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Abstract In general, the characteristics determination of stress-strength reliability based on
statistical independence are well attempted in the literature. In contrast, assuming independence
assumptions may not stands in reality because most of the occasions the stress and strength ran-
dom variables are somehow linked or inter correlated. We therefore propose the copula based
dependence stress-strength reliability model. We assume stress (Y) follows the exponential dis-
tribution and strength (X) follows an Xgamma distribution. A Farlie-Gumbel-Morgenstern Bi-
variate Xgamma Exponential distribution is proposed, and its several statistical properties, in-
cluding reliability characteristics, are derived. We estimated stress-strength reliability (R) and
dependence parameter using maximum likelihood estimation, inference function margin, and
semi-parametric methods. Moreover, the confidence interval and coverage probability of the de-
pendence parameter are also reported. In addition, a Monte Carlo simulation study is conducted
to evaluate the effectiveness of the various estimators, and finally, two real data sets is presented
to illustrate the results.

1 Introduction

The gamma and exponential are the classical lifetime distributions frequently used to model
lifetime data and a number of new life distributions are induced by combining these two distri-
butions. Sen et al. [2] proposed the Xgamma (XG) distribution, as a finite mixture of exponential
and gamma distributions. Several interesting features about the distribution make it useful for
analyzing time-to-event data sets. Estimation of the XG distribution using type-II progressive
censoring has been carried out by Sen et al. [3]. Later, several versions of XG distribution has de-
veloped including stress-strength reliability modelling with quasi XG (Sen et al. [4]), weighted
XG (Sen et al. [5]) and inverse XG (Yadav et al. [1]). The probability density function (p.d.f)
and cumulative distribution function (c.d.f) of the XG distribution are as follows:

fX(x; θ) =
θ2

(1 + θ)

(
1 +

θ

2
x2
)
e−θx, x > 0, θ > 0, (1.1)

and

FX(x; θ) = 1−
(1 + θ + θx+ θ2x2

2 )

(1 + θ)
e−θx, x > 0, θ > 0. (1.2)

The above p.d.f can be expressed as

fX(x; θ) = φ1f1(x) + φ2f2(x), (1.3)

where f1(x)= exp(θ) and f2(x)= gamma(3, θ) with mixing proportions φ1 = θ
1+θ and φ2 =

(1− p) = 1
1+θ respectively.
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Stress-strength models are commonly used in reliability analysis to describe the useful life of
a component having random stress (Y) and strength (X). It is assumed that the system will per-
form as long as the stress is less than the strength. Therefore, R = P (Y < X) is a probability
that determines the component’s reliability. Stress-strength models are used in many fields of re-
search, particularly in engineering, for example, to model the deterioration of concrete pressure
vessels, the degeneration of rocket motors, static fatigue of ceramic components, and fatigue
failure of aircraft structures (Nadarajah [6]).

A considerable amount of works on stress-strength reliability based on independent assumptions
is available in the literature. For example, Sen et al. [7] derived the expression for the stress-
strength reliability when X and Y follow two-parameter XG distributions. Krishnamoorthy et
al. [8] investigated the expression of R for two-parameter exponential marginals. Jana et al.
[9] examined the properties of R for exponential distributions with different values for location
and scale parameters. Yadav et al. [1] proposed a new IXG distribution and its several reliabil-
ity measures including stress-strength reliability function are derived. An extensive review on
stress-strength reliability is given in the monograph of Kotz et al. [10].

However, in many cases the stress-strength variables are associated in some way. Some real life
situations, where the dependence between stress and strength are taken in to account are given
below:

(i) In electronic systems, a coherent system is configured with components in a series setup
and probability that it will perform its intended function (strength) subjected to bearing the
accumulated stresses of each components on it. If stress is higher than the strength of any
one of its components lead to failure of a system. Hence assessing dependence relation
between them is an essential task for estimating the desired life.

(ii) In human psychological mental health, it is essential to maintain mental health of an indi-
vidual for surviving a normal life. There are many stress factors that are adversely affect
the mental health (strength) of individual, including anxiety, poor social support, family
problems, financial issues etc. and these stress factors are associated up to some extent.
If these stresses leave you with little mental impact, then R measures the probability that
an individual will survives naturally and living the normal life without affecting mental
health issue. Otherwise, they may lead to competing health issues like., social isolation,
depression, loneliness, sleeping disorders, and health issues like heart disease, diabetes and
cancer.

(iii) In the case of a pharmaceutical manufacturing company that launches a new drug, the
random variable Y represents the remission time of a patient A treated with the new drug
while X represents the remission time of A treated with an existing drug. ThenR = P (Y <
X) measures the probability that the new drug is more effective than the existing one.

In the stress-strength dependence assumption, a reasonable amount of work attempted by sev-
eral authors for estimation of R by assuming stresses are dependent on strength or vice versa,
where stresses or strengths follow bivariate continuous life distributions, like, bivariate Marshall-
Olkin exponential by Chandra and Pandey [11], bivariate gamma distribution by Nadarajah [12]
and references therein. These attempts were mainly focused on estimation of R rather than
exploring the level (low or high) of dependence relation between either stresses or strengths.
However, ignoring such dependence relation may leads over or under estimation of reliability
function. Hence, some attempts in this direction is sought to establish the dependence stress-
strength model for life predition.

In this paper, we consider copulas technique to model the dependence relationship between
two or more dimensional random variables. Farlie–Gumbel–Morgenstern (FGM) copulas are
among the most widely used family of copulas because of their simplicity. Domma and Gior-
dano [13] considered FGM and generalized FGM copula to estimate R with Burr system of
margins. Domma and Giordano [14] developed the stress-strength model to calculate house-
hold financial fragility when X and Y follow the Dangum marginals. Barbiero [15] studied the
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stress-strength reliability estimation using the extended FGM and Ali-Mikhail-Haq copula with
exponential distribution. The stress-strength model is investigated by Patil and Naik-Nimbalkar
[16] with stress and strength marginal’s are belonging to the Pareto family and the dependence
is represented using four different types of copulas and the asymptotic properties of R as well
as the dependence parameter are also derived. Recently, Bai et al. [17] have attempted both
independent and dependent stress-strength reliability model for multi-state system.

In literature, a large amount of work on stress-strength reliability assumes statistical indepen-
dence between two or more random variables, follow a family of life distributions. Besides,
considering different distributional assumption of stress and strength is one of the another scope
of this attempt. In reality, however, it is more practical to choose marginal distributions of X and
Y from two different parametric families of distributions. In this study, estimation of dependent
stress-strength reliability parameters are considered by assuming that stress follows exponential
and strength follows XG marginals using copula approach. Also, we proposed Farlie-Gumbel-
Morgenstern Bivariate Xgamma Exponential (FGMBXE) distribution and its several statistical
properties, including reliability characteristics are derived. Further, the length of the asymptotic
confidence interval as well as the coverage probability of the dependence parameter are com-
puted. A numerical study, is performed to evaluate the effectiveness of the various methods
proposed by using simulation and real data sets.

The remaining sections of the paper are organised as follows. In Section 2, we proposed FGM-
BXE distribution. In Section 3, we derived some statistical properties of FGMBXE distribution.
The dependence stress-strength reliability and associated properties are derived in Section 4. In
Section 5, we derived estimates of R and dependence parameter α by using maximum likeli-
hood estimation (MLE), Inference Function Margins (IFM), and semi-parametric (SP) methods.
Asymptotic confidence intervals are presented in Section 6. A Monte Carlo simulation study
is performed in Section 7. Two real data sets is analysed in Section 8. Finally, the study is
concluded in Section 9.

2 FGM Bivariate Xgamma Exponential Distribution

The c.d.f and p.d.f of Morgenstern family of bivariate distribution is given by

F(XY )(x, y) = FX(x)GY (y)
[
1+α(1−FX(x))(1−GY (y))

]
, −1 ≤ α ≤ 1, (2.1)

and

f(XY )(x, y) = fX(x)gY (y)
[
1+α(1−2FX(x))(1−2GY (y))

]
, −1 ≤ α ≤ 1, (2.2)

where FX and GY denotes the marginal c.d.f’s and fX and gY are the marginal p.d.f’s of X
and Y respectively with dependence parameter α. When α = 0, then X and Y will act as an
independent case.

Since the Kendall’s tau coefficient of Morgenstren family is given by

τ =
2α
9
, −0.222 ≤ τ ≤ 0.222,

which indicates that FGM copula describes a weak dependence between X and Y.

Suppose that X follows XG distribution and Y follows exponential distribution and the corre-
sponding p.d.f’s are given as

fX(x; θ) =
θ2

(1 + θ)

(
1 +

θ

2
x2
)
e−θx, x > 0, θ > 0, (2.3)

gY (y;λ) = λe−λy, y > 0, λ > 0, (2.4)

and the corresponding c.d.f’s are given by

FX(x; θ) = 1−
(1 + θ + θx+ θ2x2

2 )

(1 + θ)
e−θx, x > 0, θ > 0, (2.5)
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GY (y;λ) = 1− e−λy, x > 0, λ > 0. (2.6)

Then the joint c.d.f and p.d.f of FGMBXE distribution are obtained as

F(XY )(x, y) = (1− e−λy)
(
1−

(1 + θ + θx+ θ2x2

2 )

1 + θ
e−θx

)

×
(
1 + α

e−λy(1 + θ + θx+ θ2x2

2 )e−θx

1 + θ

)
, −1 ≤ α ≤ 1, x, y, λ, θ > 0, (2.7)

f(XY )(x, y) =
λe−λyθ2(1 + θ2x2

2 )e−θx

(1 + θ)

(
1 + α(2e−λy − 1)(2

(1 + θ + θx+ θ2x2

2 )

1 + θ
e−θx − 1)

)
,

− 1 ≤ α ≤ 1, x, y, λ, θ > 0. (2.8)

A plot of p.d.f and c.d.f of FGMBXE distribution for different choices of parameter values are
given in the following Figure 1 and 2 respectively.

Figure 1. plot of FGMBXE distribution for θ= 0.2, λ= 0.6 and α= 0.9

Figure 2. plot of FGMBXE distribution for θ= 0.2, λ= 0.6 and α= -0.9

3 Some statistical properties of FGM Bivariate Xgamma Exponential
distribution

In this section, we obtain some important statistical properties of FGMBXE distribution, such as
the conditional distribution, moment generating function and positive quadrant dependence.
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3.1 Conditional Distribution

The conditional c.d.f of X given Y= y of FGMBXE distribution is given by

FX|Y (x|y) =
(
1− α(2e−λy − 1))

(
1−

(1 + θ + θx+ θ2x2)
2

(1 + θ)
e−θx

)
− α(2e−λy − 1)

(
1−

(1 + θ + θx+ θ2x2

2 )2

(1 + θ)2 e−2θx), (3.1)

and the corresponding conditional p.d.f is given as

fX|Y (x|y) =
θ2(1 + θ

2x
2)e−θx

(1 + θ)

(
1 + α

(2(1 + θ + θx+ θ2x2)
2

(1 + θ)
e−θx − 1)(2e−λy − 1

))
. (3.2)

Then the conditional expectation of X given Y = y is obtained as

E[X|Y = y] =
θ2

(1 + θ)

(
3 + θ

θ3 + α

(
2e−λy

)
×
(

2
(1 + θ)

(
8θ2(2 + θ) + 2(2 + 9θ + 13θ2 + 15θ)

34θ4

)
− 3 + θ

θ3

))
. (3.3)

Similarly, we can derive the expressions of FY |X(y|x), fY |X(y|x) and E[Y|X=x].

3.2 Moment Generating Function

Let (X,Y) be a two-dimensional random variable with joint p.d.f f(XY )(x, y), then the moment
generating function (m.g.f) of (X,Y) is defined as

M(XY )(t1, t2) = E(et1xet2y) (3.4)

=

∫ ∞
0

∫ ∞
0

et1xet2yf(XY )(x, y)dydx, (3.5)

where (t1, t2) are real parameters.

The m.g.f of FGMBXE distribution is obtained as

MXY (t1, t2) =
θ2(t21 − 2θt1 + θ2 + θ)λ

(θ + 1)(t1 − θ)3(λ− t2)
+ α

(
λθ2t2

(1 + θ)(t2 − λ)(2λ− t2)

×
(
A(θ, t1)

2(1 + θ)
−

(t21 − 2θt1 + θ2 + θ)

(t1 − θ)3

))
, (3.6)

where

A(θ, t1) =
4θ(t1 − 2θ)3 − 4(θ + 1)(t1 − 2θ)44θ(2θ + 1)(t1 − 2θ)2 + 12θ2(t1 − 2θ)− 24θ3

(t1 − 2θ)5 .

3.3 Positive Quadrant Dependence (PQD)

Lehmann[18] defined the Positive quadrant dependence property as

PQD(X,Y ) = P (X > x, Y > y) ≥ P (X > x)P (Y > y), ∀ x, y > 0. (3.7)
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A reverse inequality of (3.7) defines negative quadrant dependence (NQD). Then the following
theorem gives the inequality condition of PQD (NQD) of FGMBXE distribution based depen-
dence parameter.

Theorem 1 FGMBXE distribution is PQD (NQD) for positive (negative) value of α.

Proof: Consider

S(x, y)− S(x)S(y) = P (X > x, Y > y)− P (X > x)P (Y > y)

= (
e−θx(1 + θ + θx+ θ2x2

2 )e−λy

(1 + θ)
)α
(
1− e−λy

)(
1−

e−θx(1 + θ + θx+ θ2x2

2 )

(1 + θ)

)
= αφ(x, y),

where

φ(x, y) = (
e−θx(1 + θ + θx+ θ2x2

2 )e−λy

(1 + θ)
)(1− e−λy)(1−

e−θx(1 + θ + θx+ θ2x2

2 )

(1 + θ)
)

= S(x)S(y)F (x)G(y) ≥ 0; S(.), F (.) ≥ 0,∀ x, y ≥ 0,

and thus the following inequalities of αφ(x, y) is given by

αφ(x, y)

{
≥ 0; α > 0,∀ x, y ≥ 0,
≤ 0; α < 0,∀ x, y ≥ 0,

(3.8)

which implies the condition given in (3.7). Therefore, FGMBXE distribution has the properties
PQD (NQD) for positive (negative) values of α.

4 Reliability Measures

In this section, we derived some important reliability characteristics of FGMBXE distribution,
which includes dependence stress-strength reliability, survival function, hazard rate function,
mean residual life, vitality function, totally positive of order 2 or reverse rule of order 2(TP2 or
RR2), right-tail increasing and left-tail decreasing and mean time to failure.

4.1 Reliability for dependence stress and strength

In this section, we assume that the two dimensional random variable (X,Y) follow FGMBXE
distribution with dependence parameter α, then the corresponding R is derived as

R = P (Y < X) =

∫ ∞
0

∫ x

0
f(XY )(x, y)dydx

=1− θ2((λ+ θ)2 + θ)

(1 + θ)(λ+ θ)3 + α

(
2θ2

(1 + θ)2(2θ + λ)5 ((2θ + λ)4(1 + θ) + (2θ + λ)3θ

+ (2θ + λ)2(θ + 2θ2) + 3θ2(2θ + λ) + 6θ3)− θ2

8(1 + θ)2(θ + λ)5 (8(θ + λ)4

(1 + θ) + 4θ(θ + λ)3 + 2(θ + 3θ2)(θ + λ)2 + 3θ2(θ + λ) + 6θ3)

− θ2((λ+ θ)2 + θ)

(1 + θ)(λ+ θ)3 +
θ2((2λ+ θ)2 + θ)

(1 + θ)(2λ+ θ)3

)
, (4.1)



DEPENDENCE STRESS-STRENGTH RELIABILITY 219

when the dependence parameter α = 0, then the stress-strength reliability given in (4.1) will
reduce to independence case of X and Y. Additionally, estimate of R can be obtained by replacing
the estimates of parameters in (4.1) using invariance property.

4.2 Survival Function

Survival function of Morgenstren family is of the form

S(x, y) = (1− FX(x))(1−GY (y))(1 + θFX(x)GY (y)). (4.2)

Hence by using (2.5), (2.6) and (4.2), the survival function of FGMBXE distribution is obtained
as

S(x, y) =
e−θx(1 + θ + θx+ θ2x2

2 )e−λy

(1 + θ)

×
(

1 + α(1− e−λy)(1−
e−θx(1 + θ + θx+ θ2x2

2 )

(1 + θ)
)

)
. (4.3)

4.3 Hazard Rate Function

Basu [23] proposed the bivarite hazard rate function of the form

h(x, y) =
f(x, y)

S(x, y)
. (4.4)

Using (2.8) and (4.4) hazard rate function of FGMBXE distribution is obtained as

h(x, y) =

θ2(1 + θ
2x

2)

(
1 + α(2e−λy − 1)( 2e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) − 1)

)
(1 + θ + θx+ θ2x2

2 )

(
1 + α(1− e−λy)(1− e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) )

) . (4.5)

Johnson and Kotz [24] defined a hazard rate function in a vector form, as shown below

hV (x, y) =

(
−∂ lnS(x, y)

∂x
,
−∂ lnS(x, y)

∂y

)
, (4.6)

where S(x, y) denote the bivariate survival function. From (4.3) we get hazard components as

h1(x, y) = θ − θ2x+ θ

(1 + θ + θx+ θ2x2

2 )
−

α
(1+θ)(1− e

−λy)θ2(1 + θ
2x

2)(
1 + α(1− e−λy)(1− e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) )

) , (4.7)

h2(x, y) = λ−
αλ(1− e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) )e−λy(

1 + α(1− e−λy)(1− e−θx(1+θ+θx+ θ2x2
2 )

(1+θ) )

) . (4.8)

The following theorem reveals the hazard characteristcs of FGMBXE distribution.

Theorem 1. The hazard function of FGMBXE distribution is increasing (decreasing) for posi-
tive (negative) values of the dependence parameter α.

Proof: To prove FGMBXE distribution is IFR (increasing faliure rate) for positive values of α,
it is sufficient to show that (4.7) and (4.8) are increasing functions in x and y respectively.
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Consider

−∂ lnS(x, y)
∂x

= − ∂

∂x
ln(F̄X ḠY (1 + αFXGy)),where F̄ = 1− F

= − ∂

∂x
ln F̄X −

∂

∂x
ln ḠY −

∂

∂x
ln(1 + αFXGY )

= hX(1− (F̄X
−1
((αGY )

−1 + 1)− 1)−1),

where hX is the hazard rate function of X. For 0 ≤ α ≤ 1, α−1 ≥ 1 which implies ((αGY )−1 +
1) > 1, because (GY )−1 ≥ 1. Therefore (1−(F̄X)−1((αGY )−1+1)−1)−1) is positive increasing
function in x because Fx is an increasing function in x. Further, the hX is an increasing function
in x. Hence −∂ lnS(x,y)

∂x is an increasing function in x. In a Similar way, we can show that
FGMBXE distribution is DFR for negative values of α.

4.4 Mean Residual Life

Bivariate mean residual life (m.r.l) function proposed by Shanbag and Kotz [25] is of the form

r(x, y) = (r1(x, y), r2(x, y)), (4.9)

where
r1(x, y) = E(X − x|X ≥ x, Y ≥ y), (4.10)

and
r2(x, y) = E(Y − y|X ≥ x, Y ≥ y). (4.11)

The expression for r1(x, y) and r2(x, y) of FGMBXE distribution is obtained as

r1(x, y) =

(3+θ+2θx+ θ2x2
2 )

θ − α
(

(3+θ+2θx+ θ2x2
2 )

θ − (1−e−λy)A(θ,x)
16θ(1+θx)

)
(1 + θ + θx+ θ2x2

2 )

(
1 + α(1− e−λy)(1− e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) )

) , (4.12)

r2(x, y) =

1
λ

(
(1 + α(1− e−λy

2 )(1− e−θx(1+θ+θx+ θ2x2
2 )

(1+θ) )

)
(

1 + α(1− e−λy)
(

1− e−θx(1+θ+θx+ θ2x2
2 )

(1+θ)

) , (4.13)

whereA(θ, x) = (8(1+θ+θx+ θ2x2

2 )+2(2+θx)+4((1+θ+θx+ θ2x2

2 )+(1+θx)2+6(1+θx)+3).

By combining (4.12), (4.13) and (4.9), the expression of m.r.l for FGMBXE distribution can
be obtained.

4.5 Vitality Function

Bivariate vitality function proposed by Sankaran and Nair [26] is given by

V (x, y) = (V1(x, y), V2(x, y)) , (4.14)

where
V1(x, y) = E(X|X ≥ x, Y ≥ y), (4.15)

V2(x, y) = E(X|X ≥ x, Y ≥ y). (4.16)
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Further, the bivariate vitality function Vi(x, y) is related to the mean residual life function r(x, y)
with the following relation as

Vi(x, y) = x+ ri(x, y), i = 1, 2. (4.17)

V1(x, y) and V2(x, y) of FGMBXE distribution is obtained as

V1(x, y) = x+

(3+θ+2θx+ θ2x2
2 )

θ − α
(

(3+θ+2θx+ θ2x2
2 )

θ − (1−e−λy)A(θ,x)
16θ(1+θx)

)
(1 + θ + θx+ θ2x2

2 )

(
1 + α(1− e−λy)(1− e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) )

) , (4.18)

V2(x, y) = y +

1
λ

(
1 + α(1− e−λy

2 )(1− e−θx(1+θ+θx+ θ2x2
2 )

(1+θ) )

)
(

1 + α(1− e−λy)
(

1− e−θx(1+θ+θx+ θ2x2
2 )

(1+θ)

) . (4.19)

Hence the vitality function of FGMBXE distribution can be obtained by combining (4.18), (4.19)
and (4.14).

4.6 Totally Positive of order 2 or Reverse Rule of order 2(TP2 or RR2)

Let (X,Y) be a two dimensional continuous random pair with joint p.d.f f(XY )(x, y) is said to be
TP2 or RR2 if

f(x, y)f(u, v) ≥ (≤)f(x, v)f(u, y), x < u, y < v. (4.20)

Then the local dependence function of FGMBXE distribution is defined as

rf (x, y) =
∂2

∂x∂y
ln f(XY )(x, y) =

4αλe−λyθ2(1+ θ
2 )x

2e−θx

(1+θ)(
1 + α(2e−λy − 1)( 2e−θx(1+θ+θx+ θ2x2

2 )
(1+θ) − 1)

) , (4.21)

rf (x, y) ≥ (≤)0 according as α ≥ (≤)0. Thus f(XY )(x, y) is TP2(RR2), if α ≥ (≤)0.

4.7 Right Tail Increasing and Left Tail Decreasing

Let (X,Y) be a two-dimensional random vector with c.d.f F(XY )(x, y). Y is right-tail increasing
(RTI) in X if

RTI(Y |X) = P (Y > y|X > x) =
F (XY )(x, y)

FX(x)
↑ x ∀y, (4.22)

where F (XY )(x, y) = 1− F(XY )(x, y) and FX(x) = 1− F (x).

For FGMBXE distribution,

P (Y > y|X > x) = e−λy
(

1 + α(1− e−λy)(
1− e−θx(1 + θ + θx+ θ2x2

2 )

(1 + θ)
)

)
, (4.23)

it is clear that P (Y > y|X > x) > 1 for α > 0 which implies RTI(Y |X). Similarly, Y is
left-tail decreasing(LTD) in X if

LTD(Y |X) = P (Y ≤ y|X ≤ x) =
F(XY )(x, y)

FX(x)
↓ x ∀y. (4.24)

For FGMBXE distribution,

P (Y ≤ y|X ≤ x) = (1− e−λy)
(

1 + α(1− e−λy)(
1− e−θx(1 + θ + θx+ θ2x2

2 )

(1 + θ)
)

)
, (4.25)

it is observed from the expression in (4.25) that P (Y ≤ |X ≤ x) < 1 for α < 0 which implies
LTD(Y |X).
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4.8 Mean Time To Failure

Let (X,Y) be a two-dimensional random variable with joint survival function S(x,y), then the
mean time to failure of (X,Y) is defined as

MTTF =

∫ ∞
µ1

∫ ∞
µ2

S(x, y)dydx. (4.26)

Using (4.26) the MTTF of FGMBXE distribution is obtained as

MTTF =
1

θλ(1 + θ)

(
3 + α

(3
2
− (2 + θ)(6 + 4θ) + 3

16(1 + θ)

))
. (4.27)

5 Parameter Estimation

In this section, we consider three different estimation procedures which includes, MLE, IFM and
SP for estimating the dependence stress-strength reliability parameters.

5.1 Maximum Likelihood Estimation

Suppose that a bivariate random sample (xi, yi), i = 1, 2, .., n of size n drawn from the FGM-
BXE distribution. Then the log-likelihood function can be expressed as

` =n ln(λ)− λ
n∑
i=1

yi + 2n ln(θ)− θ
n∑
i=1

xi +
n∑
i=1

ln(1 +
θ2x2

i

2
) + ln

n∑
i=1

(1 + α(2e−λyi − 1)

(2
(1 + θ + θxi +

θ2x2
i

2 )

1 + θ
e−θxi − 1)). (5.1)

The following maximum likelihood equations can be obtained by partially differentiating the
log-likelihood function with respect to the unknown parameters and equating it to zero, we have

∂ ln `
∂θ

=
2n
θ
− n

(1 + θ)
+

n∑
i=1

x2
i

2(1 + θ
2 )x

2
i

−
n∑
i=1

xi

+
n∑
i=1

1
D(θ, λ, α)

(2e−λyi)
(
(
−2(1 + θ + θxi +

θ2x2
i

2 )

1 + θ
)θe−θyi +

2e−θyi

(1 + θ)2

((1 + θ(1 + yi + θy2
i ))− (1 + θ + θxi +

θ2x2
i

2
)1 + θ)

)
= 0, (5.2)

∂ ln `
∂λ

=
n

λ
−

n∑
i=1

yi − 2αλ
n∑
i=1

e−λyi(
2e−θxi(1 + θ + θxi +

θ2x2
i

2 )

(1 + θ)
− 1)

D(θ, λ, α)
= 0, (5.3)

∂ ln `
∂α

=
n∑
i=1

(2e−λyi − 1)(
2e−θxi(1 + θ + θxi +

θ2x2
i

2
)

(1 + θ)
− 1)

D(θ, λ, α)
= 0, (5.4)

where D(θ, λ, α) = 1 + α(2e−λyi − 1)(
2e−θxi(1 + θ + θxi +

θ2x2
i

2
)

(1 + θ)
− 1).

All the likelihood equations mentioned above are appeared in nonlinear form and cannot be
solved analytically. Hence, It is numerically solved using Newton-Raphson method with R soft-
ware with optim function.
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5.2 Inference Function Margin

The inference function margin method was originally proposed by Xu [30] and Joe [31] as a
two-stage estimation process in which we estimate the parameters of the marginal distributions
separately in the first stage

`1 =
n∑
i=1

ln f(xi, δ1) ; `2 =
n∑
i=1

ln g(yi, δ2). (5.5)

Next, according to the previous step, the joint density is optimized by using the dependence
parameter α by considering the ML estimates obtained in the previous step of the marginals
F̂ (xi, δ1) and Ĝ(yi, δ2). The log-likelihood equations of XG and exponential distributions can
be defined as follows:

∂`1

∂θ
= 0, and

∂`2

∂λ
= 0. (5.6)

By solving the above likelihood equations simultaneously, we obtain the maximum likelihood
estimate of θ and λ.

Based on the earlier step, the IFM estimate for a FGMBXE distribution is as follows:

`IFM =
n∑
i=1

ln
(
1 + α(1− 2F̂ (xi))(1− 2Ĝ(yi))

)
. (5.7)

By differentiating the above log-likelihood function with respect to α and equating to zero we
get the likelihood equation as given below

∂`

∂α
=

n∑
i=1

(2e−λyi − 1)(2
(1 + θ + θxi +

θ2x2
i

2
)

(1 + θ)
e−θxi − 1)

(1 + α(2e−λyi − 1)(2
(1 + θ + θxi +

θ2x2
i

2
)

(1 + θ)
e−θxi − 1))

= 0. (5.8)

MLE of α has no closed-form expression and cannot be solved analytically. Hence, we can nu-
merically obtain the MLE of α by employing iterative procedure of Newton Raphson technique
or any suitable iterative methods.

5.3 Semi-parametric method

Kim et al. [32] proposed the semi-parametric estimation method, in which marginal distributions
are estimated non-parametrically by transforming observations into pseudo-observations using
sample empirical distributions

F̃i(x) =

∑n
j=1 I(Xi,j ≤ xi)

n+ 1
; i = 1, 2. (5.9)

Then, α is estimated by the maximizer of the pseudo log-likelihood,

`SP =
n∑
i=1

ln
[
c
(
F̃ (xi), G̃(yi);α

)]
, (5.10)

by considering (5.10), the log-likelihood function is given by

`SP =
n∑
i=1

ln
[
1 + α(1− 2F̃ (xi)(1− 2G̃(yi)))

]
. (5.11)

The likelihood equation under semi-parametric is given by

∂`SP
∂α

=
n∑
i=1

(1− 2F̃ (xi)(1− 2G̃(yi))
[1 + α(1− 2F̃ (xi)(1− 2G̃(yi)))]

= 0. (5.12)
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Equation (5.12) does not have a closed form solution. It is difficult to obtain explicit expression
of MLE of α. Hence, as an alternatively, we can obtain estimate numerically by using iterative
algorithm such as Newton Raphson method or any appropriate iterative techniques.

6 Asymptotic Confidence Interval

In this section, we present an asymptotic confidence interval using MLE, IFM, and SP methods.
To begin, we will first find IO(Θ̂), the Fishers information matrix as given below

IO(Θ̂) = −



∂2`
∂θ2

∂2`
∂θλ

∂2`
∂θα

∂2`
∂λθ

∂2`
∂λ2

∂2`
∂λα

∂2`
∂αθ

∂2`
∂αλ

∂2`
∂α2

∣∣∣
(θ̂,λ̂,α̂)

= −H(Θ)
∣∣∣
Θ=Θ̂

, (6.1)

where H is the Hessian matrix.

Hence the 100(1− γ)% confidence interval for Θ where Θ̂ = (θ̂, λ̂, α̂) can be obtained as

Θ̂± Zγ/2

√
V ar(Θ̂),

where V ar(Θ̂) is the diagonal entries of the inverse of observed Fisher information matrix and
Zγ/2 is the upper percentile of standard normal variate.

7 Simulation study

This section presents a numerical study to investigate the performance of the stress-strength pa-
rameter R, and dependence parameter α provided in the Sections 4.1 and 5. The goal of the study
is to assess the influence of the dependence parameter α on R. We compare the estimates of R
under MLE and IFM methods for different sample sizes based on the mean square error (MSE).
A Monte Carlo simulation study is performed by generating data sets from FGMBXE distribu-
tion for three different sets of assumed parameters (θ, λ) = ((0.2, 0.4), (0.3, 0.2), (0.2, 0.5)) with
six different possible values -0.9, -0.5, -0.1, 0.1, 0.5 and 0.9 of α in the parameter space. Where
1000 data sets were simulated for three different sample sizes 50, 100, and 200. Average esti-
mate and mean squared error of R are presented in Table 7, while the average estimate, length of
the confidence interval (L.CI) and coverage probability (CP) for the dependence parameter α are
shown in Table 7. All computations are performed in R software using the maxLik and copula
packages.

From Table 1 and 2 we arrive at the following conclusions

• From Table 7 , we notice that the performance of the semi parametric method for estimating
the dependence parameter α are better than the corresponding IFM and MLE estimates on
the basis of MSE’s.

• With respect to MSE, IFM performs better than MLE method of estimation for estimating
the reliability parameter R.

• The MSE’s of the MLE, IFM and SP estimates of the dependence parameter α are de-
creases as sample sizes increases and a similar trend have been observed in the estimates of
reliability R.

• From Table 7, we observe that as true value of R increases when the dependence parameter
α increases and then the MSE’s of the estimators are also decreases. It means that the
efficiency of the estimator R will be maximum for higher value of the α.

• The Length of the Confidence Interval (L.CI) of dependence parameter α is also decreases
as the sample size increases.
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Table 1. Estimates of R for different combination of parameter values against the varied
values of α.

n (θ, λ) α -0.9 -0.5 -0.1 0.1 0.5 0.9

MLE (0.2, 0.4) 0.9081 0.9150 0.9219 0.9253 0.9322 0.9409
0.9379 0.9375 0.9536 0.9525 0.9570 0.9576
0.0065 0.0059 0.0058 0.0054 0.0051 0.0045

(0.3, 0.2) 0.6522 0.6721 0.6921 0.7021 0.7220 0.7419
0.6486 0.6758 0.6744 0.7275 0.7487 0.7872
0.0099 0.0094 0.0090 0.0085 0.0080 0.0071

(0.2, 0.5) 0.9143 0.9320 0.9497 0.9585 0.9762 0.9839
0.9217 0.9474 0.9779 0.9765 0.9718 0.9857
0.0097 0.0082 0.0060 0.0055 0.0050 0.0040

50
IFM (0.2, 0.4) 0.9081 0.9150 0.9219 0.9253 0.9322 0.9409

0.9055 0.9116 0.9220 0.9259 0.9334 0.9396
0.0046 0.0038 0.0028 0.0024 0.0021 0.0020

(0.3, 0.2) 0.6522 0.6721 0.6921 0.7021 0.7220 0.7419
0.6283 0.6600 0.6889 0.7026 0.7237 0.7446
0.0097 0.0090 0.0085 0.0076 0.0070 0.0065

(0.2, 0.5) 0.9143 0.9320 0.9497 0.9585 0.9762 0.9839
0.9005 0.9266 0.9503 0.9607 0.9789 0.9982
0.0089 0.0071 0.0051 0.0046 0.0040 0.0030

MLE (0.2, 0.4) 0.9081 0.9150 0.9219 0.9253 0.9322 0.9409
0.9379 0.9476 0.9450 0.9526 0.9570 0.9498
0.0036 0.0035 0.0030 0.0028 0.0019 0.0022

(0.3, 0.2) 0.6522 0.6721 0.6921 0.7021 0.7220 0.7419
0.6600 0.6762 0.6859 0.7181 0.7392 0.7546
0.0077 0.0069 0.0065 0.0058 0.0055 0.0045

(0.2, 0.5) 0.9143 0.9320 0.9497 0.9585 0.9762 0.9839
0.0089 0.9594 0.9781 0.9763 0.9714 0.9756
0.0070 0.0068 0.0058 0.0050 0.0045 0.0030

100
IFM (0.2, 0.4) 0.9081 0.9150 0.9219 0.9253 0.9322 0.9409

0.9065 0.9134 0.9205 0.9268 0.9329 0.9407
0.0031 0.0029 0.0028 0.0022 0.0020 0.0011

(0.3, 0.2) 0.6522 0.6721 0.6921 0.7021 0.7220 0.7419
0.6589 0.6677 0.6912 0.7181 0.7237 0.7416
0.0066 0.0063 0.0060 0.0058 0.0056 0.0050

(0.2, 0.5) 0.9143 0.9320 0.9497 0.9585 0.9762 0.9839
0.9165 0.9395 0.9489 0.9600 0.9781 0.9971
0.0068 0.0062 0.0046 0.0040 0.0035 0.0020

MLE (0.2, 0.4) 0.9081 0.9150 0.9219 0.9253 0.9322 0.9409
0.9184 0.9278 0.9349 0.9327 0.9372 0.9504
0.0026 0.0024 0.0019 0.0014 0.0010 0.0008

(0.3, 0.2) 0.6522 0.6721 0.6921 0.7021 0.7220 0.7419
0.6502 0.6754 0.6975 0.7016 0.7302 0.7440
0.0025 0.0023 0.0020 0.0017 0.0010 0.0008

(0.2, 0.5) 0.9143 0.9320 0.9497 0.9585 0.9762 0.9839
0.9181 0.9497 0.9582 0.9559 0.9717 0.9861
0.0046 0.0036 0.0032 0.0030 0.0025 0.0010

200
IFM (0.2, 0.4) 0.9081 0.9150 0.9219 0.9253 0.9322 0.9409

0.9069 0.9137 0.9212 0.9255 0.9331 0.9404
0.0015 0.0012 0.0010 0.0009 0.0008 0.0005

(0.3, 0.2) 0.6522 0.6721 0.6921 0.7021 0.7220 0.7419
0.6561 0.6693 0.6996 0.7077 0.7249 0.7411
0.0039 0.0035 0.0030 0.0025 0.0010 0.006

(0.2, 0.5) 0.9143 0.9320 0.9497 0.9585 0.9762 0.9839
0.9104 0.9304 0.9491 0.9605 0.9779 0.9983
0.0044 0.0030 0.0041 0.0036 0.0020 0.0005

The values presented in rows: first- true value, second- estimates and third- MSE for R.
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Table 2. Estimates of α for different combination of parameter values against the varied
values of α.

n (θ, λ) α -0.9 -0.5 -0.1 0.1 0.5 0.9

MLE (0.2, 0.4) -0.8755 -0.5367 -0.0997 0.5627 0.5321 0.8918
0.1904 0.1695 0.0837 0.1192 0.0754 0.0911
1.0740 1.4486 1.2210 1.3881 0.9648 1.0262
0.9190 0.9150 0.9030 0.9260 0.9280 0.9070

(0.3, 0.2) -0.9963 -0.5488 -0.1103 0.1143 0.5419 0.9521
0.5443 0.3474 0.1499 0.0858 0.0858 0.1251
1.6191 1.7414 1.3657 1.0966 1.0013 1.2561
0.8900 0.8920 0.9180 0.9250 0.9250 0.9152

(0.2, 0.5) -0.9205 -0.5211 -0.1212 0.0990 0.5151 0.9185
0.2116 0.1762 0.1338 0.0931 0.1513 0.1703
1.2978 1.4471 1.3324 1.1558 1.5568 0.9224
0.9130 0.9060 0.9300 0.9270 0.9080 0.9010

IFM (0.3, 0.2) -0.9205 -0.5129 -0.1271 0.1127 0.4953 0.8988
0.0943 0.1309 0.1329 0.0728 0.0430 0.0845
1.0838 1.3301 1.3049 1.0591 0.7887 1.6860
0.9675 0.9140 0.9320 0.9361 0.9460 0.9287

50 (0.3, 0.2) -0.9582 -0.5133 -0.1034 0.1034 0.4901 0.9125
0.2359 0.1979 0.1028 0.0876 0.0939 0.0921
1.4867 1.5841 1.1867 0.9190 1.8045 1.2154
0.8990 0.9150 0.9280 0.9100 0.9190 0.9052

(0.2, 0.5) -0.9241 -0.4994 -0.0950 0.0981 0.4943 0.8924
0.1389 0.1285 0.0899 0.0644 0.0464 0.0859
1.2170 1.3268 1.1624 0.9847 0.8098 0.9897
0.9010 0.9270 0.9310 0.9180 0.9159 0.9117

SP (0.2, 0.4) -0.9156 -0.5150 -0.1168 0.1116 0.5125 0.8977
0.0980 0.1319 0.1343 0.0710 0.0936 0.0932
1.0817 1.3223 1.3004 1.0636 1.7870 1.6704
0.9010 0.9110 0.8980 0.9489 0.9340 0.9155

(0.3, 0.2) -0.9573 -0.4929 -0.0993 0.1133 0.4929 0.9241
0.2540 0.1920 0.0982 0.0992 0.0736 0.0854
1.4867 1.5784 1.1858 0.9193 1.1057 1.0214
0.8990 0.9290 0.9370 0.9280 0.9190 0.9125

(0.2, 0.5) -0.9326 -0.4982 -0.0950 0.0987 0.4937 0.8975
0.1462 0.1345 -0.0950 0.0630 0.0457 0.0869
1.2071 1.3212 1.1586 0.9829 0.8072 0.8874
0.9020 0.9210 0.9140 0.9380 0.9195 0.9027

MLE (0.2, 0.4) -0.8755 -0.4916 -0.1199 0.1104 0.5368 0.9245
0.0904 0.1081 0.0621 0.0844 0.0636 0.0674
1.0640 1.2047 1.3104 1.1219 0.9194 0.8382
0.9290 0.9310 0.9190 0.9370 0.9230 0.9150

(0.3, 0.2) -0.8904 -0.4960 -0.1202 0.1130 0.5341 0.9121
0.0940 0.1080 0.0869 0.0695 0.0733 0.0585
0.9756 1.0071 1.1420 0.9195 0.9900 0.9564
0.9340 0.9200 0.9300 0.9240 0.9260 0.9214

(0.2, 0.5) -0.9139 -0.5061 -0.1234 0.1036 0.5268 0.9716
0.0940 0.0985 0.0980 0.0685 0.0678 0.0882
1.0747 1.2020 1.0057 1.0172 0.9639 0.9994
0.9280 0.9280 0.9400 0.9430 0.9340 0.9250

IFM (0.2, 0.4) -0.9105 -0.4807 -0.1070 0.1111 0.5037 0.9073
0.0843 0.0996 0.0936 0.0579 0.0579 0.0518
1.0038 1.1177 1.1598 0.9496 0.7498 0.6724
0.9270 0.9190 0.9270 0.9530 0.9460 0.9300

The values presented in rows: first- estimates, second-MSE, third-L.CI and fourth - coverage
probability for α.
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100 (0.3, 0.2) -0.9215 -0.4950 -0.1016 0.1199 0.4944 0.9121
0.0848 0.0899 0.0888 0.0571 0.0515 0.0564
1.0060 1.0135 1.0638 0.8666 0.7944 0.9854
0.9260 0.9300 0.9400 0.9430 0.9330 0.9124

(0.3, 0.2) -0.9060 -0.5053 -0.1182 0.1027 0.4922 0.9025
0.0858 0.0866 0.0723 0.0689 0.0494 0.0523
1.0035 1.1119 1.0651 0.8669 0.7866 0.9535
0.9160 0.9380 0.9480 0.9420 0.9440 0.9270

SP (0.2, 0.4) -0.9166 -0.4795 -0.1104 0.1134 0.5033 0.9062
0.0880 0.0985 0.0904 0.0586 0.0579 0.0628
1.0017 1.1126 1.1592 0.9500 0.7491 0.6692
0.9070 0.9140 0.9340 0.9480 0.9440 0.9240

(0.3, 0.2) -0.9220 -0.4967 -0.1099 0.1286 0.4970 0.9124
0.0866 0.0906 0.0862 0.0480 0.0618 0.0789
1.0004 1.1119 1.0587 0.8684 0.7937 0.8954
0.9110 0.9280 0.9490 0.9410 0.9370 0.9254

(0.2, 0.5) -0.9060 -0.5069 -0.1178 0.1044 0.4931 0.9033
0.0858 0.0874 0.0723 0.0490 0.0393 0.0630
1.0035 1.1100 1.0630 0.8673 0.7865 0.9526
0.9160 0.9330 0.9480 0.9420 0.9420 0.9350

MLE (0.3, 0.2) -0.9034 -0.5027 -0.1074 0.1003 0.5078 0.9061
0.0417 0.0471 0.0367 0.0368 0.0345 0.0381
0.7374 0.8449 0.9346 0.9680 0.7681 0.5558
0.9410 0.9430 0.9490 0.9350 0.9440 0.9270

(0.3, 0.2) -0.9059 -0.5024 -0.1098 0.1050 0.5041 0.9012
0.0418 0.0451 0.0316 0.0397 0.0341 0.3561
0.7380 0.8570 0.9393 0.9769 0.7775 0.8541
0.9410 0.9530 0.9390 0.9480 0.9440 0.9321

(0.2, 0.5) -0.9028 -0.5020 -0.1092 0.1061 0.5064 0.9012
0.0309 0.0326 0.0383 0.0366 0.0399 0.0331
0.7357 0.8471 0.9318 0.9684 0.8600 0.7862
0.9380 0.9300 0.9410 0.9520 0.9530 0.9570

IFM (0.3, 0.2) -0.9021 -0.5096 -0.0980 0.0991 0.9440 0.9088
0.0361 0.0334 0.0447 0.0382 0.0323 0.0290
0.6936 0.7844 0.8245 0.8247 0.6059 0.6145
0.9330 0.9350 0.9460 0.9370 0.9540 0.9420

(0.3, 0.2) -0.9042 -0.5060 -0.1007 0.1069 0.5015 0.9012
0.0368 0.0324 0.0377 0.0328 0.0393 0.7451
0.6910 0.7872 0.8244 0.8238 0.5861 0.8944
0.9280 0.9480 0.9490 0.9550 0.9590 0.9321

200 (0.2, 0.5) -0.8994 -0.4991 -0.1089 0.1051 0.4958 0.9047
0.0300 0.0462 0.0444 0.0484 0.0317 0.0397
0.6932 0.7880 0.8245 0.8247 0.7044 0.6095
0.9320 0.9360 0.9320 0.9540 0.9690 0.9558

SP (0.3, 0.2) -0.9026 -0.5008 -0.0990 0.1097 0.4943 0.9096
0.0374 0.0433 0.0342 0.0287 0.0220 0.0198
0.6929 0.7825 0.8239 0.8240 0.7055 0.5125
0.9320 0.9320 0.9500 0.9400 0.9520 0.9390

(0.3, 0.2) -0.9018 -0.5058 -0.1008 0.1078 0.5054 0.9055
0.0274 0.0226 0.0274 0.0224 0.0297 0.0214
0.6887 0.0226 0.8235 0.8249 0.6868 0.8941
0.9240 0.9440 0.9530 0.9590 0.9500 0.9411

(0.2, 0.5) -0.9009 -0.4992 -0.1082 0.1061 0.4968 0.8996
0.0211 0.0269 0.0242 0.0288 0.0224 0.0202
0.6906 0.7851 0.8244 0.8236 0.7042 0.8077
0.9310 0.9360 0.9500 0.9510 0.9570 0.9536

The values presented in rows: first- estimates, second-MSE, third-L.CI and fourth - coverage
probability for α.
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8 Real data analysis

In this section, we consider two real data sets to validate the methodologies proposed in the
previous sections.

8.1 Data set I

In this section, we used the data set originally reported by Lawless [19]. Which represents the
failure times in minutes for two different types of electrical insulation in an experiment in which
the insulation is subjected to a continuously increasing voltage stress. Mokhlis et al. [20] es-
timated the R for the negative exponential distribution using the same data. Recently, Yazgan
et al. [21] used the data set for the calculation of fuzzy stress-strength reliability for weighted
exponential distribution. The correlation coefficient and test of correlation for real data set are
reported in the following table

Table 3. The correlation coefficient and test of correlation for real data

Corr P-value

Pearson’s -0.1621 0 0.6146

Kendall’s -0.2121 0.3807

First, we fit the data sets for XG and exponential distribution using Kolmogorov-Smirnov test,
the results are presented in Table 4. Further, plots of empirical and theoretical c.d.f’s and P-P
plots for XG as well as exponential distribution are shown in Figures 3 and 4, respectively.

Table 4. Goodness of fit test for XG and exponential distributions

X Y

D P-value AIC BIC D P-value AIC BIC

XG 0.23908 0.4318 131.0786 131.56353 - - - -

Expo - - - - 0.19345 0.6921 127.0109 127.4958

Weibull 0.18015 0.7688 132.0086 132.9785 0.13535 0.9596 125.87758 126.8473

Gen.Exp 0.17242 0.8106 131.6783 132.6482 0.13064 0.9701 125.9381 126.9079

Figure 3. The plots of empirical and theoretical c.d.f’s and P–P plot for data X
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Figure 4. The plots of empirical and theoretical c.d.f’s and P–P plot for data Y

Next, a goodness of fit for the copula family proposed by Genet et al. [27] is performed, and the
results are reported in Table 5.

Table 5. Goodness of fit test for FGM copula

Statistic α̂ p-value

Anderson-Darling-type(Rn) 0.54487 -0.8563 0.1953

Finally, we fit the XG exponential distribution based on the FGM copula to the data. We com-
pared the proposed model with FGMBW distribution discussed by Ehab et al. [28] and FGM-
BGE distribution discussed by Al turk et al. [29] based on Akaike’s Information Criteria (AIC)
and Bayesian Information Criteria (BIC).

Table 6. The estimates of the parameters of bivariate FGM distributions

Estimates AIC BIC

FGM-Xgamma Exp (0.019967, 0.018436 , -0.7860) 173.3825 179.807

FGM-Weibull ( 0.1788, 1.6372, 0.1200, 0.1929, -0.6878) 369.0863 371.5109

FGM-Gen.Exp (2.5129, 0.02160, 0.5790, 0.0042, -0.7619) 268.3908 270.8153

Table 7. The estimates and the corresponding standard deviation of pa-
rameters of FGMBXE distribution

Methods θ̂ λ̂ α̂

MLE Estimate 0.0199 0.0184 -0.7860

(std) (0.0076) (0.0140) (0.7259)

IFM Estimate 0.0348 0.0148 -0.6157

(std) (0.0058) (0.0042) (0.7400 )

SP Estimate - - -0.6397

(std) (0.6610)
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8.2 Data set II

The second data set contains records for rainfall at the Los Angeles Civic Center from 1943 to
2018 given in [22]. Based on the Weibull records, they used the data to estimate stress-strength
reliability R in the presence of inter-record times. The correlation coefficient and test of correla-
tion for real data set are reported in the following Table 8

Table 8. The correlation coefficient and test of correlation for real data

Corr P-value

Pearson’s 0.1159 00.332

Kendall’s 0.1064 0.1861

The Kolmogorov-Smirnov test is used to check the data set coming from the XG and exponential
distribution, and the results are presented in Table 9. Also, the plots of empirical and theoretical
c.d.fs and P-P plots for XG as well as exponential distributions are shown in Figures 5 and 6,
respectively.

Table 9. Goodness of fit test for XG and exponential distributions

X Y

D P-value AIC BIC D P-value AIC BIC

XG 0.1364 0.2364 320.414 322.6907 - - - -

Expo - - - - 0.0794 0.7531 275.0612 277.3378

Weibull 0.0656 0.9151 316.5952 321.1485 0.0652 0.9194 275.7419 280.2952

Gen.Exp 0.0630 0.9371 316.5726 321.126 0.0730 0.8369 276.4605 281.0139

Figure 5. The plots of empirical and theoretical c.d.f’s and P–P plot for data X
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Figure 6. The plots of empirical and theoretical c.d.f’s and P–P plot for data Y

Next, a goodness of fit for the copula family proposed by Genet et al. [27] is performed, and
the results are reported in Table 10. Finally, we fit the XG exponential distribution based on the

Table 10. Goodness of fit test for FGM copula

Statistic α̂ p-value

Anderson-Darling-type(Rn) 0.1974 0.5881 0.5909

FGM copula to the data. We compared the proposed model with FGMBW distribution discussed
by Ehab et al. [28] and FGMBGE distribution discussed by Al turk et al. [29] based on AIC and
BIC.

Table 11. The estimates of the parameters of bivariate distributions

Estimates AIC BIC

FGM-Xgamma Exp (0.3755, 0.3648, 0.4428) 499.3806 514.7639

FGM-Weibull ( 0.8816, 2.4856, 1.0946, 3.3566, 0.4467) 602.424 613.8073

FGM-Gen.Exp (0.8965, 0.3195, 1.2267, 0.3974, 0.5882) 525.7348 537.1182

Table 12. The estimates and the corresponding standard deviation of
parameters of FGMBXE distribution

Methods θ̂ λ̂ α̂

MLE Estimate 0.3755 0.3648 0.4428

(std) (0.0393) ( 0.0628) (0.4359)

IFM Estimate 0.3855 0.3558 0.5274

(std) (0.0458) (0.0342) (0.2947)

SP Estimate - - 0.5702

(std) (0.3246)
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9 Concluding remarks

In this study, we consider dependence stress-strength reliability model using FGM copula func-
tion. We proposed FGMBXE model to assess the correlation between stress and strength and its
variability or dependency impact in survival of a system reliability. We also consider maximum
likelihood estimation, inference function margin, and semi-parametric methods for estimating
the dependence parameter α, where the first two methods are used for estimating reliability pa-
rameter R.

Further, the said estimators are numerically examined using Monte-Carlo simulation for dif-
ferent sample sizes. It is observed that these estimators behave consistently. Overall, the results
indicate that semi-parametric dominates the other two methods in estimating α where as IFM
gives better reliability estimates than MLE based on MSEs. Also, we observed that as the true
value of R increases when the dependence parameter α increases, and the MSEs of the proposed
estimators are also decreasing. We analyzed two real data sets to examine the applicability of the
proposed model which have the better fit for the data sets. As a future perspectives, other exten-
sions of FGM copula can be used for modeling stronger dependence stress-strength reliability.

References
[1] A. S. Yadav, S. S. Mait and M. Saha, The inverse xgamma distribution: statistical properties and different

methods of estimation, Ann. Data Sci. 8, 275–293 (2021).

[2] S. Sen, S. S. Maiti and N. Chandra, The xgamma distribution: statistical properties and application, J.
Mod. Appl. Stat. Meth. 15, 774–788 (2016).

[3] S. Sen, N. Chandra and S. S. Maiti, Survival estimation in xgamma distribution under progressively type-II
right censored scheme, Mode. Assist. Stat. Appl. 13, 107–121 (2018).

[4] S. Sen and N. Chandra, The quasi xgamma distribution with application in bladder cancer data, J. Data
Sci. 15, 61–76 (2017).

[5] S. Sen, N. Chandra and S. S. Maiti, The weighted xgamma distribution: Properties and application, J.
Reli. Stat. Studi. 10, 43–58 (2017).

[6] S. Nadarajah, Reliability for some bivariate gamma distributions, Math. Prob. Eng. 2, 151–163 (2005).

[7] S. Sen, N. Chandra and S. S. Maiti, On properties and applications of a two-parameter xgamma distribu-
tion, J. Stat. Theo. Appl. 17, 674–685 (2018).

[8] K. Krishnamoorthy, S. Mukherjee and H. Guo, Inference on reliability in two-parameter exponential
stress–strength model, Metrika. 65, 261–273 (2007).

[9] N. Jana, S. Kumar, K. Chatterjee and P. Kundu, Estimating stress-strength reliability for exponential
distributions with different location and scale parameters, Int. J. Adv. Eng. Sci. Appl. Math. 13, 177–190
(2021).

[10] S. Kotz and M. Pensky, The stress-strength model and its generalizations: theory and applications, World
Scientific, Singapore (2003).

[11] N. Chandra and M. Pandey, Bayesian reliability estimation of bivariate Marshal-Olkin exponential stress-
strength model, Inter. J. Reli. Appl. 13, 37–47 (2012).

[12] S. Nadarajah, Reliability for some bivariate gamma distributions, Math. Prob. Eng. 2, 151–163 (2005).

[13] F. Domma and S. Giordano, A copula-based approach to account for dependence in stress-strength models,
Stat. Paper. 54, 807–826 (2013).

[14] F. Domma and S. Giordano, A stress–strength model with dependent variables to measure household
financial fragility, Stat. Meth. Appl. 21, 375–389 (2012).

[15] A. Barbiero, Assessing how the dependence structure affects the reliability parameters of the stress-
strength model, Ecco. Proce. UNCECOMP, 640–650 (2017).

[16] D. D. Patil and U. V. Naik-Nimbalkar, Computation and estimation of reliability for some bivariate copulas
with Pareto marginals, J. Stat. Comp. Simu. 87, 33563–33589 (2017).

[17] X. Bai, X. Li, N. Balakrishnan and M. He, Statistical inference for dependent stress–strength reliability of
multi-state system using generalized survival signature, J. Comp. Appl. Math. 390, 113316 (2021).

[18] E. L. Lehmann, Some concepts of dependence, The Anna. Math. Stat. 37, 1137–1153 (1966).

[19] J. F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, Hoboken (2011).

[20] N. A. Mokhlis, E. J. Ibrahim and D. M. Gharieb, Stress- strength reliability with general form distributions,
Comm. Stat. Theo. Meth. 46, 1230–1246 (2017).



DEPENDENCE STRESS-STRENGTH RELIABILITY 233

[21] E. Yazgan, S. Gurler, M. Esemen and B. Sevinc, Fuzzy stress-strength reliability for weighted exponential
distribution, Qual. Reli. Eng. Int. 38, 550–559 (2022).

[22] A. Pak, M. Z. Raqab, M. R. Mahmoudi, S. S. Band and A. Mosavi, Estimation of stress-strength reliability
R = P (X > Y ) based on Weibull record data in the presence of inter-record times, Alex. Eng. J. 61,
2130–2144 (2022).

[23] A. P. Basu, Bivariate failure rate, J. Amer. Stat. Asso. 66, 103–104 (1971).

[24] N. L. Johnson and S. Kotz, A vector multivariate hazard rate, J. Multi. anal. 5, 53–66 (1975).

[25] D. N. Shanbag and S. Kotz, Some new approaches to multivariate probability distributions, J. Multi. anal.
22, 3–36 (1980).

[26] P. G. Sankaran and U. Nair, On bivariate vitality functions, Proc. Nati. Symp. Dist. Theo. (1991).

[27] C. Genest, W. Huang and J. M. Dufour, A regularized goodness-of-fit test for copulas, J. Soci. Fran. Stat.
154, 64–77 (2013).

[28] E. M. Almetwally, H. Z. Muhammed and E. A. El-Sherpieny, Bivariate weibull distribution: properties
and different methods of estimation, Anna. Data Scie. 7, 163–193 (2020).

[29] L. I. Al turk, M. K. A. Elaal and R. S. Jarwan, Inference of bivariate generalized exponential distribution
based on copula functions, Appl. Math. Scie. 11, 1155–1186 (2017).

[30] J. J. Xu, Statistical Modelling and Inference for Multivariate and Longitudinal Discrete Response Data,
Ph.D. Thesis, University of British Columbia, (1996).

[31] H. Joe, Asymptotic efficiency of the two-stage estimation method for copulabased models, J. Multi. Anal.
94, 401–419 (2005).

[32] G. Kim, M. J. Silvapulle and P. Silvapulle, Comparison of semiparametric and parametric methods for
estimating copulas, Comp. Stat. Data Anal. 51, 2836–2850 (2007).

Author information
A. James and N. Chandra, Department of Statistics, Ramanujan School of Mathematical Sciences, Pondicherry
University, Puducherry - 605 014, India.
E-mail: nc.stat@gmail.com (Corresponding E-mail)


	1 Introduction
	2 FGM Bivariate Xgamma Exponential Distribution
	3 Some statistical properties of FGM Bivariate Xgamma Exponential distribution
	3.1 Conditional Distribution
	3.2 Moment Generating Function
	3.3 Positive Quadrant Dependence (PQD)

	4 Reliability Measures
	4.1 Reliability for dependence stress and strength
	4.2 Survival Function
	4.3 Hazard Rate Function
	4.4 Mean Residual Life
	4.5 Vitality Function
	4.6 Totally Positive of order 2 or Reverse Rule of order 2(TP2 or RR2)
	4.7 Right Tail Increasing and Left Tail Decreasing
	4.8 Mean Time To Failure

	5 Parameter Estimation
	5.1 Maximum Likelihood Estimation
	5.2  Inference Function Margin
	5.3 Semi-parametric method

	6 Asymptotic Confidence Interval
	7 Simulation study
	8 Real data analysis
	8.1 Data set I
	8.2 Data set II

	9 Concluding remarks

