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Abstract In order to fully understand what occurs in microcirculation, it is important to ex-
amine how oxygen is transferred to tissues and what factors can affect this process. In this
numerical study, the transfer of oxygen through permeable vessel walls from microcirculation
to tissue was examined in the presence of an external magnetic field. The blood flow was two-
layered with a core region as a particle-fluid suspension and a peripheral cell-free plasma layer
being considered. In blood, oxygen was assumed to be transported by convection and molecular
diffusion while in the tissue region by molecular diffusion and metabolic consumption. A finite
element method was utilized in solving the governing equations. The effects of varying hemat-
ocrit, core region thickness, magnetic field strength and wall permeability were investigated. It
was observed that as hematocrit, C, increased, PO2 was higher in all three regions. Thus, under
conditions where the red blood cell count in the blood is lower than normal, for example in pa-
tients with plasma cell dyscrasias or Hb SS-sickle cell, there is less O2 present which can lead
to surrounding tissues becoming starved of O2. This can result in twitching, dizziness, nausea,
seizures and in severe cases can even be fatal. Another factor which increased O2 is the thick-
ness of the core region. An increase in the core region thickness corresponds to a thinning of
the plasma layer. Hence as this peripheral layer thins, the oxygen content elevates in all regions.
Increasing the Hartmann number (magnetic field intensity) resulted in a decline in PO2, thus
high intensity magnetic fields should be avoided. Furthermore, some drugs administered can
alter vessel wall permeability. There was a decrease in PO2 as the vessel walls became more
permeable with increasing Darcy number. Therefore, the effect that such drugs will have should
be closely monitored.

1 Introduction

Oxygen (O2) transfer plays a vital role in cellular energetics since oxidation and other forms
of energy production rely on cells being supplied with oxygen continuously. When air enters
the body, through the nose or mouth, it goes to the lungs where oxygen is extracted. This
oxygen is then transported by the bloodstream through the circulatory system to tissues where it
is used in the mitrochondria of cells. Thus, in order to fully understand the regulation of blood
flow, the physical mechanisms of oxygen transport throughout the pathway must be investigated.
Oxygen transport within blood, tissue or specific organs is often examined but the study of
oxygen transfer from blood vessels to tissue is imperative.

The foundation theory of oxygen transfer to tissue was laid by Krogh [11, page 457]. He
proposed that its transport to an elementary tissue unit was by passive diffusion (driven by gra-
dients of oxygen tension) from blood flowing through a single capillary. This model is popularly
known as the Krogh’s tissue cylinder or Krogh’s model. This Krogh’s model of oxygen transport
between blood capillaries and tissue serves as the foundation for many theoretical studies.

A Finite Element Method (FEM) was used by Kumar [12] to investigate oxygen transport in
the capillaries. The Finite Element Method is a useful tool in studying such problems since it
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can easily handle problems with an irregular flow geometry and complex boundary conditions.
This method was also used to study oxygen transport in the systemic capillaries and surrounding
tissues [15, page 107]. Here, the oxygen concentration decreased from the axis of the capillary
to the peripheral tissue [15, page 116].

A mathematical model was developed for the simultaneous transport of oxygen and carbon
dioxide (CO2) in the systemic capillaries and surrounding tissue under hyperbaric conditions
[16, page 255]. It was found that the concentration of carbon dioxide increased from the axis
of the capillary to the peripheral tissue with very little of it being transported radially [16, page
270]. Sharan, Singh and Kumar [17, page 419] proposed a two-layered model to study the effect
of the plasma layer on oxygen delivery. An analysis of their results indicated that the plasma
layer obstructed oxygen transport from the core region to the tissue [17, page 425].

In the study of oxygen diffusion in the pulmonary capillaries from the alveolar air space to
the red blood cells, a finite element model was also utilized [7, page 2036]. A model was created
to investigate the effect of hemoglobin-based oxygen carriers (HBOCs) on oxygen transport in
capillary sized vessels and the Finite Element Method was used to solve its partial differential
equations [21, page 157]. A Finite Element Analysis (FEA) of oxygen transport in microfluidic
cell culture devices, with varying channel architectures, perfusion rates and materials, was also
performed by Zahorodny-Burke, Nearingburg and Elias [23, page 6244]. A simulation of oxygen
transport with moving red blood cells was also done using a dynamic model [13, page 206].

The computational modeling of oxygen transfer in lungs were performed by Kaesler et al.
[10, page 786]. Hassanzadeganroudsari et al [9] examined mass transfer across blood brain
barrier in a capillary of the brain. A model of oxygen transport in skeletal muscle using contin-
uously distributed capillaries was proposed by Afas et al [1] where the numerical solution was
found to be more efficient than for the discrete capillary problems. In this work, the coupled
tissue–capillary PDE system was considered for unidirectional capillary flow in skeletal muscle.

But, in order to fully understand what occurs in microcirculation, it is important to examine
how oxygen is transferred and what factors can affect this process. It is also critical to examine
the effect of magnetic fields on oxygen transfer since in several situtations, humans must be
subjected to such fields. Some examples are during medical testing such as Magnetic Resonance
Imaging (MRI) scans and during the treatment of chronic pain or slowly healing ulcers. This
highlights the need for such a study which examines the effect that magnetic fields can have on
oxygen transfer.

Oxygen is transferred from highly oxygenated blood to surrounding tissue through the blood
vessel walls. Thus, in modelling this oxygen transfer, the permeability of these vessel walls
cannot be ignored. Certain drugs administered to patients may cause changes to vessel wall per-
meability [2]. Hence a study which incorporates the wall permeability when examining oxygen
transfer is useful in understanding this phenomena in such cases.

2 Methodology

Figure 1. Geometry of the microcirculation in the presence of an external magnetic field.
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Consider the flow of blood through microcirculation with permeable walls in the presence of
an external magnetic field surrounded by a tissue region. The blood vessel is assumed to be
circular, uniform and of semi-infinite extent (0 ≤ z <∞) with rigid walls. The two-dimensional
cylindrical polar coordinate system is used with z measured along the tube axis and r measured
normal to the tube axis. Flow through the blood vessel is assumed to be laminar, axisymmetrical,
steady and fully developed. Radius, entrance, end and special wall effects are neglected since
the vessel’s length is assumed to be much greater than its radius.

A two-layered model is assumed for the blood flow through the vessel of length L, consisting
of a central core layer of radius R1 of erythrocytes suspended in plasma and a peripheral plasma
layer of thickness (R0 −R1) modelled as a Newtonian fluid. As blood flows through the vessel,
oxygen diffuses from the core to the tissue region of radius (R2 − R0) passing through the
peripheral plasma layer. The geometry of the model used is shown in Figure 1.

2.1 Governing Equations

In the Core Region

In the core region, 0 < r < R1, a macroscopic two-phase model is used in the presence of
Lorentz’s force. The governing equations for the two-phase model are given as follows.

For the fluid (plasma) phase:

(1− C) ρf
(
∂uf
∂t

+ uf
∂uf
∂z

+ vf
∂uf
∂r

)
=
− (1− C) ∂pg∂z + (1− C)µs(C)∇2uf

+CS (up − uf )− σB 2
0 uf ,

(2.1)

(1− C) ρf
(
∂vf
∂t

+ uf
∂vf
∂z

+ vf
∂vf
∂r

)
=
− (1− C) ∂pg∂r + CS (vp − vf )
+ (1− C)µs(C)

(
∇2 − 1

r2

)
vf ,

(2.2)

1
r

∂

∂r
[r (1− C) vf ] +

∂

∂z
[(1− C)uf ] = 0. (2.3)

For the particle phase:

Cρp

(
∂up
∂t

+ up
∂up
∂z

+ vp
∂up
∂r

)
= −C ∂pg

∂z
+ CS (uf − up) , (2.4)

Cρp

(
∂vp
∂t

+ up
∂vp
∂z

+ vp
∂vp
∂r

)
= −C ∂pg

∂r
+ CS (vf − vp) , (2.5)

1
r

∂

∂r
(rCvp) +

∂

∂z
(Cup) = 0. (2.6)

Here ∇2 = 1
r
∂
∂r

(
r ∂∂r
)
+ ∂2

∂z2 is a two-dimensional Laplacian operator, (uf , vf ) and (up, vp)
are the (axial, radial) components of the fluid and particle velocities. C denotes the volume
fraction density of the particles, pg is the pressure, µs(C) ' µs is the mixture viscosity (apparent
or effective viscosity), S is the drag coefficient of interaction for the force exerted by one phase
on the other, ρf and ρp are the actual densities of the material constituting the fluid (plasma) and
the particle (erythrocytes) phases respectively, (1− C) ρf is the fluid phase density and Cρp is
the particulate phase density, and the subscripts f and p denote the quantities associated with the
plasma (fluid) and erythrocyte (particle) phases respectively. The electrical conductivity of the
fluid is σ and B0 is the component of the constant uniform magnetic field which was applied.

The suspension viscosity, µs, follows the empirical relation given by

µs(C) =
µ0

1−mC
,

with

m =
(
7× 10−2) exp [2.49C +

(
1107
T

)
exp (−1.69C)

]
,



28 Alana Sankar, Sreedhara Rao Gunakala and Donna M. G. Comissiong

where µ0 is the fluid viscosity (suspending medium) and T , the temperature of the blood mea-
sured on the absolute scale (K) used during measurement [5]. The expression for the drag
coefficient of interaction, S, is

S = 4.5
(
µ0

a 2
0

)
4 + 3

(
8C − 3C 2

) 1
2 + 3C

(2− 3C)2 ,

with a0 as the particle’s radius [19, page 540].
Oxygen transfer in this core region is assumed to be through molecular diffusion and convec-

tion with the oxygen and haemoglobin being in chemical equilibrium inside the red blood cells.
Hence the steady state mass balance of O2 in this region is given by

Drc

[
1
r

∂

∂r

(
r
∂p1

∂r

)]
+Dzc

∂2p1

∂z 2 =

(
1 +

N

αc

∂ψ

∂p1

)
uf
∂p1

∂z
(2.7)

where p1 is the partial pressure of the O2 in the core, (Drc, Dzc) are the (radial, axial) com-
ponents of the diffusion coefficients in the core region, N is the O2 carrying capacity of the
blood, αc is the solubility coefficient of O2 in the core and ψ is the fractional saturation of the
hemoglobin with O2.

In the Peripheral Region

In the peripheral region, R1 ≤ r ≤ R0, Navier-Stokes equations in the presence of the Lorentz’s
force were utilized as follows.

ρ0

(
∂u0

∂t
+ u0

∂u0

∂z
+ v0

∂u0

∂r

)
= −∂pg

∂z
+ µ0∇2u0 − σB 2

0 u0. (2.8)

ρ0

(
∂v0

∂t
+ u0

∂v0

∂z
+ v0

∂v0

∂r

)
= −∂pg

∂r
+ µ0

(
∇2 − 1

r2

)
v0. (2.9)

1
r

∂

∂r
(rv0) +

∂u0

∂z
= 0, (2.10)

where (u0, v0) are the (axial, radial) components of the peripheral fluid, µ0 its viscosity and ρ0
its density.

In the peripheral plasma layer, oxygen is assumed to be transported by molecular diffusion
in both the radial and axial directions and by convection so that a steady mass balance equation
for O2 here is given by

Drp

[
1
r

∂

∂r

(
r
∂p0

∂r

)]
+Dzp

∂2p0

∂z 2 = u0
∂p0

∂z
, (2.11)

where p0 is the partial pressure ofO2 in this outer plasma layer, (Drp, Dzp) are the (radial, axial)
components of the diffusion coefficients.

In the Tissue Region

Oxygen is transported from microcirculation to tissue by diffusion due to the partial pressure
gradient differences that exist between the two. Oxygen in the tissue is continuously being used
by metabolic consuption in the tissue cells. The presence of interstitial fluid is neglected. Thus
in the tissue region (R0 < r < R2), the transport of oxygen is assumed to depend on molecular
diffusion. This leads to the steady state material balance of oxygen in the tissue to be written as

Drt

[
1
r

∂

∂r

(
r
∂p2

∂r

)]
+Dzt

∂2p2

∂z 2 =
g

αt
, (2.12)

where p2 is the partial pressure of the O2 in the tissue, (Drp, Dzp) are the (radial, axial) compo-
nents of the diffusion coefficients in the tissue region, αt is the solubility of oxygen in the tissue
and g is the rate at which oxygen is consumed. This rate is taken to be a constant according to
zero-order chemical kinetics.
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2.2 Boundary Conditions

By considering the symmetry that exists along the center line, the continuity of velocities at the
interface and the continuity of shear stresses at the interface the following boundary conditions
as

∂uf
∂r

=
∂up
∂r

= 0, at r = 0, (2.13)

u0 = uf , at r = R1 (2.14)

µ0
∂u0

∂r
= (1− C)µs

∂uf
∂r

, at r = R1, (2.15)

By considering the slip condition at the boundary, it followed that

u0 = uB at r = R0, (2.16)

∂u0

∂r
=

αs√
K

(uB − uporous) at r = R0, (2.17)

where uB is the slip velocity, uporous = −K
µ0

dpg
dz is the velocity in the permeable boundary, αs is

called the slip parameter and K is the medium’s permeability [4, page 197].
The following additional boundary and interface conditions were necessary for this examina-

tion of oxygen transfer in microcirculation. Due to the symmetry

at r = 0,
∂p1

∂r
= 0, 0 ≤ z ≤ L. (2.18)

Assuming that oxygen diffusion into the tissue occurs only along the vessel-tissue interface and
not through the outer wall and annular ends of the tissue

at r = R2,
∂p2

∂r
= 0, 0 ≤ z ≤ L, (2.19)

at z = 0,
∂p2

∂z
= 0, R0 < r < R2, (2.20)

at z = L,
∂p2

∂z
= 0, R0 < r < R2. (2.21)

The partial pressure of the oxygen on entry into the capillary is assumed to be equal to that of
the arterial blood

at z = 0, p1 = pa, 0 < r < R1, (2.22)

at z = 0, p0 = pa, R1 < r < R0, (2.23)

where pa is the partial pressure of O2 in the arterial blood.
At the exit of the capillary, no diffusive flux conditions are assumed

at z = L,
∂p1

∂z
= 0, 0 < r < R1, (2.24)

at z = L,
∂p0

∂z
= 0, R1 < r < R0. (2.25)

Across the interface in the blood between its two layers, the partial pressure of oxygen and its
flux are both assumed to be continuous

at r = R1, p0 = p1, 0 ≤ z ≤ L, (2.26)

at r = R1, αcDrc
∂p1

∂r
= αpDrp

∂p0

∂r
, 0 ≤ z ≤ L. (2.27)
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Additionally, across the interface between the blood and the tissue, the partial pressure of oxygen
and its flux are both assumed to be continuous

at r = R0, p0 = p2, 0 ≤ z ≤ L, (2.28)

at r = R0, αpDrp
∂p0

∂r
= αtDrt

∂p2

∂r
, 0 ≤ z ≤ L, (2.29)

where αp is the solubility coefficient of oxygen in the plasma region.

2.3 Non-dimensional Analysis

In order to use the assumptions taken to simplify the equations involved in this problem, a non-
dimensional analysis must first be conducted using the following,

r∗ =
r

R0
, z∗ =

z

R0
, a∗0 =

a0

R0
, µ∗

s =
µs
µ0
, t∗ =

tU0

R0
, p∗g =

pgR0

U0µ0
, S∗ =

SR 2
0

µ0
,

(u∗0 , u
∗
f , u

∗
p) =

(u0, uf , up)

U0
, (v∗0 , v

∗
f , v

∗
p) =

(v0, vf , vp)

U0
, (p∗0 , p

∗
1 , p

∗
2) =

(p0, p1, p2)

pc
,

M 2 =
σB 2

0 R
2
0

µ0
, Ref =

ρfR0U0

µ0
, Rep =

ρpR0U0

µ0
, Re0 =

ρ0R0U0

µ0
, P e =

R0U0

Drp

where U0 and pc are the characteristic velocity and partial pressure respectively, M is the Hart-
mann number, (Ref , Rep, Re0) is Reynold’s number of the (fluid phase, particle phase,outer
fluid) and Pe is the Peclet number.

Assuming further that vf = vp = v0 = 0, Ref � 1, Rep � 1, Re0 � 1 and neglecting
∂2uf

∂z2 ,
∂2up

∂z2 and ∂2u0
∂z2 , the non-dimensional system of equations given by,

(1− C)
dpg
dz

= (1− C)
µs
r

∂

∂r

(
r
∂uf
∂r

)
+ CS (up − uf )−M 2uf ,

C
dpg
dz

= CS (uf − up) ,

dpg
dz

=
1
r

∂

∂r

(
r
∂u0

∂r

)
−M 2u0,

will be solved subject to,
∂uf
∂r

=
∂up
∂r

= 0, at r = 0, (2.30)

u0 = uf , at r = γ1 (2.31)

∂u0

∂r
= (1− C)µs

∂uf
∂r

, at r = γ1, (2.32)

u0 = uB , at r = 1, (2.33)

∂u0

∂r
=

αs√
Da

(
uB +Da

dpg
dz

)
, at r = 1. (2.34)

Additionally, the non-dimensional system of equations given as,

∂2p0

∂r2 +
1
r

∂p0

∂r
+
Dzp

Drp

∂2p0

∂z2 = Peu0
∂p0

∂z
, (2.35)

Drc

Drp

(
∂2p1

∂r2 +
1
r

∂p1

∂r

)
+
Dzc

Drp

∂2p1

∂z2 = Pe (1 + φ(p1))uf
∂p1

∂z
, (2.36)
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∂2p2

∂r2 +
1
r

∂p2

∂r
+
Dzt

Drp

∂2p2

∂z2 = G, (2.37)

was solved subject to its boundary conditions. The function φ(p1) is proportional to the slope of
the oxygen dissociation curve which is given by

φ(p1) =
N

αc pc

∂ψ

∂p1
.

The function ψ(p1) is yielded from the assumption that the chemical reaction between oxygen
and haemoglobin is in equlibrium. In equilibrium, the chemical reactions occur instantaneously
and the partial pressure of oxygen in hematocrit and plasma are equal. Many forms of the
equation can be used to represent the oxygen dissociation curve (ODC). In this analysis, Hill’s
equation was used as

ψ(p1) =

(
p1
p50

)n
1 +

(
p1
p50

)n ,
where p1 is dimensional partial pressure, p50 is the partial pressure of O2 at the 50 % saturation
of hemoglobin with O2 and n is the Hill parameter [20, page 560].

Utilizing Hill’s equation, it followed that

∂ψ

∂p1
=

n pn50p
n
c p

n−1
1

(pn50 + pn1 p
n
c )

2 ,

and

φ(p1) =
N npn50 (pcp1)

n−1

αc [pn50 + (pcp1)
n
]
2 .

The relevant boundary conditions resulted.

∂p1

∂r
= 0, 0 ≤ z ≤ L

R0
. (2.38)

at r = R,
∂p2

∂r
= 0, 0 ≤ z ≤ L

R0
, (2.39)

at z = 0,
∂p2

∂z
= 0, 1 < r < R, (2.40)

at z =
L

R0
,

∂p2

∂z
= 0, 1 < r < R. (2.41)

at z = 0, p1 = pa, 0 < r < γ1, (2.42)

at z = 0, p0 = pa, γ1 < r < 1. (2.43)

at z =
L

R0
,

∂p1

∂z
= 0, 0 < r < γ1, (2.44)

at z =
L

R0
,

∂p0

∂z
= 0, γ1 < r < 1. (2.45)

at r = γ1, p0 = p1, 0 ≤ z ≤ L

R0
, (2.46)

at r = γ1,
∂p0

∂r
=
αcDrc

αpDrp

∂p1

∂r
, 0 ≤ z ≤ L

R0
. (2.47)

at r = 1, p0 = p2, 0 ≤ z ≤ L

R0
, (2.48)

at r = 1,
∂p0

∂r
=

αtDrt

αpDrp

∂p2

∂r
, 0 ≤ z ≤ L

R0
. (2.49)
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3 Results

The solution for the velocities, u0 and uf were found to be

u0 = k1I0(Mr) + k2K0(Mr)− 1
M 2

(
dp

dz

)
, γ1 ≤ r ≤ 1, (3.1)

uf = k3J0 (Mγr)−
1
M 2

(
dp

dz

)
, 0 ≤ r ≤ γ1, (3.2)

where

k1 =
1
M 2

dp
dz − k2K0(M) + uB

I0(M)
, (3.3)

k2 =

(
dp

dz

)
ξ1
(
ξ4 +

1
M 2 ξ5

)
ξ2 ξ5 − ξ1 ξ3

, (3.4)

k3 =
k2K1(Mγ1)− k1I1(Mγ1)

(1− C)µsγJ1(Mγγ1)
, (3.5)

uB =
k2 ξ3 + ξ4

dp
dz

ξ5
, (3.6)

where
ξ1 = (1− C)µsγI0(Mγ1)J1(Mγγ1) + I1(Mγ1)J0(Mγγ1),

ξ2 = I0(M) [J0(Mγγ1)K1(Mγ1)− (1− C)µsγJ1(Mγγ1)K0(Mγ1)]

+ξ1K0(M),

ξ3 =M
√
Da [I0(M)K1(M) + I1(M)K0(M)] ,

ξ4 =

√
Da

M

[
Mαs

√
DaI0(M)− I1(M)

]
,

ξ5 =M
√
Da I1(M)− αs I0(M),

and

γ =

√
1

(C − 1)µs
,

where Jn is the bessel function of first kind of order n, In is the modified bessel function of the
first kind of order n, Kn is the modified bessel function of the second kind of order n and k1, k2,
k3 and γ are constants.

Assuming that the axial diffusion in the tissue region is small compared to radial diffusion(
∂2p2
∂z2 = 0

)
it follows that

∂

∂r

(
r
∂p2

∂r

)
= rG. (3.7)

Using integration and the boundary conditions from equations 2.39 and 2.48 resulted in

p2(r, z) = p0(1, z) +
G

2

(
r 2 − 1

2
−R 2ln(r)

)
. (3.8)

The Galerkin finite element method was used to obtain the solution for mass transfer in the blood
vessel region. Firstly, the domain was discretized into a set of finite elements. The blood vessel
region enclosed by surface, S, was divided into a finite number of elements. In this analysis, the
blood vessel region was split into two, the core and peripheral regions. A mesh was generated
over each region. Isoparametric, curvilinear, quadrilateral elements were chosen since this is a
suitable type of element for these regions under consideration. Each element contained eight
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nodes. Thus the eight node quadratic rectangular (serendipity) element was used. A mesh was
generated to represent these regions and a finite element solution was found over the mesh (see
Figure 2). The mesh was refined accordingly to obtain an approximate solution within a suitable
error tolerance, ε. The analytic solution was then utilized to find the solution in the third region,
the tissue region.

Figure 2. The three different regions of the problem and a typical element in the core and
peripheral region.

The weak (or weighted integral) formulation of the governing differential equations was ob-
tained as follows. Both equations 2.35 and 2.36 are of the form,

A

(
∂2p

∂r2 +
1
r

∂p

∂r

)
+B

∂2p

∂z2 = PeV (p)
∂p

∂z
. (3.9)

For the plasma region in equation 3.9, A = 1, B = Dzp

Drp
and V (p) = u0 and for the core region,

A = Drc

Drp
, B = Dzc

Drp
and V (p) = (1 + φ(p))uf .

In the development of the weak form, a typical element need only be considered. Assuming
Ωe is a typical (quadrilateral) element of the finite element mesh, the following Galerkin’s finite
element model over Ωe was used.

Multiplying equation 3.9 by a weight function, w, which is assumed to be differentiable with
respect to r and z, and then integrating over the element domain gave∫

Ωe

w

[
−A

(
∂2p

∂r2 +
1
r

∂p

∂r

)
−B∂

2p

∂z2 + PeV (p)
∂p

∂z

]
dΩ

e = 0,

2π
∫
z

∫
r

w

{
−A

[
1
r

∂

∂r

(
r
∂p

∂r

)]
−B ∂

∂z

(
∂p

∂z

)
+ PeV (p)

∂p

∂z

}
r drdz = 0.

Integrating the highest order term by parts resulted in

2π
∫
z

∫
r

(
A∂w
∂r

∂p
∂r +B ∂w

∂z
∂p
∂z + wPeV (p)∂p∂z

)
r drdz

−2π
∮

Γe
w
(
rA∂p

∂rnr + rB ∂p
∂znz

)
dSe

= 0,

∫
z

∫
r

(
A
∂w

∂r

∂p

∂r
+B

∂w

∂z

∂p

∂z
+ wPeV (p)

∂p

∂z

)
r drdz −

∮
Γe

wqn dS
e = 0,

where qn = r
(
A∂p
∂rnr +B ∂p

∂znz

)
is the normal flux with nr and nz are the axial and radial

component of the outward unit normal vector to the surface element dSe on the boundary Γe.
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By Galerkin’s Finite Element Method, it was assumed p(r, z) was approximated by the finite
element interpolation peh over the element Ωe such that

p ≈ peh(z, r) =
n∑
j=1

pejψ
e
j (z, r)

where ψej (z, r) are the interpolation functions and that w = ψei .
Substituting these gave

n∑
j=1

∫
z

∫
r

(
A
∂ψe

i

∂r

∂ψe
j

∂r +B
∂ψe

i

∂z

∂ψe
j

∂z

+ψeiPeV (p)
∂ψe

j

∂z

)
pej rdrdz

− ∮
Γe

ψei qn dS
e = 0,

n∑
j=1

Ke
ijp

e
j −Qei = 0,

n∑
j=1

Ke
ijp

e
j = Qei ,

[
Ke
ij

]
{pe} = {Qei} ,

with [Ke
ij ] = [Ke

1ij ] + [Ke
2ij ] where

Ke
1ij =

∫
z

∫
r

(
A
∂ψei
∂r

∂ψej
∂r

+B
∂ψei
∂z

∂ψej
∂z

)
r drdz, (3.10)

Ke
2ij =

∫
z

∫
r

(
ψei PeV (p)

∂ψej
∂z

)
r drdz, (3.11)

and

Qei =

∮
Γe

ψei qn dS
e, (3.12)

with i, j = 1, 2, ... n.
Hence there is a need for n independent algebraic equations to be able to solve for the n

unknowns, pe1, p
e
2, ...p

e
n. This led to n linearly independent functions ψe1 , ψ

e
2 , ..., ψ

e
n being chosen.

Before this matrix system was solved, the boundary conditions involved were enforced. The
matrix system obtained was then solved to obtain the values of p,

{pe} =
[
Ke
ij

]−1 {Qei} .

Note that this problem is nonlinear so a fixed point iterative technique was necessary to solve for
the p values. The iterative technique continued until

mt∑
i=1

∣∣[pr+1
i − pri

]∣∣ < ε,

where r represents the rth iteration, mt is the total number of nodes in the solution domain and
ε is the error of tolerance.

The following are the values of the parameters used in the computations [14], [15].
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Parameter Value units

Drb 1.12× 10−5 cm2sec−1

Dzb 1.95× 10−4 cm2sec−1

Drt 1.7× 10−5 cm2sec−1

Nb 9.1× 10−6 mol cm−3

n 2.6472
pc 100 mmHg

p50 27.2 mmHg

αc 1.527× 10−9 mol cm−3(mmHg)−1

αp 1.527× 10−9 mol cm−3(mmHg)−1

αt 1.295× 10−9 mol cm−3(mmHg)−1

g 3.72× 10−8 mol cm−3s−1

R0 3.25× 10−4 cm

R2 3.25× 10−3 cm

ε 10−7

Table 1. Parameter values utilized in this study.

Plots for the solutions were provided using the following parameter values dpg
dz = −70, −90,

−110; pa = 75, 95, 115mmHg; C = 0.2, 0.4, 0.6; γ1 = 0.5, 0.6, 0.7; Pe = 0.435, 0.87, 1.74;
M = 2, 4, 6;

√
Da = 0.02, 0.03, 0.04 with αs = 0.3. The radius of the red cell was assumed

to be 4µm and the experimental temperature used to find m was 25.5 oC [8]. The length of the
vessel was assumed to be sixty times its radius [15, page 115]. All plots included the presence
of the magnetic field and permeable walls.

Assuming, Hb = Hc = C and given the experimental values for Drb and Dzb, values for
Drp, Dzp, Drc and Dzc were computed. These were computed using [6]

Dp

Db
=

1.58 + 0.64Hb

1.58− 0.78Hb
. (3.13)

where Dp and Db are the diffusion coefficients in the plasma and blood respectively. After com-
puting the values for Drp and Dzp using equation 3.13, the corresponding values for diffusion in
the core region, Drc and Dzc, were computed [17, page 424].

Graphs were generated to observe the effect of varying different parameters on the partial
pressure of oxygen. Since partial pressure is directly proportional to concentration, variations
with respect to the partial pressure can be used to investigate the oxygen concentration in the
vessel and the tissue region. Non-zero positive values for M and

√
Da indicate the presence of

an external magnetic field and permeable vessel walls.
In figure 3, a single mesh plot was generated to observe the partial pressure in all three regions

utilizing the numerical solution in the vessel and the analytical solution in the tissue region. The
shape of this curve highly correlates with the work of Whiteley, Gavaghan and Hahn [22, page
517].

In figure 3, it is clear that there was a decline in the partial pressure of oxygen in both the
radial and axial directions. As oxygenated blood entered the vessel and flowed in the axial
direction, the concentration of oxygen decreased because it was constantly being diffused from
its region of high concentration in the vessel to its region of low concentration in the tissue. The
difference in the partial pressures in each region drove this diffusion.

In the radial direction, the concentation of oxygen was at its maximum at the core of the
vessel and there was a very small decrease of oxygen from the core region to the plasma region.
Radially along the tissue region, there was a decline in the concentration of oxygen. This was
also observed in the analysis of [18, page 27]. Traversing further away from the vessel, less
oxygen was available for diffusion since it was constantly being consumed by the tissue cells
encountered.
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Figure 3. Mesh plot of partial pressures (with dpg
dz = −70, pa = 95, C = 0.4, γ1 = 0.8,

Pe = 0.435, M = 4 and
√
Da = 0.02).

This decrease in the oxygen concentration in both directions resulted in the partial pressure
of oxygen achieving its minimum value at the end point of the tissue region when r = 10 and at
the end of the vessel when z = 60.

Inside the vessel, the amount of red blood cells present and the thickness of the plasma layer
are two important factors that can affect the concentration and delivery of oxygen respectively.
As the hematocrit value, C, increased, the partial pressure values were higher in all three regions
as shown in figure 4. Since hematocrit is the ratio of the volume of red blood cells to the total
volume of blood, there is a greater concentration of oxygen present in both the vessel and tissue
as the number of red blood cells increase.

Thus under conditions where the red blood cell count in the blood is lower than normal, for
example in patients with plasma cell dyscrasias or Hb SS-sickle cell, there is less O2 present in
the blood and tissue. This can be detrimental to the surrounding tissue as it becomes starved
of oxygen. Meanwhile, in patients with high hematocrit, for example those with polycythemia,
there is a high oxygen concentration in the tissue. If the oxygen level in the body becomes too
high, oxygen toxicity develops which leads to a condition known as hyperoxemia. This can
result in twitching, dizziness, nausea, seizures and in severe cases can even be fatal.

It was also observed that the thickness of the plasma layer affected the delivery of oxygen to
the tissue. Figure 5 presented the effect of increasing the core region thickness on PO2. It must
be noted that changes to the core region thickness from γ1 = 0.5 to 0.6 up to 0.7 corresponded
to the plasma layer thickness decreasing from 0.5 to 0.4 down to 0.3. Thus, as the plasma layer
became thinner, the partial pressure in the vessel and tissue increased. This showcases that the
plasma layer acts as a barrier which reduces the transfer of oxygen from the core to the tissue
region which is in keeping with the work of [17, page 425]. Thus as this layer thins, the oxygen
content elevates.

The intensity of the magnetic field also influenced the concentration of oxygen present in the
vessel and tissue. From figure 6, PO2 decreased with increases in the Hartmann number. Since
the Hartmann number is a reflection of the strength of the magnetic field, as the magnetic field
intensified, there was a drop in the concentration of oxygen present in all three regions. Thus for
patients exposed to a magnetic field of increasing magnitude, a diminishing supply of oxygen
will be present in their vessels and also a lower concentration of oxygen will be present in their
tissues which can lead to life threatening hypoxemia or hypoxia.

Increasing the magnetic field intensity resulted in a greater decline in the oxygen content in
the vessel and the tissue. This is in keeping with previous work and compounds the argument
that such high intensity magnetic fields should be avoided [3, page 1704].
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Figure 4. Mesh plot of partial pressures for varying hematocrit (with dpg
dz = −70, pa = 95,

γ1 = 0.8, Pe = 0.435, M = 4 and
√
Da = 0.02).
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Figure 5. Mesh plot of partial pressures for varying core region thickness (with dpg
dz = −70,

C = 0.4, pa = 95, Pe = 0.435, M = 4 and
√
Da = 0.02).
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Figure 6. Mesh plot of partial pressures for varying Hartmann numbers (with dpg
dz = −70,

C = 0.4, pa = 95, γ1 = 0.8, Pc = 0.435 and
√
Da = 0.02).

Figure 7 highlighted the effect that wall permeability had on oxygen concentration. Changes
to the Darcy number are proportional to changes in the vessel wall’s permeability. Figure 7
indicated that there was a decrease in the concentration of oxygen in all three regions as the
vesssel walls became more permeable. A decline in the PO2 in the axial direction was observed
as Darcy number was increased.
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Figure 7. Mesh plot of partial pressures for varying Darcy numbers (with dpg
dz = −70,

C = 0.4, pa = 95, γ1 = 0.8, Pc = 0.435 and M = 4).

Therefore, patients who take medications which affect wall permeability (such as ACE in-
hibitors, calcium-channel blockers, decongestants, beta blockers, antihistamines and sildenafil
nonsteroidal and anti-inflammatory can expect a change in the concentration of oxygen present
in their tissues. Both cases of low or high oxygen levels are harmful, thus the effect that these
drugs has on oxygen transfer must be monitored closely especially in cases where they must be
used by a patient for a long period of time.
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3.1 Conclusion

The transfer of oxygen from microcirculation to tissue was examined. Blood flow in the vessel
was modelled using a suitable two-layered flow with a core region as a suspension of red blood
cells in fluid and a peripheral plasma layer. The walls were considered to be permeable and an
external magnetic field was present. A finite element method was used to solve the system of
differential equations which arose in the core region and the solution in the tissue region was
solved analytically.

Based on the computations and graphical outputs obtained, the following were observed.

• The partial pressure of oxygen decreased in the axial and radial directions. The difference
in the PO2 values from the core to the plasma to the tissue region drove the O2 diffusion.

• There was an increase in the partial pressure of O2 in all three regions with increases to the
magnitude of the hematocrit and core region thickness.

• The partial pressure of O2 decreased with increasing magnetic field strength and wall per-
meability.

Future work based on this study should include the presence of stenosis in order to examine
oxygen transfer from microcirculation to tissue in cardiovascular patients.
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