : RΓ(t) < 0}
(τΓ = ∞ if the set is empty). Then for the discounting factor δ > 0 , let the Laplace transform
of ruin time be

ψΓ,δ(x) = [α⊗ β]ΨΓ,δ(x)e
>
nm, (2.9)
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in which for the (a, b)th transition

[ΨΓ,δ(x)](a,b) =E
[
e−δτΓI (τΓ <∞) |RΓ(0) = x, J(0) = a, J(τΓ) = b

]
, for a, b ∈ E ,

(2.10)

where I(.) denotes the indicator function. The ruin probability can be then determined from
Eq. (2.10) by ψΓ,0(x) = [α⊗ β]ΨΓ,0(x)e>nm.

3 Tax identity in the random income risk model

In this section, we investigate the impact of latent tax strategy on survival probability, φΓ,0(x) =
1− ψΓ,0(x), for the tax risk process (2.7). We try to establish the tax identity which determines
the association of survival probability of tax risk processes to that of corresponding non-tax
risk process. For the transition from ath state to bth state, the premium arrives and the surplus
shoots with a qth(q ∈ N)-order discounted (δ > 0) probability measure, [Cqδ]a,b where Cqδ =

[qδInm −D0]
−1

D1 [−D0]
−1

[E1 ⊗ Im]. Using Eq. (2.4), Cqδ reduces to Cqδ = λp/(λp+λc+
qδ) for the SPCM. On the other hand, if a claim arrives at T1 and the process survives, it may
(up-) cross level x in order to avoid ruin. Let

χx = inf {t > 0 : RΓ(t) > x|T1 = T c} (3.1)

be the time of first shooting of RΓ(t) above initial surplus x, after a non-ruin claim arrival
at the first renewal time T1. Then, χx will be the time at which the surplus process (2.7)
reaches the first record high. Define the lowest surplus up to the crossing time χx by Qx =
inf {RΓ(t) : 0 6 t < χx}. Again with a transition from ath state to bth state, let the qth-moment
of Laplace transform of χx for which the risk process survives up to χx be

[Vqδ(x)]a,b =E
[
e−qδχxI(Qx > 0)|RΓ(0) = x, J(0) = a, J(χx) = b

]
for a, b ∈ E . (3.2)

For convenience of the analysis, we denote Λqδ(x) = Cqδ + Vqδ(x). Note that the quantities
χx, Q and Vqδ(x) are independent of the tax. Further, for δ = 0, V0(x) is equivalent to the
probability that the dual of the risk process (2.2) starting at x = 0 (with negative safety loading)
priorly got ruined without reaching the level x, undergoing a state transition from a to b.

Lemma 3.1. Assuming positive cash flow in the system, we have lim
x→∞

ψΓ,0(x) = 0.

Proof. Under the postive cash flow, the risk process (2.2) up-crosses the initial capital x count-
ably often. Then, it yields supn∈N{Uσn+1 −Uσn} <∞ a.s. By process (2.7), the ruin probability
ψΓ,0(x) is bounded as

ψΓ,0(x) 6 Pr

 inf
d∈N

Kd −

Nc(Uσd+1 )∑
k=Nc(Uσd )

Zk −
Np(Uσd+1 )∑
j=Np(Uσd )

Wj

 < 0

 . (3.3)

Also, from process (2.6), it is clear that inf
d∈N
{Kd} = x from which

ψΓ,0(x) 6Pr

sup
d∈N

Nc(Uσn+1 )∑
k=Nc(Uσn )

Zk −
Np(Uσn+1 )∑
j=Np(Uσn )

Wj

 > x

 . (3.4)

Finally,

lim
x→∞

ψΓ,0(x) 6 lim
x→∞

Pr

sup
d∈N

Nc(Uσn+1 )∑
k=Nc(Uσn )

Zk −
Nc(Uσn+1 )∑
j=Np(Uσn )

Wj

 > x

 = 0. (3.5)
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Proposition 3.2. For the risk process (2.7), the nm-dimensional square matrix ΦΓ,0(x) satisfies
the first order homogeneous differential equation (DEq.):

Φ
′
Γ,0(x) =

[
µα ⊗Λ′0(x)

]
[µα ⊗Λ0(x)]

−1
ΦΓ,0(x)− [µα ⊗Λ0(x)] {[gΓ ⊗ Inm]

+ [GΓ ⊗ Inm] [µα ⊗Λ0(x)]
−1
}

ΦΓ,0(x),

(3.6)

whereµα = α⊗µ, Λ0(x) = C0+V0(x), GΓ = (In − Γ)
−1⊗G and gΓ =

[
(In − Γ)

−1 ⊗ g>
]

e>n .

Further, [µα ⊗Λ0(x)]
−1 is an appropriate generalised inverse of [µα ⊗Λ0(x)] .

Proof. Due to the premium arrival, a new record high of the process (2.7) may occur in two
different manners: a) if the first renewal happens due to a premium arrival and b) if the first
renewal happens due to a claim arrival and the surplus process survives to up-cross the level x
avoiding the ruin. Then, the (after-tax) excess of the surplus level over x follows the PH distri-
bution, PHnm1 (µα,GΓ). As a result, the non-discounted survival probability φΓ,0(u) satisfies
the Fredholm integral Eq.,

ΦΓ,0(x) = [µα ⊗Λ0(x)]

∫ ∞
w=0

[(
eGΓwgΓ

)
⊗ Inm

]
ΦΓ,0(x+ w)dw

= [µα ⊗Λ0(x)]

∫ ∞
w=x

[(
eGΓ(w−x)gΓ

)
⊗ Inm

]
ΦΓ,0(w)dw. (3.7)

Differentiating Eq. (3.7) w.r.to x, we can obtain the DEq. (3.6).

By proposition 3.2, we have the DEq. satisfying the non-discounted survival probability of
the risk process (2.7). For convenience of analysis, denote nm-dimensional matrix function

ΩΓ,qδ(x) = exp
[∫ x

w=0
Λqδ(w)

[
(gΓ ⊗ Im) + (GΓ ⊗ Im)Λ−1

qδ (w)
]

dw
]

(3.8)

and

∆Γ,qδ(x) =
d

dx
ln
[
Ω−1

Γ,qδ(x)Λqδ(x)
]
. (3.9)

We proceed the analysis by reducing the expression (3.6) to the case of single-phase (cash-
inflow) premium size. Correspondingly, we particularise the process (2.7) with single-phase
tax, γ ∈ [0, 1) so that GΓ reduces to Gγ = [−κp/(1− γ)]. Then using Eqs. (2.4) and (3.9),
Eq. (3.6) can be written as

Φ′γ,0(x)− ∆γ,0(x)Φγ,0(x) = 0. (3.10)

Theorem 3.3. Assuming that them-dimensional square matrix Φγ,0(x) is invertible, the solution
of Eq. (3.10) is

Φγ,0(x) =Λ−1
0 (∞)Φγ,0(∞)Λ0(x)Ω

−1
γ,0(x)Ωγ,0(∞), (3.11)

where Λ0(∞) = − [D0]
−1

D1.

Further, for the SPCM, we can have

Ωγ,qδ(x) = exp
[∫ x

w=0
− κp

1− γ (1− Λqδ(w)) dw
]

(3.12)

and hence we can state the theorem below.

Theorem 3.4. For tax rate γ < 1, the non-discounted survival probability φγ,0(x) i.e., the tax
identity for the SPCM of risk process (2.7) is given by

φ1−γ
γ,0 (x) =

φ0,0(x)

Λ
γ
0 (x)

. (3.13)
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Proof. For the SPCM of process (2.7) which is governed by TRM (2.4), we can have φγ,0(∞) =
1 and V0(∞) = λc/ (λp + λc) by Lemma 3.1 and it follows

φγ,0(x) = Λ0(x)
Ωγ,0(∞)

Ωγ,0(x)
. (3.14)

Since Eq. (3.14) also holds for the corresponding non-tax process, we arrive at the tax iden-
tity (3.13).

Since Λ0(x) = C0(x)+V0(x), the right-hand side of tax identity (3.13) would be completely
known by determining the expression for V0(x). To derive V0(x), consider a negatively loaded
SPCM of risk process (2.2) under the TRM (2.4). Let ξ(x) be the probability that ruin happens
for this negatively loaded process. By applying the Markovian property on exponential jumps
for a process with barrier strategy, we have (See Dickson [30])

V0(x) =
ξ(0)− ξ(x)

1− ξ(x)
, (3.15)

where (see Dong et al. [9])

ξ(x) =
κc − L
κc

e−Lx =
λp(κp + L)

(λc + λp)(κp + L)− κpλc
e−Lx, (3.16)

in which L (for the dual process) satisfies the Lundberg Eq.

λc + λp =
κpλc
κc − L

+
κpλp
L+ κp

. (3.17)

Eq. (3.13) determines the ruin probability with tax as a function of the ruin probability with-
out tax. Further, applying probabilistic arguments on the passage times, a relation between
Λqδ(x) and the qth moment of discounted dividends Pqδ(x; ς) paid before ruin in the SPCM of
risk process (2.2) under a dividend barrier strategy at level ς = x is given by

Λqδ(x) =

(
1
κp

+ Pqδ(x, x)

)−1

Pqδ(x, x) for x > 0. (3.18)

4 The Laplace transform of ruin time

In this section, we analyse the Laplace transform of ruin time τΓ for the risk process (2.7). Let
us consider what happens after a claim arrives at the first renewal time T1. After the time T1(=
T c > 0), the process (2.7) can either up-cross the level x to reach a new record high at time χx
so as to avoid ruin or ruin happens before the time χx. Denote this ruin time by

ζx = inf {t > 0 : RΓ(t) < 0|T1 = T c, 0 6 t < χx} (4.1)

be the time of ruin, occurs without up-crossing the level x, after a non-ruin claim arrival at the
first renewal time T1. Define the highest surplus up to the crossing time ζx byO = sup {RΓ(t) : 0 6 t < ζx}.
Define the Laplace transform of the ruin time ζx along with a transition from state a to state b by

[Aqδ(x)]a,b = E
[
e−qδζxI(O 6 x)|RΓ(0) = x, J(0) = a, J(ζx) = b

]
, for a, b ∈ E . (4.2)

Sample path of the risk process (2.2) that realises Aδ(x) is equivalent to the path of dual (nega-
tively loaded) of same process that attains the level x from initial surplus level 0, with out a ruin .
For a positively loaded corresponding risk process, let Bδ(x, ς) be the Laplace transform of first
passage time from level x to any level above ς avoiding ruin en route. Furthermore, an expres-
sion for Bδ(x, ς) can be obtained in terms of Λδ(x). Indeed, by conditioning on the ascending
ladder height, one obtains

Bδ(x, ς) = [µ⊗Λδ(x)]

{∫ ς

w=x

[(
eG(w−x)g

)
⊗ Im

]
Bδ(w, ς)dw +

[(
eG(ς−x)e>m1

)
⊗ Im

]}
.

(4.3)
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Differentiating Eq. (4.3) w.r.t. x, we obtain

B′δ(x, ς) =

{[
µ⊗Λ′δ(x)

]
[µ⊗Λδ(x)]

−1 − d
dx

ln Ω0,δ(x)

}
Bδ(x, ς). (4.4)

For the SPCM of risk process (2.2) which is governed by TRM (2.4), we have the following from
Eq. (4.4):

B′δ(x, ς)− ∆0,0(x)Bδ(x, ς) = 0, (4.5)

from which

Bδ(x, ς) = Λδ(x)
Ω0,δ(ς)

Ω0,δ(x)
. (4.6)

And hence from the single-phased dual process (with negative loading) of risk process (2.2), it
yields that Aδ(x) reduces to Aδ(x) = Bδ(0, x).

Proposition 4.1. For the risk process (2.7), the nm-dimensional square matrix ΨΓ,δ(x) satisfies
the first order inhomogeneous DEq.:

Ψ′Γ,δ(x) =Λ′δ(x) +
{[
µα ⊗Λ′δ(x)

]
[µα ⊗Λδ(x)]

−1 − [µα ⊗Λδ(x)] {[gΓ ⊗ Inm]

+ [GΓ ⊗ Inm] [µα ⊗Λδ(x)]
−1
}}

[ΨΓ,δ(x)−Aδ(x)] .

(4.7)

Proof. Considering the after-tax excess surplus level over x at times T1 = T p and χx, and the
claim amount size at ξx, themn-dimensional matrix ΨΓ,δ(x) satisfies the Fredholm integral Eq.:

ΨΓ,δ(x) = [µα ⊗Λδ(x)]

∫ ∞
w=0

[(
eGΓwgΓ

)
⊗ Inm

]
ΨΓ,δ(x+ w)dw + Aδ(x)

= [µα ⊗Λδ(x)]

∫ ∞
w=x

[(
eGΓ(w−x)gΓ

)
⊗ Inm

]
ΨΓ,δ(w)dw + Aδ(x). (4.8)

Differentiating Eq. (4.8) w.r.t. x, we can deduce Eq. (4.7).

Theorem 4.2. For the SPCM of risk process (2.7), the solution for ψγ,δ(y) is given by

ψγ,δ(y) = Aδ(y) + gγ
Λδ(y)

Ωγ,δ(y)

∫ ∞
y

Ωγ,δ(x)Aδ(x)dx. (4.9)

Proof. For the SPCM of risk process (2.7), Eq. (4.7) can be rewritten as

ψ′γ,δ(x)− ∆γ,δ(x)ψγ,δ(x) = A′δ(x)− ∆γ,δ(x)Aδ(x)− gγΛδ(x)Aδ(x). (4.10)

Applying the multiplicative factor Ωγ,δ(x)/Λδ(x) on the inhomogeneous DEq.. (4.10), we have

d
dx

[
Ωγ,δ(x)ψγ,δ(x)

Λδ(x)

]
=

d
dx

[
Ωγ,δ(x)Aδ(x)

Λδ(x)

]
− gγΩγ,δ(x)Aδ(x). (4.11)

Integrate Eq. (4.11) with respect to x from y(> 0) to∞ together with

lim
x→∞

ψγ,δ(x) = lim
x→∞

Aδ(x) = 0

and limx→∞ Vδ(x) > 0 due to Lemma 3.1, one can conclude the statement.
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5 The discounted tax payments

This section focuses on the solution analysis for moments of discounted tax payments un-
til ruin. Let [XΓ,δ(x)]a,b∈E denote the discounted tax payments before ruin in the surplus
process (2.7) undergoing (a, b)th transition. Then, the qth moment of XΓ,δ(x) is given by
MΓ,qδ(x) = E [XΓ,δ(x)]

q. By Proposition 5.1, we can have the DEq. satisfied by MΓ,qδ(x).

Proposition 5.1. For the risk process (2.7), the nm-dimensional square matrix MΓ,qδ(x) satis-
fies the first order inhomogeneous DEq.:

M′
Γ,qδ(x) =

[
µα ⊗Λ′qδ(x)

]
[µα ⊗Λqδ(x)]

−1
MΓ,qδ(x)− [µα ⊗Λqδ(x)] [(gΓ ⊗ Inm) + (GΓ ⊗ Inm)

× [µα ⊗Λqδ(x)]
−1
]

MΓ,qδ(x)− q
{[

(In − Γ)
−1

Γ
]
⊗ Im

}∫ ∞
w=x

[(
eGΓ(w−x)gΓ

)
⊗ Inm

]
× E

[
XΓ,δ(w) +

{[
(In − Γ)

−1
Γ
]
⊗ Im

}
(w − x)

]q−1
dw. (5.1)

Proof. By conditioning on the first upper exit time χx of the risk process (2.7), one finds

MΓ,qδ(x) = [µα ⊗Λqδ(x)]

∫ ∞
w=0

[(
eGΓwgΓ

)
⊗ Inm

]
× E

[
XΓ,δ(x+ w) +

{[
(In − Γ)

−1
Γ
]
⊗ Im

}
w
]q

dw

= [µα ⊗Λqδ(x)]

∫ ∞
w=x

[(
eGΓ(w−x)gΓ

)
⊗ Inm

]
× E

[
XΓ,δ(w) +

{[
(In − Γ)

−1
Γ
]
⊗ Im

}
(w − x)

]q
dw. (5.2)

Differentiating Eq. (5.2) w.r.t. to x, the Eq. (5.1) holds.

By Proposition 5.1, we have the recurrence relation of MΓ,qδ(x) in the order of q. The
solution of MΓ,qδ(x) for the SPCM is derived in Theorem 5.2.

Theorem 5.2. For the SPCM, the solution for Mγ,qδ(y) is given by

Mγ,qδ(y) =
qγΛqδ(y)

(1− γ)Ωγ,qδ(y)

∫ ∞
x=y

Ωγ,qδ(x)MΓ,(q−1)δ(x)

Λ(q−1)δ(x)
dx (5.3)

Proof. Taking account of the SPCM of risk process (2.7) which is governed by TRM (2.4) and
replacing q by q − 1 in Eq. (5.2), the Eq. (5.1) can be simplified to

M ′γ,qδ(x)− ∆γ,qδ(x)Mγ,qδ(x) = −
qγΛqδ(x)Mγ,(q−1)δ(x)

(1− γ)Λ(q−1)δ(x)
. (5.4)

Multiplying both sides of Eq. (5.4) by the multiplicative factor Ωγ,qδ(x)/Λqδ(x), we have

d
dx

[
Ωγ,qδ(x)Mγ,qδ(x)

Λqδ(x)

]
= −

qγMγ,(q−1)δ(x)

(1− γ)Ωγ,qδ(x)Λ(q−1)δ(x)
. (5.5)

Integrating Eq. (5.5) from y to∞ then yields

Mγ,qδ(y) =
Λqδ(y)Ωγ,qδ(∞)Mγ,qδ(∞)

Ωγ,qδ(y)Λqδ(∞)
+

qγ

1− γ

∫ ∞
x=y

Ωγ,qδ(x)Mγ,(q−1)δ(x)

Λ(q−1)δ(x)
dx, (5.6)

where Mγ,qδ(∞) := limx→∞Mγ,qδ(x) and Λqδ(∞) := limx→∞ Λqδ(x). Under the positive
cash flows and δ > 0, we have limx→∞ Λqδ(x) > 0, limx→∞Mγ,qδ(x) is finite a.s. and

lim
x−>∞

Ωγ,qδ(x)

Ωγ,qδ(y)
6 lim

x−>∞
exp [{Λqδ(x)gγ +Gγ} (y − x)] = 0, (5.7)

by which Eq. (5.6) becomes Eq. (5.3).
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Corollary 5.3. For q = 1, the expected discounted tax payments until ruin is given by

Mγ,δ(y) =
γΛδ(y)

(1− γ)Ωγ,δ(y)

∫ ∞
x=y

Ωγ,δ(x)dx, (5.8)

since Mγ,0(x) = Λ0(x) by Eq. (5.2).

6 Delayed start of tax payments

In this section, we investigate the existence of optimal surplus level to start tax collection. The
optimal surplus is determined under the objective to maximise the expected discounted tax paid
out until ruin. Further, by delaying the tax collection will decrease the ruin probability of risk
process. We consider the same tax system with tax payments allowed to start only at a thresh-
old level ς > x, for which let [YΓ,δ(x, ς)]a,b be the element denoting (a, b)th transition of the
resulting expected discounted tax payments. The immediate probabilistic argument is that

YΓ,δ(x, ς) =Bδ(x, ς)

{∫ ∞
w=0

w
[
µα ⊗

{[
(In − Γ)

−1
Γ
]
⊗ Im

}] [(
eGΓwgΓ

)
⊗ Inm

]
dw

+

∫ ∞
w=0

[(
µαe

GΓwgΓ

)
⊗ Inm

]
MΓ,δ(b+ w)dw

}
. (6.1)

Combining (5.2) at q = 1 and (6.1), we can have

Yγ,δ(x, ς) =Bδ(x, ς)
Mγ,δ(ς)

Λqδ(ς)
=

Λδ(x)Ω0,δ(ς)Mγ,δ(ς)

Ω0,δ(x)Λδ(ς)
. (6.2)

On substituting Eq. (4.6) in Eq. (6.2),

Yγ,δ(x, ς) =
Λδ(x)Ω0,δ(ς)Mγ,δ(ς)

Ω0,δ(x)Λδ(ς)
. (6.3)

Theorem 6.1. If there is an optimal level ς∗ > x > 0 to start taxation at rate 0 < γ < 1 in the
SPCM of risk process (2.7), it has to fulfil the condition

d
dς
Mγ,δ(ς)

Λδ(ς)

∣∣∣∣
ς=ς∗

= 1 (6.4)

together with

Λ
′
δ (ς
∗) > κp (1− Λδ (ς

∗))
2
, (6.5)

and the optimal expected discounted tax payment is then given by

Yγ,δ(x, ς
?) =

Bγ,δ (x, ς∗)

κp (1− Λδ (ς∗))
, for x < ς∗. (6.6)

A sufficient condition for the existence of such an optimal positive level ς∗ > 0 is

lim
x→0

Mγ,δ(x)

Λδ(x)
> 1/κp. (6.7)

On the other hand, if such a ς∗ > 0 does not exist, then the optimal level to start taxation is
ς∗ = 0 (i.e. start immediately), so that in this case Yγ,δ(x, ς?) = Yγ,δ(x, 0).

Proof. To identify the optimal surplus level ς∗ for the authority to start tax collection, we shall
look for the solution of

∂

∂ς
Yγ,δ(x, ς) = 0. (6.8)

Combining Eqs. (6.3) and (6.8) yields[
M ′γ,δ (ς

∗)

Mγ,δ (ς∗)
−
(

Λ′δ (ς
∗)

Λδ (ς∗)
+ κp (1− Λδ (ς

∗))

)]
Yγ,δ(x, ς

?) = 0. (6.9)
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Since Yγ,δ(x, ς) > 0 for x, ς > 0, we get

M ′γ,δ (ς
∗)

Mγ,δ (ς∗)
=

Λ′δ (ς
∗)

Λδ (ς∗)
+ κp (1− Λδ (ς

∗)) . (6.10)

On the other hand, we know from Eq. (5.5) at q = 1 that

M ′γ,δ (x)

Mγ,δ (x)
=

Λ′δ (x)

Λδ (x)
+
κp (1− Λδ (x))

1− γ
− γΛδ (x)

(1− γ)Mγ,δ (x)
for x > 0. (6.11)

Hence, Eq. (6.10) can be written as

Mγ,δ (ς∗)

Λδ (ς∗)
=

1
κp (1− Λδ (ς∗))

(6.12)

or alternatively,

Mγ,δ (ς
∗) = Pδ(ς

∗, ς∗). (6.13)

Replacing Eq. (6.12) in Eq. (6.10) eventually leads to Eq. (6.4).
In order to ensure that ς∗ is indeed a maximum, we have to prove that

∂2

∂ς2Yγ,δ(x, ς)

∣∣∣∣
ς=ς∗

< 0. (6.14)

From Eq. (6.3), we have

Y ′′γ,δ(x, ς)
∣∣
ς=ς∗

=

((
M ′γ,δ (ς)

Mγ,δ (ς)

)′
−
(

Λ′δ (ς)

Λδ (ς)

)′
+ κpΛ

′
δ (ς)

)
Yγ,δ(x, ς)|ς=ς∗ . (6.15)

Differentiating Eq. (6.11) w.r.t. ς , we also get(
M ′γ,δ (ς)

Mγ,δ (ς)

)′
=

(
Λ′δ (ς)

Λδ (ς)

)′
− κp

1− γ
Λ
′
δ (ς)−

γ

1− γ

(
Λδ (ς)

Mγ,δ (ς)

)′
(6.16)

and combining the last two Eqs., one arrives at

Y ′′γ,δ(x, ς
∗) = − γ

1− γ

(
κpΛ

′
δ (ς
∗) +

(
Λδ (ς∗)

Mγ,δ (ς∗)

)′)
Yγ,δ(x, ς

∗)

= − γ

1− γ

(
κpΛ

′
δ (ς
∗) +

(
Λδ (ς∗)

Mγ,δ (ς∗)

)2
)
Yγ,δ(x, ς

∗) (6.17)

or, by virtue of Eq. (6.11)

Y ′′γ,δ(x, ς
∗) = − γ

1− γ

(
κpΛ

′
δ (ς
∗)− κ2

p (1− Λδ (ς
∗))

2
)
Yγ,δ(x, ς

∗). (6.18)

Hence Λ′δ (ς
∗) − κp (1− Λδ (ς∗))

2
> 0 guarantees Y ′′γ,δ(x, ς

∗) < 0, identifying ς∗ as a (local)
maximum. Note that Eq. (6.5) also translates into

d
dς

(
1

κp (1− Λδ (ς∗))

)∣∣∣∣
ς=ς∗

> 1, (6.19)

which means that the derivative of the right-hand side exceeds the one of the left-hand side of
Eq. (6.11) in the intersection point ς∗. From Eq. (5.8),

lim
x→∞

Mγ,δ (x)

Λδ (x)
=

γ

1− γ

∫ ∞
w=0

e−
κp

1−γ

∫ x
0 (1−Λδ(∞))dwdx

=
γ

κp (1− Λδ (∞))
. (6.20)
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Note that Eq. (6.20) can also be obtained directly by probabilistic reasoning (in the absence of
ruin):

Mγ,δ (∞) = Λδ (∞)

(
γ

κp
+Mγ,δ (∞)

)
. (6.21)

Altogether it is then clear that

lim
x→∞

Mγ,δ (x)

Λδ (x)
< lim
x→∞

1
κp (1− Λδ (x))

. (6.22)

Hence, for limx→0 Mγ,δ (x) /Λδ (x) > 1/κp, the continuity of the functions Mγ,δ (x) /Λδ (x)
and 1/κp (1− Λδ (x)) guarantees the existence of an optimal ς∗ > 0 (in case there should be
several positive solutions of Eq. (6.4) with Eq. (6.5), one would have to pick the one leading to
the largest value of Yγ,δ(x, ς).

Finally, in the absence of a positive local maximum, the fact that Yγ,δ(x,∞) = 0 then estab-
lishes ς∗ = 0 as the optimal taxation level.

7 Numerical Examples

In this section, we quantify the expressions of ruin probabilities, Laplace transform of ruin time,
expected discounted tax paid until ruin in the SPCM for some set of parameters. The values of
corresponding expressions are obtained, and the related graphs are plotted using MATLAB. We
provide illustrations using two different examples to point out the existence of the optimal surplus
level to start tax collection. In the first example, we consider parameters that do not satisfy the
condition (6.7) for the existence of optimal surplus level to start tax collection. While in the
second one, we consider the parameters in such a way to satisfy the sufficient condition (6.7).

Example 7.1. We consider the following parameters for the SPCM: λp = 1, λc = 1, κp = 1
and κc = 2. The cases of tax rates γ = 0.1, 0.25 and 0.4 are taken along with the non-tax case
for which the security loading factor (by Eq. (2.8)) is 0.2, 0.5 ,0.8 and 1 respectively.

Remark 7.2. From Figure2a, the plot indicates that the ruin probabilities are proportional to the
tax rates (also see Table 1). For δ = 0.6, the corresponding Laplace transform values of ruin
time are plotted and tabled in Figure 2b and Table 2 respectively, which also behaves the same.

Remark 7.3. We further obtain the values of expected discounted tax paid until ruin Mγ,δ(u).
By Figure 3a and Table 3, we observe that the tax payments converge to a constant when the
insurer has unbounded capital. Finally, we determine the values of expected discounted tax paid
until ruin Yγ,δ(0, ς) for the same δ against the threshold surplus level to start tax collection.
By Figure 3b and Table 4, we can conclude that the curve will decay to zero as the increment
in threshold to start tax collection. In other words, the possibility to start tax collection will
decrease since the surplus probably may not attain the threshold when it is large. Hence, the
optimal threshold that maximises the expected discounted tax does not exist, which is natural
since the choice of parameters does not satisfy the sufficient condition (6.7).

Example 7.4. In this example, we try to make an analogue of the example illustrated by Al-
brecher and Hipp [15] for the random income risk process. The values of expected discounted
tax paid until ruin are obtained for the set of parameters satisfying the condition (6.7). We con-
sider the following parameters: λp = 2, λc = 1, κp = 1 and κc = 1. The tax rate is 0.5
for which the security loading factor is zero and satisfies the condition (6.7) for the existence of
optimal surplus level to start tax collection.

Remark 7.5. In Figure 4a, the plot of expected discounted (δ = 0.04) tax collected until ruin
against threshold surplus to start tax collection validates the existence of optimal surplus level to
start tax collection. Further, using Figure 4b, we explore the Eq. (6.13) to determine the optimal
threshold level (ς? = 3.05) which maximises the expected discounted tax collected until ruin.
The corresponding coordinate values from Figures 4a and 4b are tabulated in Table 5.
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Figure 2: Ruin Probabilities and Laplace transform ruin probabilities vs Initial capital

u ψ0,0(u) ψ0.10,0(u) ψ0.25,0(u) ψ0.40,0(u)

0 0.5264 0.5460 0.5802 0.6219
10 0.1139 0.1214 0.1349 0.1521
20 0.0569 0.0612 0.0689 0.0790
40 0.0241 0.0262 0.0301 0.0353
60 0.0117 0.0128 0.0149 0.0179
80 0.0048 0.0053 0.0062 0.0076

Table 1: Ruin Probabilities Vs Initial capital for various tax rates

u ψ0,0.6(u) ψ0.10,0.6(u) ψ0.25,0.6(u) ψ0.40,0.6(u)

0 0.1835 0.1883 0.1972 0.2096
3 0.0308 0.0317 0.0334 0.0357
5 0.0061 0.0062 0.0066 0.0070
7 0.0013 0.0013 0.0014 0.0015
9 0.0002 0.0002 0.0003 0.0003

Table 2: Laplace transform of ruin time Vs Initial capital for various tax rates
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Figure 3: Expected discounted tax paid until ruin
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u M0,0.6(u) M0.10,0.6(u) M0.25,0.6(u) M0.40,0.6(u)

0 0.0000 0.1363 0.3405 0.5469
5 0.0000 0.1676 0.4215 0.6818
8 0.0000 0.1689 0.4249 0.6876

12 0.0000 0.1691 0.4253 0.6882
15 0.0000 0.1691 0.4253 0.6882

Table 3: Expected discounted tax paid until ruin Vs Initial capital for various tax rates

ς Y0,0.6(0, ς) Y0.10,0.6(0, ς) Y0.25,0.6(0, ς) Y0.40,0.6(0, ς)
0 0.0000 0.1363 0.3405 0.5469
5 0.0000 0.0295 0.0741 0.1199
8 0.0000 0.0096 0.0240 0.0389

12 0.0000 0.0021 0.0054 0.0087
15 0.0000 0.0006 0.0017 0.0028
18 0.0000 0.0002 0.0005 0.0007

Table 4: Expected discounted tax paid until ruin Vs Threshold surplus level to start tax collection
for various tax rates
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Figure 4: Performance quantities Vs Threshold surplus level to start tax collection

ς Y0.5,0.04(0, ς) M0.5,0.04(ς) P0.5(ς, ς)

0 4.8147 4.8147 3.7371
5 5.0239 9.7982 10.3340
8 4.8805 12.2209 14.6567

12 4.5911 14.5734 19.6965
15 4.1077 15.9063 22.9989

Table 5: Performance quantities Vs Threshold surplus level to start tax collection

8 Conclusion and Remarks

In this paper, we have analysed a random income risk model with the latent tax strategy. As-
suming the MAP inter-renewal times and PH sizes, we have developed the differential equations
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satisfied by the survival probability, the Laplace transform of ruin time and the moments of dis-
counted tax payments up to ruin. For the single-phase cash-flow model, we established the tax
identity. Further, we obtained the solution for Laplace transform of ruin time and moments of
discounted tax payments up to ruin, and the optimal surplus level for starting tax collection is
determined. Finally, the expressions are numerically tracked for various tax rates.

A future step to this work is to link the taxable dividends to the non-taxable capital injections,
proposed by Schmidli [23] in the classical risk model.
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