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Abstract The utilization of the perfect quantity of temperature and temperature control inside
the biological body is essential to destroy the cancerous cell or abnormal tissues. Our study
concerns the prediction of temperature distribution in biological tissue using a three-phase lag
bioheat model (TPLBHM) with sinusoidal and constant heat flux conditions at the tissue surface.
The Gaussian radial basis function (RBF) and Crank-Nicolson (C-N) scheme are utilized to
approximate the spatial and time derivative, respectively. Using the present model and solution
algorithm, we analyze the influence of phase lag due to thermal displacement (τv) involved in
the TPL model with both types of surface heating. For sinusoidal heat flux, the effect of heating
frequency (ω) on temperature distribution in tissue is also discussed.

1 Introduction

In recent years, cancer has become one of the most dangerous diseases. Every year many peo-
ple die due to this disease. The estimation of the temperature inside the biological bodies or
skin tissue has been on trend for decades. This is essential in clinical surgery such as cancer
hyperthermia [1], burn injury [2, 3], cryosurgery [4, 5], cryopreservation, brain hypothermia re-
suscitation [6], and radiofrequency etc.

Several governing equations are available in the literature to model the heat distribution inside
the tissue. One of the famous and influential governing equations is the Pennes bioheat equation
[7] which involves blood perfusion and metabolic heat generation term. The Pennes bioheat is
given as [7]

ρc
∂T

∂t
= −∇.q + ρbcbwb (Ta − T ) +Qmet +Qext, (1.1)

where c, ρ, and wb denote the specific heat, density, and blood perfusion, respectively. Also,
Qmet, Ta, and Qext symbolize metabolic heat generation, arterial blood temperature, and ex-
ternal heat source, respectively; and subscript b is used for blood. Pennes bioheat model, i.e.,
Eq.(1.1) follows the Fourier’s law of heat conduction

q (x, t) = −k∇T (x, t) , (1.2)

where q (x, t) and T (x, t) represent the heat flux and temperature of the tissue, respectively, at
position x and time t.

Fourier law depicts the infinite speed of heat flow [8] which is unrealistic and fails in tissue
because, in tissue, heat travels with finite speed due to its nonhomogeneous inner structure. To
resolve this paradox, Cattaneo and Vernotte [9, 10] added a relaxation time in Fourier law and
proposed a new model for heat flux. This model is known as the CV model or single-phase lag
model. The single-phase lag model does not consider the microscale response in space; it only
consider the micro-scale response in time [11]. Further, Tzou [11] suggested a new model by
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introducing two phase lages, i.e., phage lag in flux and phase lag in temperature gradient. This
model improves the deficiency of the CV model and is known as the dual-phase lag model.

To study the heat transfer problem, especially in a short time interval and with very high-
intensity heat flux, the SPL and DPL models produce different results than the Fourier model.
Thus, the phase lagging behavior can not be ignored during the concise time interval and for
high-intensity heat flux. Recently, Choudhuri [12] constituted a three-phase-lag (TPL) constitu-
tive model (1.3) which can hold the previous theory of parabolic and hyperbolic models at the
same time. This model is probably looking to be an extension of the Tzou model [11]. The
three-phase lag model is given as

q (x, t+ τq) = − [K∇T (x, t+ τt) +K∗∇T (x, t+ τv)] , (1.3)

where ∂v
∂t = T (x, t) and v is the thermal displacement. The parameter τv is the relaxation time

due to the thermal displacement gradient, and K∗ is the rate of the thermal conductivity of skin
tissue.

This relation (Eq. (1.3)) elucidates that the heat flux vector at a point x in the medium
at time t + τq is related to the thermal displacement at the same point at time t + τv and the
temperature gradient at the same point at time t + τt. The TPL model is introduced by the
combination of the phase lag of heat flux vector (τq), temperature gradient (τt), and thermal
displacement gradient (τv) in heat conduction law. The TPL model gives a preferred theoretical
heat conduction model with micro-structural considerations for depicting the precise thermal
behavior inside the medium. Using the Taylor’s series expansion of Eq. (1.3) up to the first-
order terms of the τq, τt, and τv; and removal of q (x, t) with the help of Eq.(1.1) gives the
following equation

(
1 + τq

∂

∂t

)(
ρc
∂2T

∂t2
− ∂Qb

∂t
− ∂Qmet

∂t

)
=

[
K∗ + (K +K∗τv)

∂

∂t
+Kτt

∂2

∂t2

]
∇2T. (1.4)

The resulting Eq. (1.4) is known as the TPL bioheat model. The SPL and DPL models for
bioheat equation can be derived from the Eq. (1.4) by substituting K∗ = 0 with τt = 0 = τv and
τv = 0, respectively, in Eq. (1.4).

Many researcher have discussed the heat transfer problems in tissue based on Fourier [13–15],
SPL, and DPL models [16–24] considering different thermo-physical properties of tissue and
modeling assumptions. To the authors’ best knowledge, very few articles are available in the
literature for the TPL bioheat model. In articles [25–27, 30], authors investigated the thermal
response based on the three-phase lag bioheat model and also obtained the analytical and nu-
merical solution of the model. Recently, Verma and Kumar [28] did a numerical study on phase
change heat transfer in tissue using the TPL bioheat model. The resulting mathematical model
was solved using RBF and FDM approximation in space and time, respectively. Quintanilla and
Racke [29] analyzed the stability condition of the TPL thermal conduction equation.

In the present study, we consider a three-phase lag (TPL) bioheat transfer model with constant
and sinusoidal heat flux boundary conditions. We use the Gaussian radial basis approximation
for spatial derivatives and Crank-Nicolson (C-N) finite difference scheme for time derivatives.
The temperature profiles are obtained to show the effect of the TPL model on heat transfer in
tissues with time and tissue depth. For computer code validation, we compare our approximate
solution with the analytic solution [17]. Also, we show the influence of phase lag due to thermal
displacement (τv) and heating frequency (ω) on heat transfer in skin tissues.

The rest part of the article is arranged as follows. After the introduction section, the governing
equation of the TPL bioheat model, initial conditions, and boundary conditions are shown in
section 2. In section 3, the numerical scheme for the TPL model using the Gaussian RBF and
FDM for space and time derivatives, respectively, is discussed. Obtained numerical results and
the influence of the few parameters on the skin tissues are given in section 4. Section 5 concludes
the outcomes of the study. Finally, some references are included.
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2 Mathematical Models

With the assumption that Qmet = Qm0 (1 + 0.1 (Ta)) and Qext = 0, the TPL bio heat model
(TPLBHM) in one dimensional can be represented as [26]

τqρc
∂3T

∂t3
+ {ρc+ τqρbcbwb − (0.1) τqQm0}

∂2T

∂t2
+ {ρbcbwb − (0.1)Qm0}

∂T

∂t

= K

(
∂3T

∂x2∂t
+ τt

∂4T

∂x2∂t2

)
+K∗

(
∂2T

∂x2 + τv
∂3T

∂x2∂t

)
.

(2.1)

By substituting τt = 0 = τv and τv = 0, with K∗ = 0 in Eq. (2.1), we can generate SPL
bioheat model (SPLBHM) and DPL bioheat model (DPLBHM), respectively.

2.1 Initial conditions(ICs)

The initial conditions considered for the TPLBHM are

T (x, y, 0) = T0, (2.2a)

∂T

∂t

∣∣∣∣
t=0

= 0, (2.2b)

∂2T

∂t2

∣∣∣∣
t=0

= 0. (2.2c)

For SPLBHM and DPLBHM, only, Eqs. (2.2a) and (2.2b) are utilized as initial codition(s).

2.2 Boundary conditions (BCs) [18, 31]

(a) At x = L

−K ∂T

∂x

∣∣∣∣
x=L

= 0. (2.3)

(b) We have taken following BCs at skin surface x = 0,

(i) Constant heat flux boundary condition

−K ∂T

∂x

∣∣∣∣
x=0

= q0, (2.4)

(ii) Sinusoidal heat flux boundary condition

−K ∂T

∂x

∣∣∣∣
x=0

= q0 cos (ωt) , (2.5)

where ω denotes the heating frequency.

3 Numerical Scheme

The domain [0, L]×[0, tf ] is distributed in equal space nodes xj = x1+(j−1)∆x, and tn = n∆t,
as n = 0, 1, 2, ...P , where ∆t is time step size and ∆x is step size for space in direction x. Also,
tf being the final simulation time.

We utilize the RBF approximation and C-N scheme for space and time variables, respectively.
The Eq. (2.1) can be represent as

Z1
∂3T

∂t3
+ Z2

∂2T

∂t2
+ Z3

∂T

∂t
= K

(
∂3T

∂x2∂t
+ τt

∂4T

∂x2∂t2

)
+K∗

(
∂2T

∂x2 + τv
∂3T

∂x2∂t

)
, (3.1)

where Z1 = τqρc, Z2 = ρc+ τqρbcbwb− (0.1) τqQm0 , and Z3 = ρbcbwb− (0.1)Qm0 .
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The C-N approximation for time variable at node (x, tn), n = 1, 2, . . . P − 1 of Eq. (3.1)
provides

Z1T
n+2(x) =

{
3Z1 − (∆t)Z2 − (∆t)

2
Z3

}
Tn+1 (x)−

{
3Z1 − 2 (∆t)Z2 − (∆t)

2
Z3

}
Tn (x)

+ {Z1 − (∆t)Z2}Tn−1 (x) +

{
K(∆t)

2
+K∗τv(∆t)

2
+Kτt (∆t) +

1
2
K∗(∆t)

3
}
Tn+1
xx (x)

−
{
K(∆t)

2
+K∗τv(∆t)

2
+ 2Kτt (∆t)−

1
2
K∗(∆t)

3
}
Tn
xx (x) + {Kτt (∆t)}Tn−1

xx (x) ,

(3.2)

where Tn(x) = T (x, tn), and

R1 = 3Z1 − Z2 (∆t)− Z3(∆t)
2

R2 = 3Z1 − 2Z2 (∆t)− Z3(∆t)
2
,

R3 = Z1 − Z2 (∆t) ,

R4 = K(∆t)
2
+K∗τv(∆t)

2
+Kτt (∆t) +

1
2K
∗(∆t)

3
,

R5 = K(∆t)
2
+K∗τv(∆t)

2
+ 2Kτt (∆t)− 1

2K
∗(∆t)

3
,

R6 = Kτt (∆t) .

Eq. (3.2) can be represented as

Z1T
n+2 (x) =R1T

n+1 (x)−R2T
n (x) +R3T

n−1 (x)

+R4T
n+1
xx (x)−R5T

n
xx (x) +R6T

n−1
xx (x) .

(3.3)

Assuming that there are total (N) interpolation points, So, using RBFs Tn (x) is approxi-
mated as

Tn (x) =
N∑
i=1

λni φ (‖x− xi‖) +
M∑
k=1

µn
k pk (x) x ∈ Rd, (3.4)

where λni = λi(tn) and µn
k = µk(tn). Substituting Tn(x) from Eq. (3.4) in Eq. (3.3) and

applying collocation technique at internal nodes xj , j = 2, 3..N − 1, we get

Z1S[Λ]
n+2

= (R1S+R4T) [Λ]
n+1 − (R2S+R5T) [Λ]

n
+ (R3S+R6T) [Λ]

n−1
, (3.5)

where

S =



φ11 · · · φ1N p11 · · · p1M
...

. . .
...

...
. . .

...
φN1 · · · φNN pN1 · · · pNM

p11 · · · pN1 0 · · · 0
...

. . .
...

...
. . .

...
p1M · · · pNM 0 · · · 0


,

[Λ]
n
= [λn1 , λ

n
2 , . . . λ

n
N , µ

n
1 , µ

n
2 , . . . µ

n
M ]
′
,

φji = φ (‖xj − xi‖) , pji = pi(xj), and T = [S′′ij ].

To incorporate the boundary conditions at node x1 and xN , Eqs. (2.3) and (2.4) or (2.5) are
approximated using Eq. (3.4). To find the coefficients, λi, i = 1, 2, . . . N and µk, k − 1, 2, . . .M
additional M equations are obtained by imposing the following constraints [32, 33]

N∑
i=1

λn+1
i pk (xi) = 0, k = 1, 2, ...,M. (3.6)

The Eqs.(3.5) – (3.6) and approximated BCs give system of (M+N)×(M+N) linear equations
at time level tn+1, n = 1, 2, 3, ...tP−1. Initial conditions (2.2a), (2.2b), and (2.2c) are utilized for
getting the values of [Λ]0, [Λ]1, and [Λ]

2
.
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4 Computer code validation

To the best of the authors’ knowledge, the analytical solution of the TPL model with constant or
sinusoidal heat flux boundary conditions is not available in the literature. The TPL model can
be converted into the DPL model by taking τv = 0 and K∗ = 0. So, we validate our results
considering τv = 0 and K∗ = 0 with the analytical solution of the DPL model available in the
literature [17]. The analytical [17] and obtained numerical solution are plotted in figure 1. It is
observed that both solutions overlap, which is favorable enough to validate our numerical results.

5 Results and Discussion

The values of parameter used to simulate the TPL model are listed in the table 1 [16,20]. Figure
2 represents the temperature profile of TPL model with respect to distance at time t = 200sec,
t = 150sec, t = 100sec, t = 50sec, and t = 15sec with τq = 20sec, τt = 15sec and
τv = 10sec for constant heat flux condition. From this figure, we observe the maximum temper-
ature as 108.2 ◦C, 95.03 ◦C, 80.44 ◦C, 63.55 ◦C and 49.11 ◦C at time t = 200sec, t = 150sec,
t = 100sec, t = 50sec, and t = 15sec, respectively. This shows that as time proceeds, the tem-
perature is increasing. Also, it is observed that temperature is going to decrease with the tissue
depth.

Table 1. Thermo-physical parameters [16, 20]
Parameters Values & Units
Arterial blood temperature(Ta) 37 ◦C
Length of the tissue (L) 0.02 m
Density of tissue (ρ) 1000 kg/m3

Density of blood (ρb) 1000 kg/m3

Blood perfusion (Wb) 0.005 kg/m3s
Thermal conductivity of tissue (K) 0.628 W/(m ◦C)
Rate of thermal conductivity (K∗) 0.01 W/(m ◦C)
Specific heat of the blood (Cb) 3770 J/(kg ◦C)
Specific heat of the tissue(c) 4000 J/(kg ◦C)
Metabolic heat generation (Qm0) 50.65 W/m3

Heating frequency (ω) 0.05 sec
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(a) Temperature distribution at time t = 500sec
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(b) Temperature distribution at time x = 0m

Figure 1. Temperature distribution for analytical [17] and our numerical solution for τq = 20
and τt = 10.

The temperature profile for the TPL bioheat model for constant heat flux condition with
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respect to time t is plotted in figure 3 for τq = 20sec, τt = 15sec, and τv = 10sec. Here, we
observe that at time t = 200sec, the temperature is 108.05 ◦C, 92.45 ◦C and 78.18 ◦C for tissue
depth x = 0m, x = 0.0021m, and x = 0.0042m, respectively. It means temperature decreases
with an increase in tissue depth for all time t.
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Figure 2. Temperature vs. distance for different time t.
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Figure 3. Temperature vs. time for different tissue depth x.

To study the effect of phase lag due to thermal displacement (τv) on heat transfer with con-
stant heat flux condition, temperature profiles are plotted in figures 4 and 5 for τv = 20, 15, 10,
and 5sec with τq = 20 = τt. Figure 4 depicts the temperature along time t at x = 0.0011m and
x = 0.0032m for different values of τv. Here, we observe higher temperature at x = 0.0011
compared to x = 0.0032m. Further, as the value of τv decreases the temperature also decreases
for both the positions x = 0.0011m and x = 0.0032m. The highest temperature is obtained for
the largest value of τv, i.e., heat transfer accelarates with an increase in τv.
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Figure 5 shows the temperature profile along the tissue depth at t = 150sec and t = 50sec
for different values of τv with τq = 20 = τt . Similar to the figure 4, the highest temperature is
observed for the largest value of τv for both t = 150sec and t = 50sec.
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Figure 4. Temperature vs. time for different τv with τq = 20 = τt at x = 0.0011m and
x = 0.0032m.
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Figure 5. Temperature vs. time for different τv with τq = 20 = τt.

To study the influence of sinusoidal heat flux condition on heat transfer using TPL bioheat
model, temperature profiles are plotted in figures 6, 7, and 8 for different parameters. Figure 6
shows the temperature variation in tissue with time at tissue depth x = 0m, x = 0.0021m, x =
0.0042m, and x = 0.0063m. Here we take the phase lag value τq = 20, τt = 15 and τv = 10. As
we see in the figure 6, the thermal wave’s amplitude attains the maximum temperature at x = 0m
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with time t. Also, we observed that the amplitude of the thermal wave is going to decrease as
the depth of the tissue x increases.

Figure 7 represents the temperature profile along time t for x = 0.001m. In this figure,
we show the influence of phase lag due to thermal displacement τv on heat transfer using TPL
bioheat model. Here, we consider τq = 20 = τt with τv = 20, 15, 10, and 5. From this figure,
we observe that the thermal wave’s amplitude attains the maximum value for τv = 20 and as the
value of τv decreases, the wave’s amplitude also decreases.
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Figure 6. Temperature vs. time at different locations with τq = 20 = τt.
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Figure 7. Temperature vs. time for different τv with τq = 20 = τt at x = 0.0011m.

Figure 8 shows the temperature profile for the TPL bioheat model along time t at x = 0m
for different values of heating frequency ω = 0.05, 0.04, 0.03, and 0.02 to depict its impact
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on heat transfer. It is analyzed from figure 8 that for the smallest value of ω, the amplitude
of thermal waves attains the maximum value, i.e., heat transfer accelerates with a decrease in
heating frequency ω.
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Figure 8. Temperature vs. time for different ω at x = 0.

6 Conclusions

In this study, we considered the TPL bioheat model and solved it numerically to study the heat
transfer in the tissue. We used the Gaussian radial basis collocation technique and FDM ap-
proximation for spatial and time derivatives, respectively. The study showed the impact of some
parameters involved in the TPL model with two types of boundary conditions, i.e., constant and
sinusoidal heat flux conditions.

It is observed that the temperature decreases with tissue depth. The phase lag due to thermal
displacement significantly affects heat transfer in the tissue. An acceleration in heat transfer is
observed with an increase in τv. Further, for sinusoidal condition, an increase in the amplitude of
thermal waves is observed with an increased value of τv and decreased value of heating frequency
ω.

The obtained results may be helpful in medical sciences, especially in the Oncology field.
Although the presented results are in one spatial dimension, the extension of this study to the
multi-dimensional irregular spatial domain is on the list of our future work.
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