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Abstract In this article, the problems of point and interval estimation for the associated
parameters, along with reliability function (r(x)) and the hazard rate function (h(x)) of the in-
verse Gompertz distribution, are considered using a unified hybrid censoring scheme. In the
case of point estimation, some classical estimators, such as the maximum likelihood estimator
(MLE) and the maximum product spacing estimator (MPSE), are derived. Further, Bayes es-
timators are considered with respect to a suitable prior for the associated parameters under the
balanced loss functions( balanced Linex loss function and balanced general entropy loss func-
tion). The asymptotic confidence intervals using the MLEs and MPSEs of the parameters are
derived. Furthermore, the equal-tailed and the highest posterior density credible intervals are
derived using the posterior samples. The mean squared errors are used to compare the point
estimators, whereas the interval estimators are compared through their coverage probability and
average lengths. Finally, a real data set is taken for application purposes.

1 Introduction

The problem is to obtain point and interval estimators of the parameters involved in the in-
verse Gompertz distribution (IGD) using a unified hybrid censoring scheme and two balanced
loss functions. The probability density function (PDF) and the cumulative distribution function
(CDF) of this distribution are, respectively, given by

flesa,) = e 3T p a5 0 (1.1
T
and
F(az;a,ﬂ):e_%(e Dz a,8>0. (1.2)

The reliability function (RF) and the hazard rate function (HRF) of this IGD are obtained as

B

r(@)=1-F(z;a,8) =1—¢ 877D (1.3)
and
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respectively.

Gompertz [13] introduced a two-parameter lifetime distribution, called Gompertz distribu-
tion (GD), to model human behavioral and mortality related data, which is a generalization of
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Figure 1: Hazard rate plots

the exponential distribution. This distribution has many real-life applications, especially in ac-
tuarial and medical sciences. We refer to [20], [7], and [10]) for some practical applications of
GD in several fields of studies, such as environmental science, medical sciences, engineering,
economics, behavioral sciences, biological sciences.

The GD has only the increasing HRF, which restricts its modeling of various phenomena in
several fields. Eliwa et al. [8] introduced the two-parameter IGD with an upside-down bathtub-
shape HRF. Furthermore, this IGD is capable of modeling both symmetric and skewed (positive
and negative) data sets. The hazard rate function for both GD and IGD has been plotted in Figure
1 (a)-(b) for some particular choices of parameters.

Since our main focus is to obtain point and interval estimators for the parameters of the IGD
under a unified hybrid censoring scheme (UHCS), we briefly discuss some results related to
hybrid censoring in the following. Epstein [9] introduced the type-i hybrid censoring scheme
(type-i HCS) by combining the type-i and type-ii censoring schemes. Since type-i HCS has a
drawback of uncertainty about the number of observed failures, Childs et al. [6] proposed the
type-ii HCS to overcome this drawback. Chandrasekar et al. [3] improved these two types of
censored sampling schemes by introducing two extensions of this type, named generalized type-
1 HCS and generalized type-ii HCS. Further, Balakrishnan and Rasouli [2] introduced a more
generalized censoring scheme, known as a UHCS, by combining these two types of generalized
HCS’s. Recently, Ateya [1] derived various point and interval estimators for the parameters of
inverse Weibull distribution using UHCS. Panahi and Sayyareh [17] derived the maximum like-
lihood estimators (MLEs) of the parameters of Burr type-iii distribution using the EM-algorithm
as well as the Bayes estimators using the Markov Chain Monte Carlo (MCMC) technique under
UHCS. Jeon and Kang [14] derived the point and interval estimators for the parameters, reliabil-
ity function, and entropy function from the Rayleigh distribution under UHCS. We refer to [14]
and the references cited therein for some results on estimating parameters under UHCS.

The rest of our work can be organized as follows. The UHCS has been discussed with its
special cases in Section 2. In section 3, the MLEs and associated asymptotic confidence intervals
(AClIs) are derived using this UHCS. Further, the maximum product spacing estimator (MPSE)
and the associated ACIs are derived in Section 4. The Bayesian estimation of the associated
parameters and function of parameters are considered using the gamma prior under the balanced
Linex loss (BLEL) and balanced general entropy loss (BGEL) function in Section 5. Due to
the difficulty in deriving the analytical form of the Bayes estimators, the MCMC technique has
been employed to generate posterior samples for the parameters. In Section 6, we compare
the performances of all the proposed estimators (both point and interval) using an extensive
simulation study. The point estimators are compared through their mean squared errors (MSEs).
However, the interval estimators are compared in terms of coverage probability (CP) and average
length (AL). In Section 7, we consider a real-life situation that has been modeled using the IGD,
and further estimation methodologies have been explained.
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2 Unified Hybrid Censoring

Let us consider a life-testing experiment in which n identical units are placed for life-test. Fur-
ther, let X;.,, < X5, < ... < X,.,, denote the corresponding lifetimes from an IGD with PDF
(1.1). Fix k,r € {1,2,...,n} and T} < T € (0,00) such that k& < r. If the kth failure occurs
before time 7, terminate the experiment at min{max{X,.,,, 71}, T>}. If the kth failure occurs
between T} and T3, terminate the experiment at min{ X..,,, 7> } and if the kth failure occurs after
time 73, then terminate the experiment at Xy.,,. Under this censoring scheme, we can guarantee
that the experiment will be completed at most in time 7, with at least k failures and if not, we
can guarantee exactly k failures. Thus, under this UHCS, we have the following six different
cases.

Case 1: 0 < Xg. < Xy < T < T3, the experiment ends at the point of 7.
Case 2: 0 < Xj.p < T < X,y < T3, the experiment ends at the point of X..,,.
Case 3: 0 < Xj., <11 < T, < X,op, the experiment ends at the point of 75.
Case 4: 0 < T < Xp:p < Xy < T3, the experiment ends at the point of X..,,.
Case 5: 0 < T < Xp:p <715 < X,un, the experiment ends at the point of 75.
Case 6: 0 < T <1y < Xi:np < Xyon, the experiment ends at the point of Xj.,,.
Note that in the proposed UHCS, termination time 75 is introduced in addition to time 7} to

achieve more flexibility than the generalized type-i HCS. Let d; denote the number of failures
until time 7, j = 1,2. Thus, the likelihood function under UHCS is given by

dl ’I’L*d]
o Hf(xm)(l — F(T1)> di=dy=d=r,...,n,

i=1
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n—k
ot [T f @ien) (1 - F(x,m)) Cdr=0,.. . k—1.
For details of the construction of likelihood function under UHCS, we refer to [2].

3 The MLE & Asymptotic Confidence Interval

The likelihood functions (2.1) based on the UHCS can be written in a general form as

m

i) (1= F(e) ™, 3.1)

(n—m)!

|
o, B | 2) = —=
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where

dy,Ty)  for Case 1,
r,&my,) for Case 2 and Case 4,
dp,T»)  for Case 3 and Case 3,
,Trm) for Case 6.
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Thus from (3.1) the likelihood function for the IGD is derived as
G|

7%261“1_1 Z 1

l(a,B|z) ca™e =1 i1 i (1 — e B ) a2 (3.2)
-l

Taking logarithm on the likelihood function (3.2), the log-likelihood function can be obtain as

_gi ezml —1 Ziloglﬁn
p i—1

+(n —m)log (l—e (5(62*1)).

Lla,flz) mloga+ﬁz

n

(3.3)

The first and second order derivatives of the log-likelihood function (3.3) respect to the parame-
ters (c, 8) can be derived as follows,

da o
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The maximum likelihood estimators of the parameters « and 3 can be derived by solving the
nonlinear equations gL = 0 and 8§ = 0. From (3.4) and (3.5) it is clear that the MLEs has no
closed form. So, the Newton’s method can be employ to derive the MLEs numerically. Further,
utilizing the obtained MLEs &,,,; and Bml of the parameters « and 3, the MLEs of the r(z) and
h(zo) can be derived easily as

& Bml
ﬁml(x()) —1—¢ /;mll( 0 —1)
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and
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T

Using the MLEs of the parameters the ACIs of the parameters can be obtained by using the
observed Fisher information matrix, where the observed Fisher information matrix is

_oL &L
? _ da? 8B0a?
I{a,8) = | 3, o

~ 8adp T2

Using this observed Fisher information matrix the 100(1 — )% AClISs for «, 8, r(xo) and h(z)
can be obtained by applying the normal approximation of the MLEs (as the MLE follows the

normal distribution N (0, v/ Var(0,,;)) as follows:

Qi £ 22\ Var(&mi), Bt £ 2020/ Var(Bpi)

’le (.Z'()) + 2y /2 Var(fml (JI())) and flml(l‘o) + 2 /2 Va?“(ibml(l‘o)),

respectively, where z, is the 1" percentile of the standard normal distribution; Var(a,,;) and
Var(Bm.) are the diagonal values of the variance matrix (i.e., inverse of the observe Fisher in-
formation matrix [ (Qmiy Bmi)); Var(fmi(zo)) and Var(ﬁml (z0)) can be derived from variance-
covariance matrix by applying delta method.

Since the parameters « and ( are positive valued, it is also possible to use logarithmic trans-
formation to compute approximate confidence intervals for these parameters. We refer to [16] in
this direction. They pointed out that the confidence interval obtained using the normal approxi-
mation of the log-transformed MLE method has a better coverage probability than that obtained
using the normal approximation of the MLE method. The normal approximate 100(1 — )%
confidence interval of a, 3, 7(zo) and h(zg) for log-transformed MLE are respectively

&ml X e Sml ) /8’H'Ll X e Pmi ;

N

Pt (o) X € Fmi (o) and hy (7o) X € Fram1(@0)

4 The MPSE & Asymptotic Confidence Interval

Ranneby [18] introduced another classical estimation method, called the maximum product spac-
ing (MPS) method, which gives a consistent estimator under much more general conditions than
MLE:s. Further, MPSEs are asymptotically normal and asymptotically are as efficient as MLEs
when these exist.

The product of the spacing’s under UHCS can be obtained as

m+1 11

plon ) = { T 7 (en) ~ Flaisa) H1 - F(c)}"-m} o .0

where F(zo.,) = 0 and F(zp,41.) = 1.
Taking logarithm on both sides of the equation (4.1), we have

P(‘%ﬂ) = nil[logF(‘rl:n) +210g {F(xi:n) *F(l'i—lzn>}
=2

+log{1 — F(zmm)} + (n —m)log{l — F(c)}|. 4.2)
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The first and second order partial derivatives of P(«, 3) (given in (4.2)) with respect to o and 3
are
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As similar to the derivation of the MLEs, the MPSEs of the parameters can be obtained by
solving the system of non-linear equations ‘g—P = 0 and BP = 0, using the Newtons method.

Further, the obtained MPSEs &, and Bm,, of the parameters « and S, respectively, can be used
to derive the MPSES 7,,,, (o) and f,,,,(20) of the RF (r(z)) and HRF (h(x)), respectively, in
a similar way as described in Section 3 for the MLEs of r(z¢) and h(zo).

According to Chen and Mi [5], the MPSEs also follows the asymptotic properties as MLEs.
So, as similar to the MLEs the 100(1 — 1/)% asymptotic confidence intervals of «, 3, r(x¢) and
h(zo) can be obtained as follows:

(i) using normal approximation of the MPSEs, we have the confidence intervals as

Qmp T 242 Var(émp), Bmp + 24,2 Var(Bmp)

P (00) £ 221/ Var (Fmp(20)) and Ry (20) £ 2420/ Var (hmp(20)),
(i1) using normal approximation of the log transformed MPSEs, the confidence intervals are

obtained as

2p2V/Varmp) i
Amp X e &mp , ﬁmp X e Bmp ,

24 /2 Var(Bmp)

2 /2 Var(fmp(zg)) N Zah /2 AV‘”'(’AL’"LP(IU))
Pmp(20) X € Fmp (o) and Ay, (20) X € hmp(eo)
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5 Bayesian Estimation

In this section, the Bayes estimators for «, 3, 7(z) and h(z) are derived by using the MCMC
method under the BLEL and BGEL functions, where the loss functions are given respectively as

Lyer(0,8) = w{e’®=9 — Gy —8) = 11+ (1 —w){e"=9 —p(5—0) -1}, v £0 (5.1

and

S S S

N A Y (4 B TR S

where & is a general target estimator of 6, which is considered here the MLE of 0 (see [12]). It
has been assumed that, the parameters « and S are independent and follow gamma distributions
G(ay, by) and G(ay, by) respectively. The density functions of the populations G(a;, b;) and
G(ay, by) are given by

() o 04“‘7167%, a >0, (5.3)

and

8
by

m(B) x B2 e 02, B> 0, (5.4)

respectively. Here the hyper-parameters a;, b1, a; and b, are assumed to be known and non-
negative.
From (3.2), (5.3) and (5.4) the joint posterior density function can be obtained as follows,

mo | mo
a{l)ll+é Z(e”" - 1)} - B{bg - Z p }
7T(Ck,5|£) X Oém+a]_15a2_le i=1 —1 LEn
o B n—m ™ 1
IoemBlery - 5.5
X( ‘ ) E a2 (5.5

We adopt the Metropolis-Hastings algorithm (MHA) to generate posterior samples for « and 3
from the posterior density function (5.5). The algorithm for generating posterior samples using
MHA can be described as follows.

(i) Consider the initial values (ayg, 3y) for the parameters (a, 3).

(ii) For i — th iteration generate v, ~ N(a;—1,04) and B, ~ N(B;—1,05).

(iii) Compute A = min {1 ”(aﬁm}

» wei—1,Bi—1]z)
(iii) Generate u ~ Uniform(0,1),
(iv) If u < A, update (o, 8;) by (au, Bx), otherwise update (o, 3;) by (ci_1, 8i—1),
(v) Repeat (ii)-(iv) fori = 1,2, ..., N, for a large positive integer N.

Thus the posterior samples for « and 8 can be obtained as (ay, ay, ... ay) and (31, B2, - .., BN)-
The Bayes estimators of the parametric function x(«, 3) under the loss functions BLEL and
BGEL are respectively given by

N
~ 1 —vk(a l-w —vk(ai,Bi
bter(@, f) = ——In {we B D DI wfm} (5.6)
i=No+1

and

Rpget (v, B) = {w(/%(a,ﬁ))_“ TN | Z (n(ai,ﬁi))_“}_ﬂ. (5.7
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Note that, for w = 1, the estimators are the MLEs, whereas, for w = 0, the estimators are the
Bayes estimators under the asymmetric loss functions, such as the Linex loss and general entropy
loss, respectively. Further, it is interesting to note that, for v — 0, the Linex loss function behaves
like the squared error loss function (SEL). Also, for 4 = —1 and . = 1, the general entropy loss
function becomes the SEL and the weighted SEL, respectively. Further, using the posterior
samples, the credible and the HPD intervals have been obtained using the method of Chen and
Shao [4].

Remark 5.1. The Bayes estimators under the Lindley [15] and Tierney and Kadane [19] approx-
imations do not perform better than the proposed MCMC method in terms of MSE. However, for
some combinations of sample sizes and censoring schemes, the Bayes estimators under Tierney
and Kadane approximation compete with the MCMC method, which has been seen from our
simulation study. Unlike the MCMC method, these two approximations do not help to derive
confidence intervals; hence we have not included the details of these two approximation methods
here.

6 Simulation Study

In this section, the performances of all the proposed point and interval estimators of «, 3, r(x)
and h(z) from IGD under UHCS has been compared numerically. In this regard, an extensive
simulation study has been conducted with the help of the Monte Carlo simulation procedure
with 10, 000 replications for various combinations of sample sizes and censoring schemes. The
point estimators are compared using their corresponding mean squared error (MSE’s), which is
given as M SE(8) = E(6 — 0)2. The interval estimators are compared using their corresponding
coverage probability (CP) and average length (AL).

The choice of the hyper-parameters for gamma priors are chosen suitably as a; = 1.8, b; =
0.5, a; = 4 and 0.5. In MH-algorithm we have considered N = 10,000 and Ny = 1000. All
the results obtained from the simulation are given in Tables 1-6. In Tables 1-2, the notations (v,
vy, V3, [i1, M2, (3) are used to denote (v = —1.0, v = =02, v = 1.0, p = —1.0, p = —0.2,
u = 1.0), respectively. In Tables 3-6, each column of the interval estimators for a particular
censoring scheme contains two values, which correspond to CP and AL of the corresponding
interval estimators under that censoring scheme. Further, in the Tables 3-6, the notations "NA"
and "NAL" stand for the ACI with respect to normal approximation of the associated estimator
and log-transformed estimator, respectively.

In our study, we have considered the lower acceptable threshold CP as 0.90 for the confidence
level 0.95 and 0.95 for the confidence level 0.99. The following observations were made from
our simulation study regarding the performances of point and interval estimators.

(i) For fixed r, k, T7 the MSEs of the estimators decrease as 75 increases. Further, similar
type of results observed for the cases, r, k, T> fixed and 717 increases; r, T}, 15 fixed and &
increases; k, 11, T fixed and r increases.

(ii) For a particular censoring scheme, the MSEs of the Bayes estimators increase as the value
of w increases under BLEL and BGEL.

(iii) For a particular censoring scheme, the MSEs of the Bayes estimators of « and r(z) under
BLEL and BGEL decrease as the value of v and p increase, respectively. A similar type
of observation has been noticed for the Bayes estimators of 3 and h(z) under the BLEL
function, whereas, under the BGEL function, the MSEs of the Bayes estimators become
smaller for p — 0.

(iv) The Bayes estimators under BLEL (with v =~ 0) and the Bayes estimators under BGEL
(with o = —1) perform quite similarly in terms of MSEs.

(v) The Bayes estimators perform better than the MLES in estimating «, 3, 7(z) and h(z).
However, in estimating 3 the MPSE dominates the MLE. It is also observed that the Bayes
estimators under BLEL (with w ~ 0 and v = 1.0) perform better than other estimators
for o, 8 and r(z). Further, the Bayes estimators under BGEL (with w ~ 0 and p = 1.0)
perform better than other estimators in estimating h(z).
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(vi) From Tables 3-6 it has been observed that the AL of the interval estimators decrease as the
sample size increase.

(vii) From Tables 3-6, we have observed that only credible and HPD intervals attain the nominal
level. Among these qualified intervals, the HPD interval has the shortest AL among all
other intervals. Thus HPD intervals perform better than others for interval estimation of «,

B, r(z) and h(z).

7 Application with a Real Data

In this section, a real data set reported by Fuller Jr et al. [11], is considered for application
purpose. The data contains the strengths of polished glass used in the aircraft window.

Data: 18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.69, 26.77, 26.78,
27.05, 27.67,29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09,
39.58, 44.045, 45.29, 45.381.

We have conducted a goodness of fit test, such as the Kolmogorov-Smirnov (K-S) test, to fit
the IGD to this data set. The obtained test static and the p-value of the K-S test are 0.13923 and
0.539, respectively. So, this real data is well fitted with the IGD model. Further, the real data is
analyzed using the UHCS’s,

CSi:r=25k=20,T1=20, T2 =30

CSy: r=27, k=24, T1 =30, T2 = 50 ¢t0 = 20.

Using these UHCS’s the obtained results for the proposed estimators are given in Table 7
for the real data. Based on our computational results, we recommend to use (1.537, 79.644,
0.972493, 0.01886) as the point estimates for («, 3, r(z), h(x)), respectively under CS;. How-
ever, under CS, the recommended estimates are (1.166, 85.597, 0.977916, 0.16017).

The preferred confidence intervals for «, 3, r(z) and h(z) with 2 = 20, are the HPD intervals
as given in the Table 7.

Concluding Remarks
In this article, various point and interval estimators have been investigated for the parameters,
RF and HRF associated with the IGD under UHCS.

Several point estimators such as MLE, MPSE, and the Bayes estimators are derived for the
parameters, HRF and RF using balanced loss functions. These estimators are computed nu-
merically using Newton’s method, as the MLEs and MPSEs have no closed-form expressions.
Further, the Bayes estimators are considered using independent gamma prior for the param-
eters under BLEL and BGEL functions. As the Bayes estimators also have no closed-form
expressions, the Bayes estimators are evaluated numerically using the posterior samples for the
parametric function of interest with the help of the MH algorithm. All the point estimators are
compared through MSEs.

Several interval estimators such as the ACIs, credible, and HPD intervals are derived nu-
merically for the parameters, RF and HRF. Further, the ACIs are derived using the MLEs, log-
transformed MLEs, MPSEs, and log-transformed MPSEs, whereas the credible intervals and
HPD intervals are derived using the posterior samples. The interval estimators are compared in
terms of CP and AL. Finally, a real-life data set has been considered for application purposes.
This data set has been satisfactorily modeled using the IGD. We hope the present study will shed
some light on this direction and motivate the researchers to investigate IGD, which has been
overlooked despite its many applications. The Bayesian prediction for future observations from
the IGD is still an open problem to investigate.
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