
Palestine Journal of Mathematics

Vol. 11 (Special Issue III)(2022) , 53–61 © Palestine Polytechnic University-PPU 2022

A TRIANGULAR QUADRATURE FOR NUMERICAL
INTEGRATION OF ANALYTIC FUNCTIONS

Sanjit Kumar Mohanty and Rajani Ballav Dash

Communicated by Amit Sharma

MSC 2010 Classifications: Primary 65D30, 65D32; Secondary 65A05, 65E05.

Keywords and phrases: Triangular quadrature rule, Clenshaw-Curtis 7-point transformed rule, SMT (f), Adaptive
Scheme.

Abstract An efficient adaptive scheme based on a triangular quadrature of precision nine for
approximate evaluation of line integral of analytic functions has been constructed. The Trian-
gular quadrature SMT (f) is formed by a suitable linear combination of three quadrature rules
lower precisions namely: Boole’s transformed rule, Gauss-Legendre 3-point transformed rule
and Clenshaw-Curtis seven point transformed rule with precisions five, five and seven respec-
tively. An adaptive quadrature scheme is designed. Some test integrals having analytic function
integrands have been evaluated using the triangular quadrature and its constituent rules in non-
adaptive mode. The same set of test integrals have been evaluated using those rules as base rules
in the adaptive scheme. Basing on the error analysis as well as numerical evidence the triangular
quadrature is found to be a better choice. Also, the triangular quadrature based adaptive scheme
is found to be the most effective.

1 Introduction

Despite the simple nature of the problem and the practical value of its method, numerical in-
tegration has been of great interest to both pure and applied mathematicians like Archimedes,
Kepler, Huygens, Newton, Euler, Gauss, Jacobi, Chebyshev, Markhoff, Fejer, Polyya, Szego,
Schoenberg and Sobolov.

There are several rules [4, 11] for the approximate evaluation of real definite integral

I(f) =

∫ b

a

f(x)dx (1.1)

However, there are only few quadrature rules for evaluating an integral of type

I(f) =

∫
L

f(z)dz (1.2)

where L is a directed line segment from the point (z0 − h) to (z0 + h) in the domain of f . Using
the transformation z = z0+ht, t ∈ [−1, 1] (due to [6] lether (1976)), we transformed the integral
(1.2) to the form

h

∫ 1

−1
f(z0 + ht)dt

and made the approximation of the integral by applying standard quadrature rule meant for ap-
proximate evaluation of real definite integral (1.1). The rules so formed are termed as TRANS-
FORMED RULES for numerical integration of (1.2). The integral (1.1) have been successfully
approximated by several authors [5, 7, 8, 9, 10, 11] by using mixed quadrature rule in the com-
plex plane. In literature, precision of a quadrature rule has been enhanced through Richardson
extrapolation and Kronrod extension [2, 10, 11]. These methods of precision enhancement are
very much cumbersome and each having single base rule. But the enhancement of precision by
mixed quadrature approach is very much simple with the aid of two rules and easy to handle.
In this paper, keeping in view the improvement of precision method proposed by earlier authors,
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a Trianular quadrature rule of precision nine has been designed by a suitable linear combination
of following three rules at a time.

I Boole’s transformed quadrature rule.

II Gauss-Legendre 3-point transformed quadrature rule.

III Clenshaw-Curtis 7-point transformed quadrature rule.

This paper is organized as follows.
Section 1 is an introductory one. Section 2 describes about the constituent rules and their error
analysis. Section 3 describes the construction of Triangular quadrature rule. Section 4 speaks
about the truncation error of the Triangular quadrature rule and its analytic dominance over con-
stituent rules. Section 5 deals with the numerical evaluation of test integrals using the Triangular
rule and its constituents in non-adaptive mode and interpretations of relative dominance through
tables and graphs. Section 6 includes adaptive quadrature routine and table of numerical val-
ues of test integrals obtained by applying Triangular quadrature and its ingredients in adaptive
environment. Section 7 contains the conclusion.

2 Constituent rules of the Triangular quadrature rule

For construction of the Triangular quadrature rule let us consider following three quadrature
rules.

2.1 Boole’s transformed quadrature rule

The Boole’s transformed rule [1, 2, 3, 12] is given by

I(f) ≈ BL(f) =
h

45

[
7f(z0−h)+32f(z0−

h

2
)+12f(z0)+32f(z0 +

h

2
)+7f(z0 +h)

]
(2.1)

Appling Taylors theorem (2.1) becomes

BL(f) = 2h
[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

6× 6!
fvi(z0) +

57
45× 8

h8

8!
fviii(z0)

+
5
32

h10

10!
fx(z0) +

897
45× 128

h12

12!
fxii(z0) + · · ·

]
(2.2)

The exact value of the integral due to Taylor

I(f) = 2h
[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
fvi(z0) +

h8

9!
fviii(z0)

+
h10

11!
fx(z0) +

h12

13!
fxii(z0) + · · ·

]
(2.3)

Lemma 2.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h], then the rule BL(f) is
of precision-5 and the truncation error due to the rule is EBL(f) = O(h7).

Proof. Let us denote truncation error due to the rule BL(f) is by EBL(f).We have

EBL(f) = I(f)−BL(f) (2.4)

Using (2.2) and (2.3) in (2.4), we get

EBL(f) = −1
3
h7

7!
fvi(z0)−

17
20

h9

9!
fviii(z0)−

23
16

h11

11!
fx(z0)+

1967
15× 128

h13

13!
fxii(z0)+ · · · (2.5)

The error term shows that the degree of precision of the rule BL(f) is five and EBL(f) =
O(h7).
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2.2 The Gauss-Legendre 3-point transformed rule

The Gauss-Legendre 3-point transformed rule [1, 3, 7, 10] is given by

I(f) ≈ GL3(f) =
h

9

[
5f

(
z0 − h

√
3
5

)
+ 8f(z0) + 5f

(
z0 + h

√
3
5

)]
(2.6)

Appling Taylors theorem (2.6) becomes

GL3(f) = 2h
[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

3
52

h6

5!
fvi(z0) +

32

53
h8

8!
fviii(z0)

+
33

54
h10

10!
fx(z0) +

34

55
h12

12!
fxii(z0) + · · ·

]
(2.7)

Lemma 2.2. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h], then the rule GL3(f)
is of precision-5 and the truncation error due to the rule is EGL3(f) = O(h7).

Proof. We have
EGL3(f) = I(f)−GL3(f) (2.8)

Now using (2.3) and (2.7) in (2.8), we get

EGL3(f) =
5
52

h7

7!
fvi(z0) +

88
53

h9

9!
fviii(z0) +

656
54

h11

11!
fx(z0) +

4144
55

h13

13!
fxii(z0) + · · · (2.9)

The truncation error (2.9) shows that the degree of precision of the rule GL3(f) is five and
GL3(f) = O(h7).

2.3 Clenshaw-Curtis 7-point transformed rule

The Clenshaw-Curtis 7-point transformed rule [8, 11] is given by

I(f) =

∫ z0+h

z0−h
f(z)dz ≈ CC7(f) =

h

315

[
9f(z0 − h) + 80f(z0 −

√
3

2
h) + 144f(z0 −

h

2
)

+164f(z0) + 144f(z0 +
h

2
) + 80f(z0 +

√
3

2
h) + 9f(z0 + h)

]
(2.10)

Applying Taylor’s theorem (2.10) becomes

CC7(f) = 2h
[
f(z0) +

h2

3!
f ii(z0) +

h4

5!
f iv(z0) +

h6

7!
fvi(z0) +

31
280

h8

8!
fviii(z0)

+
5
56

h10

10!
fx(z0) + · · ·

]
(2.11)

Lemma 2.3. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h], then the rule CC7(f)
is of precision-7 and the truncation error due to the rule is ECC7(f) = O(h9).

Proof. We have
ECC7(f) = I(f)− CC7(f) (2.12)

Using (2.3) and (2.11) on (2.12), the truncation error due to the rule CC7(f) is

ECC7(f) =
1

40
h9

9!
fviii(z0) +

1
28

h11

11!
fx(z0) + · · · (2.13)

(2.13) indicates that the degree of precision of the rule CC7(f) is seven and ECC7(f) = O(h9).
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Figure 1: Diagrammatic Representation of construction of the rule

3 Formulation of the Triangular quadrature rule

Theorem-3.1 describes the formulation of the proposed Triangular quadrature rule.

Theorem 3.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h], then the Triangular
quadrature SMT (f) and truncation error due to the rule ESMT (f) are given by SMT (f) =

1
441

[
392CC7(f)+25GL3(f)+24BL(f)

]
and ESMT (f) =

1
441

[
392ECC7(f)+25EGL3(f)+

24EBL(f)
]

Proof. Resuming
I(f) = CC7(f) +ECC7(f) (3.1)

I(f) = GL3(f) +EGL3(f) (3.2)

I(f) = BL(f) +EBL(f) (3.3)

adding 392 times of (3.1) 25 times of (3.2) and 24 times of (3.3), we get

441I(f) = 392CC7(f) + 25GL3(f) + 24BL(f) + 392ECC7(f) + 25EGL3(f) + 24EBL(f)

⇒ I(f) =
1

441

[
392CC7(f) + 25GL3(f) + 24BL(f)

]
+

1
441

[
392ECC7(f) + 25EGL3(f) + 24EBL(f)

]
⇒ I(f) = SMT (f) +ESMT (f)

Where
SMT (f) =

1
441

[
392CC7(f) + 25GL3(f) + 24BL(f)

]
(3.4)

and
ESMT (f) =

1
441

[
392ECC7(f) + 25EGL3(f) + 24EBL(f)

]
(3.5)

(3.4) is the required Triangular quadrature rule and (3.5) is the truncation error associated with
the rule.
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Table 1: The values of the test integrals obtained using Triangular quadrature rule and its three
constituent rules.

Integral Values obtained by different quadrature rules

I(f) GL3(f) BL(f) CC7(f) SMT (f)

I1 =
∫ i

−i cos zdz 2.350336928680
0113i

2.350470903569
372i

2.350402366696
2997i

2.350402386956042
3875283446712018i

I2 =
∫ i

−i e
zdz 1.682942833605

352i
1.682941070721
43i

1.682941969549
0799i

1.682941969616071
2943310657596372i

I3 =∫ i
3
− i

3
cosh zdz

0.654389422525
4678i

0.654389363469
878i

0.654389393591
309492i

0.654389393592306
3216870748299319i

I4 =
∫√3i
−
√

3i z
8dz 20.20264061948

33i
44.42710321414
17025i

31.06556841289
60673i

31.17691453623978
23i

I5 =
∫ i

0 e−z
2
dz 1.462409711477

32195i
1.462909438972
96967i

1.462651370235
28938i

1.462651715316366
8i

4 Error Analysis

An error analysis of the constructed Triangular quadrature rule SMT (f) has been given by the
following Theorems.

Theorem 4.1. If f(z) is analytic in the given domain Ω ⊃ [z0 − h, z0 + h], then the truncation
error due to the Triangular quadrature rule SMT (f) is ESMT (f) =

41
3150

h11

11! f
x(z0) + · · · .

Proof. Now using Lemma-2.1, Lemma-2.2 and Lemma-2.3 on (3.5), the error due to the con-
structed Triangular quadrature rule became

ESMT (f) =
1

441

[(
25×8

52 − 24
3

)
h7

7! f
vi(z0) +

(
392
140 + 88×25

53 − 17×24
20

)
h9

9! f
viii(z0)

+
(

392
28 + 656×25

55 − 23×24
16

)
h11

11! f
x(z0) + · · ·

]
⇒ ESMT (f) =

41
3150

h11

11!
fx(z0) + · · ·

The error term established that the degree of precision of the Triangular quadrature rule SMT (f)
is nine.

Theorem 4.2. The error committed due to the quadrature rule SMT (f) is less than its con-
stituent rules.

Proof.
Using Lemma− 2.1 and Theorem− 4.1, | ESMT (f) |≤| EBL(f) |

UsingLemma− 2.2 and Theorem− 4.1, | ESMT (f) |≤| EGL3(f) |

UsingLemma− 2.3 and Theorem− 4.1, | ESMT (f) |≤| ECC7(f) |

5 Numerical verification

Remark 5.1. From table-2 and figure-2a to figure-2e we have

• The values obtained from the triangular quadrature rule SMT (f) covers the exact value
I1(f) upto nine decimal places but the constituent rules fails after 4-7 decimal places.
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Table 2: The absolute values of truncation errors due to the rules for different test integrals.

Inte-
gral

Exact value of
the integral

|Error| due to quadrature rules

I(f) |EGL3(f)| |EBL(f)| |ECC7(f)| |ESMT (f)|

I1(f) 2.350402387287
602913i

0.0000654586
07591613

0.0000685162
81769087

0.0000000205
91303213

0.00000000033156
052547165532

I2(f) 1.682941969615
7930133i

0.0000008639
895589867

0.0000008988
943630133

0.0000000000
66713113

0.00000000000027
828103106575

I3(f) 0.654389393592
30448i

0.0000000289
3316332

0.0000000301
2242648

0.0000000000
00994988

0.00000000000000
184168707482

I4(f) 31.17691453623
9791283494i

10.974273916
75649128349

13.250188677
9019112165

0.1113461233
43723983494

0.00000000000000
8983494

I5(f) 1.462651745907
182i

0.0002420344
2986005

0.0002576930
6578767

0.0000003756
7189262

0.00000003059081
52

(a) Values of I1(f) obtained by different quadrature
rules.

(b) Values of I2(f) obtained by different quadrature
rules.

(c) Values of I3(f) obtained by different quadrature
rules.

(d) Values of I4(f) obtained by different quadrature
rules.

(e) Values of I5(f) obtained by different quadrature
rules.

Figure 2: Values obtained by different quadrature rules for the integrals I1(f) to I5(f).

• The values obtained from the rule SMT (f) covers the exact value I2(f) upto 12 decimal
places but the constituent rules fails after 6-10 decimal places.
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Table 3: Approximation of the test integrals as in Table-1 using adaptive quadrature routine with
Triangular quadrature and its constituent rules as base rules.

Let us consider the prescribed tolerance ∈= 1.0 × 10−8.

Integrals
GL3(f) CC7(f)

Approximate
value( P)

No
of
steps

|Error| =
|P − I|

Approximate
value( P)

No
of
steps

|Error| =
|P − I|

I1 2.35040238700356
998i

07 2.84
×10−10

2.35040238728725
26i

03 1.923
×10−13

I2 1.68294196961897
917i

07 3.186
×10−12

1.68294196961553
835i

01 2.546
×10−13

I3 0.65438939359926
8328i

03 6.963
×10−12

0.65438939359230
0641i

01 3.838
×10−15

I4 31.1769145352672
449i

59 9.725
×10−10

31.1769145362138
676i

15 2.592
×10−11

I5 1.46265174581817
542i

13 8.9
×10−11

1.46265174589728
381i

03 9.898
×10−12

• The values obtained from the rule SMT (f) covers the exact value I3(f) upto 14 decimal
places but the constituent rules fails after 7-12 decimal places.

• the values obtained from the rule SMT (f) covers the exact value I4(f) upto 14 decimal
places but the constituent rules fails to a single decimal places.

• The values obtained from the rule SMT (f) covers the exact value I4(f) upto 7 decimal
places but the constituent rules fails after 3-6 decimal places.

6 Application of the quadrature rule in Adaptive quadrature routines

An efficient adaptive strategy is given in following Algorithm [1, 7, 8, 10, 13]

Algorithm

The input to this scheme is a, b,∈, n, f . The output is P ≡
∫ b

a
f(x)dx with error less than ∈, n is

the number of intervals initially chosen. The adaptive strategy is outlined in the following four
steps.

• An approximation I1 to I =
∫ b

a
f(x)dx is computed.

• The interval is divided into pieces, [a, c] and [c, b] where c = a+b
2 , and then I2 ≈

∫ c

a
f(x)dx

and I3 ≈
∫ b

c
f(x)dx are computed.

• I2 + I3 is compared with I1, to estimate error in I2 + I3.

• If |estimated error|≤ ∈2 (termination criterion), then I2 + I3 is accepted as an approximation
to
∫ b

a
f(x)dx. Otherwise, the same procedure is applied to [a, c] and [c, b], allowing each

piece to a tolerance of ∈2 .

Applying quadrature routines to the proposed quadrature rule to each of the sub intervals cover-
ing [a, b] until the termination criterion is satisfied. If the termination criterion is not satisfied in
one or more of the sub intervals, then those sub intervals must be further subdivided and entire
process repeated.
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Let us consider the prescribed tolerance ∈= 1.0 × 10−8.

Integrals
BL(f) Triangular quadrature rule SMT (f)

Approximate
value( P)

No
of
steps

|Error| =
|P − I|

Approximate
value( P)

No
of
steps

|Error| =
|P − I|

I1 2.35040238742138
061i

11 1.337
×10−10

2.35040238728724
239i

01 3.605
×10−13

I2 1.68294196961247
414i

07 3.318
×10−12

1.68294196961517
9338i

01 2.665
×10−16

I3 0.65438939358505
0732i

03 7.253
×10−12

0.65438939359230
449i

01 1.025
×10−17

I4 31.1769145370958
593i

63 8.56
×10−10

31.1769145362397
876i

01 3.629
×10−15

I5 1.46265174599991
758i

13 9.273
×10−11

1.46265174590116
61i

03 6.539
×10−14

7 Conclusions

From the tables it is evident that the results of the test integrals obtained using Triangular quadra-
ture rule are comparatively much better than those obtained using constituent rules (Gauss-
Legendre 3- point, Boole’s and Clenshaw-Curti’s 7-point transformed rules)when computed in
non adaptive mode. In adaptive scheme also, this Triangular quadrature rule SMT (f) not only
gives better results than its constituent rules but also greatly reduces the number of steps of
iteration for achieving desired accuracy.
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