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Abstract This paper addresses the structure of the multi-objective interval solid transporta-
tion problem (MOISTP) within the framework of a hybrid genetic algorithm, non-dominated
sorting genetic algorithm (NSGA) II, and NSGA III. Here, the solid transportation problems
(STP) are specific transportation problems wherein the mode of transportation is taken into ac-
count along with demand and supply constraints. In practice, it is argued that crisp data is
hypothetical due to limitations on the measurement scale. To take care of said impreciseness/
uncertainty, the concept of interval or fuzzy numbers is generally employed. In this paper, the
authors cope with uncertainty with intervals and propose a matrix-based stochastic algorithm to
generate an initial population to apply variants of genetic algorithm to solve MOISTP. In this
connection, a numerical illustration is also posed and solved using a hybrid genetic algorithm,
NSGA II and NSGA III, and obtained results are compared with the fuzzy programming tech-
nique (FPT).

1 Introduction

In traditional Transportation Problem, sources have a fixed quantity of transfer capacity and des-
tinations require a specified volume at the same time, which may differ from the capacity of
the source. Because of these considerations, the DM’s main purpose is to reduce transportation
costs while staying within the study’s source and demand restrictions. Hitchcock [11] was the
first to study its mathematical structure in 1941, and Dantzig [4] offered a solution strategy for
the traditional transportation problem using lp ideas. In addition, multi-dimensional objectives,
rather than uni-dimensional objectives, have become the order of the day to address rising trans-
portation issues. When compared to one-dimensional goals, multi-dimensional objectives are
inherently conflicting, such as lowering transportation costs, improving product quality, increas-
ing user preparedness, and so on. The occurrence of multi-objective scenarios on a wide scale in
the actual world has altered the paradigm away from traditional TP and toward multi-objective
transportation challenges. Furthermore, in fact, maintaining conveyance homogeneity for ship-
ment is often impossible; as a result, heterogeneous conveyances, such as ships, cargo, trains,
or any combination of these, are used. As a result, in order to determine the impact of hetero-
geneous conveyances, an additional restriction is required. This specific paradigm, dubbed the
STP, was first studied by Schell [19]. Furthermore, there is a great deal of imprecision in data in
today’s business sector. Data is ambiguous, imprecise, and unreliable. As a result, data is con-
sidered as interval numbers or fuzzy numbers. When the data is considered as interval numbers,
the formed problem is called MOISTP.

Besides, there are many classical approaches, such as fuzzy programming technique, gradient-
based method, weighted sum approach, etc., to solve transportation problems. But these methods
mostly face some common problems such as dependency on an initial solution, being stuck to
a sub-optimal solution, giving a solution to one problem but not being efficient in solving other
problems, etc. Moreover, to solve the multi-objective problem, these algorithms convert multiple
objectives into a single objective first and then provide a single Pareto-optimal solution. On the
other hand, evolutionary algorithms are a class of algorithms that alleviate these drawbacks. An
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evolutionary algorithm, an iterative and stochastic process, mimic natural evolutionary principal
and work on a population of solution and provide multiple Pareto-optimal solutions in a single
simulation run. A genetic algorithm, invented by John Holland in 1960-1970 and specifically
based on Darwin’s theory of "survival of fittest" is an evolutionary algorithm. It starts by em-
ploying a population of solutions and, with the help of genetic operators, developing potential
solutions.

In multi-objective optimization setting, it is argued that one should obtain as many solutions
as possible and these solution should be diverse (see [7]). In this respect, Schaffer [18] has done
pioneer work. he developed vector evaluated genetic algorithm(VEGA). But this algorithm satis-
fies first goal of finding Pareto-optimal solution but fail in acheiving second goal of maintaining
diversity between them. Because of that, VEGA is susceptible towards specific part of Pareto-
optimal front. After a decade, When Goldberg proposed the use of the notion of non-dominated
sorting in evolutionary algorithms, it ushered in a revolution in the field of multi-objective evo-
lutionary algorithms. Following that, researchers devised a variety of algorithms. WBGA ([9]),
MOGA by Fonseca [8], NPGA([26]), and NSGA([21]) are among the organisations that attract
notice. Furthermore, NSGA is directly based on the Goldberg’s suggestion . However, this algo-
rithm’s key drawbacks are its lack of elitism, the requirement to supply a user-defined parameter,
and its high computational complexity. Deb [7] gave its updated version NSGA II, equipped with
elitism and explicit diversity preservation operator, in 2002 to alleviate NSGA’s shortcoming.
Wang et. al. [22] construct a multi-objective mathematical model for fault diagnosis problem
and convert constraints of the model into objective functions by adopting penalty method. Then
NSGA II is employed to find the fault diagnosis result. Soyel et.al. [20] proposed a method
based on NSGA II for facial expression recognition. Some other applications of NSGA II can be
found in [14, 15]. However, because of the crowding distance operator, NSGA II also has a high
computing complexity and fails as the number of targets increases. To help with these problems,
Deb [6] released NSGA III in 2014, which is mostly based on the reference point technique.
Wangsom et. al. [24] employed NSGA III to get solutions for a multi-objective optimization
of scheduling on cloud by considering makespan, cost and VM utilizations as objectives. Wang
et al. [23] propose a methodology including NSGA III and fuzzy C-means clustering algorithm
to the environmental management problem in china’s iron and steel industry. He et al.[10] pro-
posed a model for rush order insertion rescheduling problem and solved it by NSGA III. Some
other interesting application of NSGA III can be found in [3, 12].

Jimenez et. al. [13] employed GA on MOISTP. Nagarajan et al. [16] considered MOISTP
with all the parameters (source, demand, and conveyance capacity ) as stochastic intervals num-
bers and solved it with a fuzzy programming approach. Baidya et al. [2] introduced safety
factors in transportation problems and solved MOISTP with safety measures by the reduced gra-
dient method. Baidya et al. [1] employed the weighted tchebycheff method on MOISTP with
budget constraints. Nagarajan et al. [17] solved a MOSTP by considering its source and demand
parameters as interval numbers.
Since evolutionary algorithms begin with population generation, they can yield multiple solu-
tions in a single simulation run. They also require only objective function values to solve the
problem; as a result, they can be used to solve complex problems. Therefore to solve MOISTP,
we begin with hybrid GA, NSGA II, and NSGA III. NSGA III also performs effectively with
a growing number of objectives while requiring less computational effort. Therefore authors
offer a strategy for generating an initial population in view of applying NSGA III on MOISTP.
In addition, topsis method is incorporated with NSGA III and NSGA II to get the best feasible
solution from the Pareto-optimal set according to the weight provided by DM.

This paper contains five sections. In section 2, preliminary knowledge about the multi-
objective problem is given, followed by the mathematical model of MOISTP. In section 3, the
solution procedure of the genetic algorithm, hybrid genetic algorithm, NSGA II, NSGA III, and
topsis method is discussed. Section 4 consists of a numerical example to show the effectiveness
of these methods with sensitivity analysis. The last conclusion is given, followed by references.
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2 Preliminaries

This section introduces some basic fundamentals of Interval Theory in the light of multi-objective
optimization.

Risk Attitude Parameter:

To convert MOISTP into crisp MOSTP, the risk attitude parameter is utilized. Let Cq = [cqijk]

is the coefficient matrix corresponding to qth objective. Then Cq converted into its equivalent
crisp values by the following formula:

Cεijk = [cεijk] =
cUijk + cLijk

2
+ ε(cUijk − cLijk) (2.1)

for qth objective.
Where ε is the risk attitude parameter for the uncertain data assumed by the decision-maker
having values in the range of −.5 to .5. cUijk and cLijk are upper and lower bound for that specific
interval. Risk attitude parameter is optimistic, most likely and pessimistic for [−.5, 0), 0 and
(0, .5] respectively.

Concept of Domination:

A solution ~x is said to dominate another solution ~y iff:

(i) fq(~x) ≤ fq(~y) for all indices q ∈ {1, 2, · · ·Q}

(ii) fq̄(~x) < fq̄(~y) for at least one index q̄ ∈ {1, 2, · · ·Q}

If there is no other solution ~y in the feasible space that meets the above two conditions, a solution
~x is said to be Pareto-optimal.

3 Mathematical Formulation of MOISTP

The mathematical formulation of MOISTP can be given as follows:
Model 1:

min Zq(x) =
R∑
r=1

S∑
s=1

T∑
t=1

[fUrst, fLrst]
qxrst, q ≥ 2, (3.1)

subject to the constraints:

S∑
s=1

T∑
t=1

xrst ∈ [aUr, aLr], r = 1(1)R, (3.2)

R∑
r=1

T∑
t=1

xrst ∈ [bUs, bLs], s = 1(1)S, (3.3)

R∑
r=1

S∑
s=1

xrst ∈ [cUt, cLt], t = 1(1)T, (3.4)

xrst ≥ 0,∀r, s, t,

R∑
r=1

aUr ≥
S∑
s=1

bUs;
I∑
r=1

aLr ≥
J∑
s=1

bLs;
T∑
t=1

eUt ≥
J∑
s=1

bUs;
K∑
t=1

eLt ≥
J∑
s=1

bLs. (3.5)

where q represent the number of objectives considered. The supply, demand and conveyance
capacity is represented as [aUr, aLr], [bUs, bLs] and [cUt, cLt] for rth origin, sth destination and
tth conveyance respectively. The quantity xrst denotes the unknown amount of goods transported
from rth origin to sth destination utilizing tth conveyance.
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4 Solution Procedure

4.1 Genetic Algorithm

Genetic algorithms start with the initialization of the population and provide a potential solution
by applying genetic operators to the population. The process of GA can be described in the
following steps:

(i) The first step in GA is to initialize the population. To initialize the population, we have de-
veloped a stochastic matrix-based population approach which is discussed in section (4.5).

(ii) In GA, the initialization process is followed by fitness evaluation. In most cases, it is made
equal to the objective function value. However, in NSGA II and NSGA III ranking scheme
is used.

(iii) After fitness evaluation, chromosomes undergo the selection operator, and better chromo-
somes are selected for the crossover operator.

(iv) In the crossover, two chromosomes are selected for the crossover, which produces a child
population. In our work, we have used an arithmetic crossover operator.

(v) The last step of the genetic operator is mutation. The mutation is done to avoid a trap in the
local minima and maintain diversity among the population.

(vi) Steps (ii) to (v) are repeated until termination criteria are met. In our work predefined
maximum number of generations is the termination criteria.

4.2 Hybrid Genetic Algorithm

To highlight the multiple value judgment and complex dynamic changes that occurred in the
process of decision making, Dhodiya and Tailor([25]) incorporated the concept of aspiration
level(AL) into GA. They convert the multi-objective problem into the single objective problem
by aspiration level and then solve it by GA. The stepwise procedure is given in the following
steps:

(i) Consider the mathematical model of MOISTP and convert the model into the crisp model
by using the risk attitude parameter.

(ii) Find the positive ideal solution (PIS) and negative ideal solution (NIS) for each of the
objectives of the crisp model and evaluate exponential membership value for each of them.

µfq(x) =


1; iffq ≤ fPISq ,
exp(−S∗ψq(x))−exp (−S)

1−exp (−S) ; iffPISq ≤ fq ≤ fNISq ,

0; iffq ≥ fNISq ,

(4.1)

where, ψq(x) =
fq−fPIS

q

fNIS
q −fPIS

q
, and S is non-zero shape parameter(Sp), regulated by the DM

and 0 ≤ µfq(x) ≤ 1. It should be noted that the membership function in [fPISq , fNISq ] is
strictly convex (concave) for S < 0, (S > 0).

(iii) Convert multi-objective problem into single objective problem according to Gupta et al. as
follow:
Model-2 objective function:

maxW =
m∏
k=1

µfq , (4.2)

Subject to the constraints: (3.2) to (3.4)
and

µfq(x)− µfq(x) ≥ 0; q = 1, 2, · · ·Q. (4.3)

Where the required AL of fuzzy goals corresponding to each objective is µfq(x), however,
the model mentioned above can be solved by altering the DM’s ALs to achieve various
fuzzy goals.
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(iv) Discover the various transportation schemes for the Model-2, developed in step-(iii), through
GA with different choices of the Sp.

4.3 NSGA II

To understand NSGA II, we first understand its two main operators: non-dominated sorting
procedure and crowded comparison operator.

Non-dominated Sorting

To do the sorting of fronts, we have to calculate two entities:

(i) The non-negative integer, which reflects the number of solutions that the solution p domi-
nate, called as domination count np.

(ii) A set of solutions which are dominated by solution p.

Now we start the process by comparing each member of the population to each other using
the concept of dominance, which provided the first/primary non-dominated front. All solutions
belonging to the main non-dominated front will have a dominance count of zero. Now, for each
solution with np = 0, we walk over each member q of its set Sp and apply the dominance
concept to each one, lowering the dominance count by one. Every member with a domination
count of zero is moved to a different list during this operation. The second non-dominated front
is the label given to a member of this new list. The third front is determined in the same way by
repeating this procedure with each member of Sq. This process is carried out until all feasible
fronts have been identified.

Crowding Distance Tournament Selection Operator

We take the average distance of two solutions on either side of the solution i along each of the
objectives to derive an estimate of the density of solutions surrounding a particular solution i
in the population. This statistic di is an estimate of the perimeter of the cuboid produced by
employing the nearest neighbors as vertices, which is referenced as the crowding distance.

To estimate crowding distance, we first set elements of a particular front in worse order
of their objective values and then assign a very high crowding distance infinity to boundary
solutions, and for the rest solution, crowding distance is calculated by the following formula:

l(Iqj ) = l(Iqj ) +
f
(Iqj+1)
q − f

(Iqj−1)
q

fmaxq − fminq

. (4.4)

Where Ij is the jth solution in the sorted list . fmaxq and fminq are the maximum and minimum
objective values for qth criterion.
A solution i wins the crowding distance tournament with another solution j if it has better rank
or if it has same rank then it should have better crowding distance.

Process of NSGA II

This section outlines the NSGA II algorithm in the following two phases. In phase 1, the initial
population (At) of size N is generated, which is further segregated into different fronts by em-
ploying the non-dominated sorting procedure. Next, we have assigned fitness to solutions. Then
we applied three genetic operators, viz. selection, crossover, and mutation, and obtained the
offspring population (Bt) of size N . In second phase, initial population At and offspring popu-
lation Bt are combined to form population Ct of size 2N . Then implement the NDS procedure
on combined population Ct and get different fronts (such as F1, F2 and so on). In order to select
N members, we first choose fronts according to their ranking and add them into a new empty set
St and check whether the cardinality of St is greater than or equal to N and start adding fronts to
St until cardinality of St is greater than or equal to N . If St has exactly N population members,
then we apply genetic operators on it and get a new population At+1 else, we apply a crowded
distance tournament selection operator to choose N − cardinality of St population members
then apply genetic operator. This phase continues until the termination criterion is met.
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4.4 NSGA III

The key difference between NSGA II and NSGA III lies in the working principle of the selection
operator. In NSGA III, to select a partial number of population members from the last front, a
reference point strategy is used, which is discussed below:

Step 1 We began the algorithm by forming translated objective function as f
′

i (x) = fi(x)− Zmini

by obtaining Zmini (i = 1, 2, · · ·M) from ∪tτ=0Sτ .

Step 2 In this step, normalization of objective functions is done. For this M - dimensional hy-
perplane is generated with the help of M extreme vectors obtained in the previous step.
Then we calculate intercept xi of the ith axis and normalize objective functions using

fni (x) =
f
′
i (x)
xi

, ∀i = 1, 2, · · ·M .

Step 3 Now, By using Das and Dennis [5] approach, reference points are generated.

Step 4 In this step, we create reference lines by linking the reference points and the origin. Then
the perpendicular distance between each population member of St and the reference line is
calculated, and the reference point with the minimum perpendicular distance is considered
to be associated with the population member.

Step 5 Finally, the niche preservation operator is used to choose a member from the last front to
fulfill the vacant position of At+1.

Niche Preservation Operator

To begin, calculate the niche count ρh for the hth reference point as the number of individuals in
St/Fl who are linked to the hth reference point. Then look for

Hmin = {h : argminhρh}.

When |Hmin| ≥ 1, one h̄ ∈ Hmin is chosen at random. There are two possibilities now:

(i) If ρh̄ = 0, one or more individuals may be associated with h̄ in front Fl. In this scenario,
the individual with the shortest perpendicular distance to h̄ is chosen for the At+1 pop-
ulation, and if there is no member associated with h̄, reference point h̄ is removed from
consideration for the current generation.

(ii) if ρh̄ ≥ 1 then if there exist individuals in the set Fl that are associated to h̄ then any one
can be chosen randomly.

each time after addition of new individual to At+1, ρh̄ incremented by one.
This process is repeated k number of times.

4.5 Topsis Method

The Topsis method developed by Hwang and Yoon chooses the best alternative, which has the
shortest Euclidean distance from PIS and farthest from NIS. The steps of the Topsis method are
given as follows:

• Suppose we have n alternatives and m attributes, make a table of order n×mwhose enteries
are denoted as tij .

• Normalize the obtained table in step 1 as:

Nij =
tij∑m
j=1 t

2
ij

1
2

• Give the weight to each objective such as
∑m
j=1 Wj = 1.

• Multiply weight to normalize table and get table Rij = wj .Nij .
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• Calculate

R+ =
{(max∑

i

Rij |j ∈ J
)
,
(min∑

i

Rij |j ∈ J ′
)
|i = 1(1)n

}
= {R+

1 , R
+
2 , · · ·R

+
m}

R− =
{(min∑

i

Rij |j ∈ J
)
,
(max∑

i

Rij |j ∈ J ′
)
|i = 1(1)n

}
= {R−1 , R

−
2 , · · ·R

−
m}

where j refers to beneficial attributes and J
′

refers to non-beneficial attribute.

• Calculate the euclidean distance of alternatives from the ideal one, given by

S+
i =

{ m∑
j=1

(
Rij −R+

j

)2}0.5
, i = 1(1)n;

and

S−i =
{ m∑
j=1

(
Rij −R−j

)2}0.5
, i = 1(1)n.

• Estimate the relative closeness of ith alternative from ideal solution, given by

di =
S−i

S+
i + S−i

.

The alternative having maximum di is considered as best feasible candidate.

4.6 Algorithm to generate Initial Population

This section presents the stochastic matrix-based initial population generation technique in view
to apply variants of GA.

5 Numerical Examples

A company has two origins A1 and A2 with production capability of [20, 27] and [30, 40] units of
manufactured goods, respectively. These units are to be transported to three warehouses B1, B2
andB3 with necessity of [15, 22], [16, 23.5] and [11, 19.5] units, respectively. The conveyance
capacity are [20, 35] and [31, 42].The coefficients for transportation cost, risk, weight, distance,
and product impairment between companies to warehouses are given below:

Table 1: Transportation Cost for MOISTP

Warehouses 1 2 3
Origins \Conveyances 1 2 1 2 1 2

1 [60,80] [65,80] [45,65] [110,145] [115,135] [105,125]
2 [75,90] [115,130] [120,140] [55,75] [60,90] [130,160]

Table 2: Risk Management for MOISTP

Warehouses 1 2 3
Origins \Conveyances 1 2 1 2 1 2

1 [2,6] [3,8] [7,9] [4,6] [6,10] [1,3]
2 [1,8] [2,4] [6,9] [5,8] [5,10] [2,6]
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Algorithm 1 Initial population procedure

Require: supply, demand, conveyance capacity
Ensure: Initial Population

begin
for i = 1 : Population size do
o← generate random numbers in the interval of supply and get sum S1;
D ← generate random numbers in the interval of demand having sum S1;
E ← generate random numbers in the interval of conveyance capacity having sumS1;

ocount ← 1 : numberoforigins;
Dcount ← column number of destination corresponding to conveyance
while E(k) > 0 do
temp1← randi(length(ocount);
if (length(o) = length(ocount)) then
row ← temp1;
rowm = temp1;

else
row ← ocount(temp1);
rowm← temp1;

end if
temp2 = randsample(Dcount,1);
Zn← which destination temp2 belongs;
val← min(E(k), o(rowm), D(Zn));
A(row, temp2)← val;
o(rowm)← o(rowm)− val;
D(temp2)← D(temp2)− val;
E(k)← E(k)− val;
if o(rowm) = 0 then
ocount(rowm) = φ;
orowm = φ;

end if
if D(Zn) = 0 then
Dcount(Zn)← φ;
D(Zn)← φ

end if
end while

end for
end
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Table 3: Weight for MOISTP

Warehouses 1 2 3
Origins \Conveyances 1 2 1 2 1 2

1 [16,30] [12,30] [65,85] [40,60] [70,95] [15,45]
2 [20,25)] [60,70] [30,45] [50,55] [65,75] [20,40]

Table 4: Distance for MOISTP

Warehouses 1 2 3
Origins \Conveyances 1 2 1 2 1 2

1 [26,32] [15,25] [20,35] [44,58] [25,40] [60,80]
2 [18,22] [40,50] [60,78] [62,78] [35,45] [70,80]

Table 5: Product Deterioration for MOISTP

Warehouses 1 2 3
Origins \Conveyances 1 2 1 2 1 2

1 [5,15] [22,32] [11,14] [6,12] [8,14] [13,25]
2 [4,18] [31,49] [31,36] [16,24] [9,19] [15,27]

Mathematical Model:

minZq(x) =
2∑
i=1

3∑
j=1

2∑
k=1

Cqijkxijk, q = 1(1)5, (5.1)

subject to the constraints :
3∑
j=1

2∑
k=1

x1jk ∈ [20, 27],
3∑
j=1

2∑
k=1

x2jk ∈ [30, 40], (5.2)

2∑
k=1

2∑
i=1

xi1k ∈ [15, 22],
2∑
k=1

2∑
i=1

xi2k ∈ [16, 23.5],
2∑
k=1

2∑
i=1

xi3k ∈ [11, 19.5], (5.3)

2∑
i=1

3∑
j=1

xij1 ∈ [20, 35],
2∑
i=1

3∑
j=1

xij2 ∈ [31, 42]. (5.4)

First, MOISTP converted into MOSTP by risk attitude parameter taking ε = −.5,ε = 0 and
ε = .5 and then hybrid GA, NSGA II and NSGA III is employed. Parameters considered for
NSGA III are as follows: population size = 50; crossover probability = 0.3; mutation probability
= 0.03; number of division =6. These parameters are utilized for different values of ε. Moreover,
some of the points from obtained Pareto-optimal set by NSGA III are shown in Table 6 to Table
8 for different choices of ε. Similarly, Table 9 to Table 11 consist of some of the points of the
Pareto-optimal set obtained by NSGA II. Parameters considered for NSGA II are as follows:
population size = 200; crossover probability = 0.3, mutation probability = 0.03.
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Table 6: Pareto-optimal solution at ε = −.5 by
NSGA III

4172.758 193.3146 1885.169 1932.299 716.9919
4201.523 193.5056 1882.728 1932.274 724.6673
4442.229 166.2549 1905.337 2249.48 517.3752
4054.803 173.5517 1705.036 2244.082 612.4787
3995.034 166.7113 1710.493 2248.447 592.9819
3175.328 186.6915 1969.818 1933.165 450.8422
3866.659 153.3276 1810.107 2236.063 560.4185
4185.991 192.1287 1712.808 2173.63 642.343
4077.41 183.3319 1803.902 1953.354 537.2669
4274.427 222.6362 1640.626 1921.71 1014.064

Table 7: Pareto-optimal solution at ε = 0 by
NSGA III

3741.331 280.4838 2254.871 2190.944 667.4132
4216.965 276.7679 2143.697 2334.708 749.4979
4770.457 247.8016 2062.842 2012.135 622.5686
4210.085 284.9304 2188.162 2447.478 771.3898
4307.984 276.0567 2122.422 2362.22 765.206
4798.786 249.7939 2165.198 1991.951 666.3862
4474.017 276.2229 2245.231 2200.89 700.2395
4483.257 262.0955 2005.822 2179.404 761.5532
4345.934 334.8889 3241.572 1969.409 1040.836
3802.972 286.3489 2289.775 2245.34 695.2045

Table 8: Pareto-optimal solution at ε = .5 by
NSGA III

4707.517 383.0292 2586.8 2548.494 989.2785
4729.507 366.504 2489.61 2392.891 952.4577
6688.927 306.2654 2962.804 3245.542 1843.295
6688.927 306.2654 2962.804 3245.542 1843.295
5292.841 351.2026 2772.17 2494.751 1105.364
5152.04 339.7759 2097.729 2957.522 1173.897
5144.641 339.1754 2062.285 2981.842 1177.498
5190.602 350.7773 2232.7 2925.168 1160.369
5257.858 362.481 2377.226 2908.498 1154.449
5257.858 362.481 2377.226 2908.498 1154.449

Table 9: Pareto-optimal solution at ε = −.5 by
NSGA II

3210.058 165.781 1691.079 1726.579 500.972
4557.464 166.9588 1542.638 2005.658 619.4462
4579.574 154.5882 1574.225 2144.372 471.155
4557.167 154.6114 1559.481 2166.726 479.8447
4615.17 173.0231 1580.918 2051.824 603.4722
4224.08 194.7433 1680.181 2165.673 736.091
4140.266 165.2829 1776.215 1788.19 499.2957
4367.773 160.8408 1435.243 2408.179 620.3301
4089.581 174.7624 1578.85 2228.131 652.6932
4553.748 181.9624 1581.966 1918.24 735.3843
4870.144 201.1925 1414.927 2040.922 962.7044

Table 10: Pareto-optimal solution at ε = 0 by NSGA
II

3702.346 349.119 2684.437 1962.68 984.2696
4944.534 255.8408 1822.061 2096.504 816.3701
4555.749 242.9742 2150.361 1989.739 731.6226
4552.808 301.9633 1996.148 2124.38 1054.116
4469.105 242.7993 2106.79 2233.09 840.5512
4235.533 257.8503 2121.102 1961.329 870.4137
5065.888 237.6549 1906.455 2292.01 1027.888
5001.111 230.1068 1939.659 2146.962 688.1709
4878.852 280.1358 2146.462 2003.282 745.4483
4904.865 254.2774 1893.723 2467.425 880.2935

Table 11: Pareto-optimal solution at ε = .5 by NSGA
II

7015.539 309.0348 2771.038 3666.629 1883.84
6182.79 349.0385 2649.77 3035.058 1368.512
5171.132 359.2994 2968.285 2732.415 1289.409
5053.666 387.7185 2899.414 2573.162 1205.137
5607.438 383.3397 2353.092 3045.982 1367.67
5380.142 391.6898 2340.473 2882.596 1349.456
5096.708 367.993 3063.458 2626.239 1259.042
5615.726 403.9508 2506.539 2512.98 1154.852
5045.337 408.5937 2623.344 2451.766 1128.534
5798.41 362.784 2840.007 2862.9 1294.502

Discussion

After getting the Pareto-optimal set by NSGA III and NSGA II, we applied the topsis method to
get the best feasible solution. To apply topsis, we give a weight of .2 to each objective. On the
other side, the problem is also solved by fuzzy programming techniques using a linear member-
ship function. Hybrid GA is employed to solved the problem using ALs (.95, .92, .85, .89.73)
and Sp (−5,−10,−12,−8,−9). In solving the problem by all these approaches, we found that
the number of Pareto-optimal solutions obtained by NSGA III is greater than NSGA II, even if
we take less population size in NSGA III. Also, for ε = 0 and ε = 0.5, the best feasible solution
obtained by NSGA III and the topsis method is better than in the three objectives from FPT. Fur-
thermore, the best feasible solution obtained by NSGA III dominates the best feasible solution
obtained by NSGA II for ε = 0.5.
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Table 13: Comparison table for MOISTP at ε = 0

Method Objective 1 Objective 2 Objective 3 Objective 4 Objective 5
FPT 4364.2 249.7917 1811.7 2293.1 895.3273

Hybrid GA 3612 248.7 2294.1 2215 937.2
NSGA II + Topsis 4555.749 242.9742 2150.361 1989.739 731.6226
NSGA III +Topsis 3741.331 280.4838 2254.871 2190.944 667.4132

Table 14: Comparison table for MOISTP at ε = 0.5

Method Objective 1 Objective 2 Objective 3 Objective 4 Objective 5
FPT 4909.2 332.743 2245.1 2689.2 1171.5

Hybrid GA 5757.9 408.4 3170.4 2414.9 1870.2
NSGA II +Topsis 4861.786 403.9281 2600.213 2524.877 1163.998
NSGA III +Topsis 4729.507 366.504 2489.61 2392.891 952.4577

Table 12: Comparison Table at ε = −0.5

Method Objective 1 Objective 2 Objective 3 Objective 4 Objective 5
FPT 5092.5 127.9452 1483.5 1999.4 361.8776

Hybrid GA 4795.9 142.3 1162 2126.8 736.9
NSGA II +Topsis 4870.144 201.1925 1414.927 2040.922 962.7044
NSGA III +Topsis 3785.606 177.8997 2029.913 1670.469 391.5422

Figure 1a represents the convergence rate for the MOISTP at ε = −.5. This graph is drawn
among population size, iterations and the values of max W =

∏5
i=1 Zi. Similarly, Figure 1b and

1c shows the convergence rate for the MOISTP at ε = 0 and ε = 0.5 respectively.

(a) Convergence Curve of
MOISTP at ε = −0.5

(b) Convergence Curve of
MOISTP at ε = 0

(c) Convergence Curve of
MOISTP at ε = 0.5

Figure 1: Convergence curve of MOISTP for different values of ε

6 Conclusion

This paper provides an algorithm for generating an initial feasible solution to the MOISTP in
view of applying the genetic algorithm and its variants. Moreover, the topsis method is incor-
porated with NSGA II and NSGA III to get solutions that satisfy DM’s preference/ weightage
given to objectives. Finally, results are compared with hybrid GA and FPT, which shows the
superiority of NSGA III over other adopted algorithms.
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