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Abstract In present work, we investigate the terminal value differential problem using the
Hilfer-Katugampola derivative with a non-local condition. Using fixed point theory, we explore
existence of unique solution result. Some relevant examples are provided to justify our findings.

1 Introduction

Differential problems of arbitrary order (FDEs) has a glorious history of more than three cen-
turies. Until mid-twentieth century, the calculus of arbitrary order (FC) was developed as a
theoretical field of applied mathematics research. During this subjective growth, numerous dif-
ferential and their corresponding integral operators came into existence and were used by applied
researchers in fractional sense. The Riemann-Liouville, Grunwald-Letnikov, Liouville-Caputo,
Weyl, Reisz, Hilfer, Hadamard become famous in engineering and sciences applications. For
details on theory and application of FC, see [4, 6, 13, 14, 18, 27]. Since last five decades, the FC
has played a vital role and proved to be an adequate tool to investigate complex phenomena in
the nature. The topic of qualitative properties of fractional differential equations (FDEs) and dy-
namical systems are always at the peak of the theoretical investigations. For some recent works
on FDEs, we refer [2, 3,7, 9, 11, 16, 19, 24, 26, 32], survey articles [1, 2, 31] and monographs
[18, 21].

A terminal value problems (TVPs) for differential equations are increasingly used to simulate
a wide range of phenomena in numerous fields. The TVPs arise naturally in the modelling of pro-
cedures that be measured later-ultimately after the process has begun. Several researchers have
explored the theory of existence for classical TVPs in [15, 22, 23]. The development of TVPs for
arbitrary order differential equations is more complex and getting a lot of attention. We look at
a generalized-Katugampola (H-K) derivative as it interpolates the well-known Hilfer-Hadamard,
Hilfer, Caputo-Hadamard, Hadamard, Caputo, Riemann-Liouville, Caputo-type, Katugampola
differential operators [25]. We recall the following TVP [20]:

(1.1)

(“Dilz) (1) = g(r,2(7)); reJ=(a,T),
(“INF2)(T)=¢, ce€RB=p+d(1-p),

for H-K FDE solved using Banach fixed-point theorem and it’s Volterra integral equation (VIEQ):

R e NG s P

Recently, efforts have taken to investigate the comparison principle for the TVPs in [5, 6, 10, 29,
30]. Motivated by importance of TVP and applicability of H-K differential operator, in present
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work, we explore the following TVP:

{ (ngfz)(T):g(t,z(T)), O<pu<1,0<6<1, 7€ (a,T], (13)

(wl(i:BZ) (T> = Z;nzl nﬁz(é‘i)v .u S B = ,LL + 5(1 - ,U), g.‘-ﬂ S (CL,T],

where “’Dg‘f is the H-K derivative of fractional order 1 € (0,1) and type ¢ € [0, 1], and [ 5:5
is the Katugampola integral with (w > 0). Here, &, are points such that 0 < a < & < -+ <
&m <T,g:(a,T] x R — Risagiven functionandn, e R, k = 1,2,--- ,m.

We discuss the criteria for existence of solution to nonlocal terminal value problem (NTVP)
(1.3). We emmploy the fixed point theorem due to Banach and Leray-Schauder to achieve well-
posedness results for NTVP (1.3). In the beginning, we obtain a nonlinear mixed-type equivalent
volterra integral equation (VIEQ):

z(7) = % <M) - ém /jm P! <w> #_lg(p, z(p))dp

7 w w

1 T[T = p” n=l
- w d 1.4
+ F(u)/a p ( > 9(p, z(p))dp, (1.4)

w

where

m éw —a¥ B-1 -1
K= [F(ﬂ) Zm( — ) ] : (1.5)
k=1

for NTVP (1.3) in (i— g w[a, T] which is defined in next section.

2 Preliminaries

Some definitions and lemmas are given for development of our results. Consider following
definitions of the (Euler’s) Gamma and Beta functions as follows:

9] 1
() = / e %dx, B(p,d) = / (1— x)“'_lx(s_ldx, w>0,0>0.
0 0

It is well known that B(u,d) = rr((i)ig)a for > 0,8 > 0, see [18]. Throughout the work, we

suppose [a,T], (0 < a < T < o), be interval on Rt which is finite and w > 0.

Definition 2.1. [18] The space X4(a,T), (c € R,1 < ¢ < 00), consists Lebesgue measurable
functions g on (a, T') which are real-valued for which ||g|| xa < oo, where

1

\ f
. dt\ *

gl xa = (/ |t g(T)qt> , 1< g <,

and when ¢ = é, we observe that ch/q(a7 T) = Ly(a,T).

Definition 2.2. [18] We signify by ([a, T a space of continuous functions g on (a, 7] with the
norm

lglle = sup_|g(7)l.
T7€[a,T)

The weighted space (g .,[a, T], 0 < 8 < 1, on (a, T| of functions g is defined by

w w

Golat)={o: @115 R )ng € dla.Tl}, @

having the norm

w_awﬁ TW

e
lglle, . =
Chw ( w ¢ T7€[a,T) w

and CO,w [a7 T] = C[av T]
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Definition 2.3. [20] Let 6, = (7*~'£), 0 < 3 < 1. Denote ¢} ;[a,T| the Banach space of
continuously differentiable functions g with d,,, on [a,T] upto (n — 1) (n € N), order and it’s
derivative ¢]'g on (a,T] such that §"g € (g [a,T] :

G sl T)={g: (a,T) > R:65g€(la,T),k=0,1,--+ ,n—1, 6.9 € (su[a,T]},
having the norm

w w B

T2 gl

n—1
lollgy = " Iotgll + 1520l .. gl = supl(
k=0 teQ

As the case forn = 0, ¢§ 4[a,T] = (g wla, T].

Definition 2.4. [17] Let . > 0 and g € XZ(a, T). The Katugampola integral of left kind “ I/ of
order x4 can be given as:

T w _ pw\ Bl
WIggg(T):/ pw—‘(T p) g(p)dp, > 2.2)

w

Definition 2.5.[17] Let € RT\N and n = [u] + 1, here the whole part of [u] is u. The
Katugampola derivative of left kind “ DY, is given as:

“Di g(T) =651, "g(p))(T)

w MM _ w—1 d " T w—1 Tw_pw ok g(p)
o= () [7(T) g @

Definition 2.6. [28] Letn — 1 < y <nand 0 < § < 1, n € N. The H-K derivative, w > 0, of a
function g € (g [a, T], given by

(“Dig)(r) = (L Hon 1= g) (7). 24)
for the functions for which rhs expression exists.

Lemma 2.7. [21] Suppose that n > 0,5 > 0,1 < ¢ < 00 and w, ¢ € R such that w > c. Then,
for g € X4(a,T), Katugampola integral satisfies semi-group property:

CIECTD g(T) =1t g(T). (2.5)
Lemma 2.8. [9] Consider that n > 0,0 < 8 < 1, and g € (g ,[a,T|. Then, V1 € (a,T],
“Dly “Ii, g() = g(7).

Lemma 2.9. [9] Consider that ;i > 0, g € (g,,[a,T], 0 < 3 < 1and“I} *g € (}y  [a,T), then

“Iy“Dh g(T) = g(T) —

)

Lemma 2.10. [9] Consider “1}! and “ DY are as defined in above definition. Then

w wy\ o—1 w w\ Mto—1
wn (TO—a _ I'(o) ™V — @ -
Ia+< ” ) Mo+ 1) ” , u>0,0>0,7>a.

w DK (T
a4

Remark 2.11. [9] For 0 < 4 < 1,0 < § < 1, the H-K derivative ‘”D{z‘f having property

w

—q¥ b=l
a) =0, O<pu<l
w

w Or _ wrdln— nwin—>~3 __ wrd(n— w _
Déﬁf* Iagr lu)dw I(”ﬁ— IaJ(r #) Dng, B—M—f—é(ﬂ—u)
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Lemma 2.12. [20] Let p > 0,9 € (i_gwla, bl and 0 < B < 1. If u > j3, then
wTH 1 wTH _
(12 g)(a) = Jim (12 g)(r) =0.
To discuss the existence for solution to NTVP (1.3), we consider following spaces :

A o Tl ={g € Cpula, T]: “Dig € Gpula, T}, 0<B<1, (26

and
Clﬂfﬁw[a,T] ={9€ Q-pwla,T|:“D} g€ C_pula, T}, 0<B <1
Since “ Di-°g = “Igﬁlf“)“D{ig, clearly Cfiﬂ’w[a,T] C C{ﬁéﬁ’w[a,T] C Ci—pwla, T).
Lemma 2.13. [/7] Let > 0,6 > 0and B =p+6 — pd. If g € Clﬁ_ﬂ,w[a,T], then
I} 9Dy g(r) = It “Di’g(r) = “Dy! " Mg(r).

Lemma 2.14. [12] Let F be a Banach space and Q C F' is closed and convex. Assume that G
is relatively open subset of Q with 0 € G and N : G — Q is compact and continuous mapping.
Then either:

(a) N having fixed point in G or

(b) 3y € 6G such as = = ANz for some X € (0, 1), where 6G is boundary of G.

3 Main results

In this part, we prove the equivalence of NTVP (1.3) and VIEq (1.4).

Lemma 3.1. [9] Consider 0 < pn < 1,0<§<landB=pu+6—pd.Ifg: (a, 7] xR >R
is a function such as g(-, z(+)) € Ci—g.wla, T] for any z(-) € (i_gwla,T], then z € Qlﬂ_ﬁ_w[a,T]
satisfies NTVP (1.3) iff z satisfies nonlinear VIEq. (1.4). /

Proof. = Let us rewrite (1.2) as

‘*’I;fﬁz(T) T _ g p-1 T T — p¥ pl , 2
o(7) = 1:(5) ( ) +/ pw—l( p) 9(p.2(p) 3.0)
A substitution 7 = &, in (3.1) yields

CIBL(T) (6,9 —a@ P & =\ g(p.2(p))

2(£,) = —% al +/ wl(“ > ’ dp, 3.2
S S R A G rw " 02
and after multiplying 7,, on each sides of (3.2),

“IPAT) (62— e\ S (& =\ g2 ()
kZ\SKk) = b K = + ;@/ pw_l<ﬂ> ’7dp
o6 = =S 5) e " Iu)

By terminal condition of NTVP (1.3),

“Ii %0 (T) =) nez(ée)
k=1

U E (60— a\
IR Z"“( w )

k=1

+ im /j" ol (ﬁn“w— p“)”lg(z;a(f))dp
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which implies

- @im /jﬁ P! (WJ)M 9(p, z(p))dp

m £n w L w pn—1
i, enPyr) = By, / p“‘<5“p> 9, 2(p))dp.  (33)

where K is the same as in (1.5). Substitute (3.3) into (3.1), the integral equation (1.4) is obtained.
<« Employing “I)~" on each sides of equation (1.4),

“oa\T AT <=\ g, 2())
wpl-B oy —wpl-B(T @ K n/ wot (& =P 9. 2(p)) ,
o Pa(r) =21, — ;n b - T

+ @I PeIl g(r,2(7)),

using Lemmas 2.7 and 2.10,

Sl i Z / “‘(5"‘ ) g(p,z(p))dp+“Iij‘$“‘”)g(m(7))~

Since 1 — 8 <1 —46(1 — p), using Lemma 2.12 and ¢ — a. yields

-1

£N —
LA i Z / ! (EH p)u 9(p, z(p))dp. (3.4)

A substitution 7 = &, in (1.4) gives

(&) = Fﬁ)c“ > )ﬁ 1§;nn/jmpw”<w>ulg(p,z(p))dp

1 /5,@ _](fmw_pw)ul
+ = P g(p, 2(p))dp.

TG Jo w 2w
Further

m K m I Kw L w n—1 m Hw W B—1
> nwz(e) = ) Zm/ P! (pr> 9(p,2(p))dp > s <§wa>
k=1 a k=1

k=1

m 1 En nw_ wy #l
+me/a p“”(gwp> 9(p, 2(p))dp

/3 Z / (6 ‘p) o) (3.5)

['(p)
Now, linking (3.4) and (3.5), it follows that

wl = Zm (&x).
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Applying “’D(ﬂ to each sides of (1.4), from Lemmas 2.10 and 3.1,
“Djf 2(r) = “Dol!Mg(r, 2(r)). (3.6)
Since z € Clﬂ_ﬁyw[a, T}, from definition of Clﬁ_ﬁw[a, T], we have
“Df z€(_pula,T] then “DJI=Wf =g, 211-00"Mge ¢\ g [a,T].

For g € ¢(1_pwla, T], obviously “’I;:S(l_”)g € (1-pwla, T], then “’Li:(s(l_“)g € ijﬁyw[a,T].

This means g and “’I;:&(l_” )g assures Lemma 2.9. Finally, applying WLL_‘;(I_“)
of (3.6), Lemma 2.9 supports to give

on each sides

w[lf‘;(lfﬂ)g(a) Y _ q¥ d(1—p)—1
DM (1) = g(T, 2(T)) — =t ( > .
$2() = o 2(r)) — T (T
(I=p)

By Lemma 2.12, it is observe that “’I;:& g(a) = 0. Hence

“’Dg‘fz(T) = g(r, 2(7)).
This completes the proof. O

Let us state and prove the existence of unique solution for NTVP (1.3). Our considerations are
as follows:

(Hy) g : (a,T] x R — R be a function such that g(-,z(-)) € Cf(_l/,;’:)[mT] for any z €
Ci—gwla,T] and Jaconstant L > 0s. t. Vz,Z € R,

l9(r,2()) — g(7, 2(7))| < L]z = 2.

(H,) The constant

o= S e+ (T2 i (e (P5) e <

k=1

where K isin (1.5).

Let us now prove the existence results for NTVP (1.3) utilizing Banach fixed-point theorem.

Theorem 3.2. Consider (H;) and (H;) are hold. Then NTVP (1.3) has unique solution in
CIB—B,w [a,T] C Cfbl567w[a,T] provided Ap < 1 where,

0= F'i')in (% (== aw>ﬂ_l> (&)

k=1

" (TW " a“’)l_’@ r(lu) (2. (pw;awy_])(f)- 3.7)

Proof. Firsly, we prove that the operator N : (;_g,,(I) = (i1—pw(I) defined as:

Nz(r) = i) (M> . i m/; P! (&“—p”) H_19(197 z(p))dp

T(p w w

k=1

(e
v [ P (CEE) stz (.8

w

has unique fixed point z* in {;_g ., (I).
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Let z,u € (1_gu(I) and 7 € (a,T] then,

|Nz(7)—Nu(T)|<1fm(W>ﬂlim/a . (@ w_p ) .

k=1

TUJ w

T _ pu—1
Xlg(p)—h(p)derr(lm/ p“”( wp) lg(p) — h(p)ldp,

where g, h € (1_p,,(I) suchthat g(7) = g(, 2(7)), h(7) = g(7, u(7)).
By (H)1),

l9(r) = h(7)] < 1g(7, 2(7)) = g(7, u(7))|
< Alz(7) —u(7)].

Hence, for each 7 € (a, T

Vete) - Natr) < A (T 2) li”n/a ()

T w o W p—1
<) —utolap+ o [ 727 (T2 ) 1)~ ulo)iap

Multiply on both sides of above inequation, ( —a” )l 7 we get

(Tw;aw>lﬁ|NZ(T) i / < e )ﬂlIZ(p)—U(p)ldp
E‘S() e
IN=(r) = Nu(r)]| < gyl = vl szn,{ (wzgg(P“J;a“J)“)(&)

A (79 —ao\'"P p¥ —a¥ -l
a4 (r-a _ wTp
+ F(N) ( w ) Hy u”C]-ﬁ,w < Ia+( w ) (T)
—1

) Z(p) — u(p)|dp,

INz(7) = Nu(r)[| < A||2(7) = w(T)ll¢i_s -

By equation (3.8) N is contraction. By implication Banach principle, N has a unique fixed point
2* € C_pw(l).

Now we show that a fixed point z* € ¢;_g,(I) is actually in {;_g ., (I).

Since z* is unique fixed point of operator N in ¢;_g () then for each z € (a,T]

() = ”1;1:(;2;(7) (T“ - a“)ﬁ_l + /anw—l (T“ ;p“y_lg(z;(z;)p))dp.

Applying “ D7 on both sides results in

“Df =0+ (“Df “1.6)(r) = (“Di~)9). (3.9)

We can summarize that equations NTVP (1.3) have unique solution in ¢;_g .,(I). |
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Now we prove existence of solution for NTVP (1.3) using nonlinear alternative of Leray-Schauder.
For this we define hypotheses as follows:

(H3) 3two continuous functions ¢ : RT™ — R™ and n : I — R™ which are non decreasing so as
lg(m )l <n(m) ¢(lzll,_,..) - vrielzeR

(H4) Jaconstant @ > 0 such that,
vinl¥(Q)

<1, (3.10)

where

s (S (55E) T+ (55))

Theorem 3.3. Assume that g : [ x R — R, and (H3), (Hy4) are satisfied. Then NTVP (1.3) has
at least one solution on I.

Proof. Consider F = {z € (1_gw([) : ||z|| < r}, where

—1 1—
t—a*\1=8 4 m £ —a” H t¥—a” ’ *
K( w ) 9 ZH:I Tk w + w Y
r= — (3.11)
Cafrsmn(E2=) ]

and

9" = sup [g(t,0))|.
7€(a,T]

Firstly, we start with operator N as in (3.8), maps F' which is again bounded in ¢;_g,,. For a
positive number r, let F' be a bounded ball in {;_g . Then for 7 € I, we have

Nz(r) = i) (Tw_aw> . i m/j P! (&‘"—p”) . l9(p, 2(p))|dp

T(p w w

k=1

+ F(lu)/;pwl (tw wpUJ)H_lg(p,Z(p))ldp,

< (Y S [ () e i

w
k=1

b [ (T2) ) el

71—‘(”) w 1l a p w w

k=1

w—1

< (len+ [ (T ‘pw)”l (= “w)lﬂwln(pm(||z||>dp.

w w
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Using (H3), for each 7 € (a, T, we have

In(7)] = lg(7, 2(7)) — g(7,0) + g(7,0)] |n(7)|
<|g(r, 2(7)) — g(7,0)| + |g(7,0)]

< Alz(1)| + g7
(Tw - aw) l_lg )
+ g,
w

< A’ (Tw - aw)l_ﬁz(r)

w

(™ ““)I_an

w l_ﬁ
™ —a .
ol ., <At () g

= M.

Further,

() w

N2(r)] < Mp(l1l) Nnlle, l(wf,i <pwaw)ﬁ—l)(7-)

w

Bl m W w B
+K(T - ) Zm(“l&t(m) )(@g)]- (3.12)
k=1

a® ) 1=# 6n each side of equation (3.12) we get

](T“;““)I_BN,Z(T) < £ el EWZUK(“15+<’)UJ;M>ﬂ_I)(§H)

+ % (T“ ; a“)]_ﬁw(HZH) Inlle, . (“Ig+ (p“;a“J)ﬁ—l> -

KMI() O T G
IN?1oa. < pgmi 2y U0 S5 )

+ o (T ”w)l_ﬁwuzn)nnuclM (=5 )ﬂ

KMT(5) & o
< O e, MZW( )

. F(A)f(@)w(nzll) Inlle, ..

KArT(8) & o
< oy al) bl MZ%( =)

Upon multiplied by (7

o gy 1P

€ —a\ P! ArT(B)
inn( > +mw(“z“) ||77||(;1,5,w

IR W _ LW 1-8
e (T2E) (el Il
INzll¢_s., < 7 (3.13)

Thus Nz € F, N(F) is uniformly bounded. Now, we prove that N map bounded set into
equicontinuous set of (j_- ,, that means N(F') is equicontinuous. Let 7,7 € I with 71 < 7.
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Forany z € F

INz(11) — Nz(m)| = Fﬁ) l(ﬂ“’wa“’)ﬁ_l - <T2w‘“aw>ﬁ_l]

)
e () ( pﬂ
<o) I+ g [ e () RO
K

| () - (W)Bllw(nawmww
Sl (T2 e

+ g Ul [t (=)

(o))
) Dol (422 (2 ;“w)ﬁl)@)

w _ aw p-1 “ —a¥ ot
() 55 o

ptp—1

5/{ - 1
x Znn( ) g led) Tl

<f l(ljp)l - (”w;pw)wln(m w(l=1)dp

e ) e (F575)

It is easy to see that 7, — 7 the rhs of above inequality is independent on z and goes to 0. Thus,
N(F) is equicontinuous. So followed by Ascoli Arzela’s theorem the compactness of N, we
conclude the N is completely continuous.

Lastly, we prove that 3 an open set G C (;_g,, With z # ANz for A € (0,1) and z € 9G. Let
z € G be any solution of z = ANz, X € (0,1).

<

- _ KT
“T(w(p+8)
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()1 < ()6 Y (w)#_lm(p,z(p))up

w w
k=1

reoal (7 pw)Hm(p, (9)ldp.

(pw_aw)l—ﬁ+l3—1
w

Adjusting under integral we get

()1 < g el Tl iln (o (5 e
—av¥ p—1
-=) )

m gﬂw v n+p—1
< s 0 ey o (5)
B

w

wrp (P
+ g U= Wl (412
)

o g ptp—1
2F(N)W+mw(nzn)||n||<,_ﬁ,w( > '

Multiply on both sides by (=) 0 we get

<Tw = aw) “ﬁzm

KT(B) . . (g,ﬂ aw)“"‘l
< 2t + 3 (Dl S (5=

I Y _ q@ I
+ s U il (C5)

2llc s < w(llll) lnlle-

By rearranging

[l
Yl lnlly —

In view of (Hy), 3 @ such that ||z|| # Q. That is, any solution z of NTVP (1.3) satisfies ||z|| # Q.
Therefore, G = {z € G : ||z]| < Q}. Thus, the Leray-Schauder nonlinear alternative gurantees
that equation (3.8) has a fixed point on 0G, which is solution of NTVP (1.3) in {;_g,,. O

where,

4 An applications

Example 4.1. Consider the NTVP

{ (“ D2 (7) :i;(T,z(T)); re (1,2, @
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1
Denote p = 1,6 = 2 gives 8 = Z. Letw = § = 0.5 > 0 and set g(7,z) = sin(g\z|). We can

see that g(7, z) € D, 1[1,2]. Moreover some computation gives us

11
872

0.5 ~1/8, 7!
|K|_HF(O.875)—2((8/7())5_1) } ’z0.3632<17

0.375

_ K+T(1) (8/7)0‘571 ] 22 0.5N
¢_F(0_5)r(g8+1) ><3( 05 > +r(1/2)< 03 > ~0.8476 < 1,

I'(0.875) (/7 — 1\ 22— 1\
)<K><3(> +< ) ~ 0.4872 < 1.

T 2%I(05)I (1375 05 05

All the considerations of Theorems 3.2, 3.3 are satisfied with |K| ~ 0.3632, ¢ ~ 0.8476 and
v = 0.4872. Therefore, NTVP (4.1) has at least one solution in ¢ 11 [1,2].

Example 4.2. Consider the NTVP

(wD“5 )(7)29(772(7)); TE(I,ZL
{ (“I)7P2)(2+) = 82(3). 4.2)

3andw—%—05>0805 andf—

Denote p = % 0=
sin (e%|2), for 7 € (1,2]. It is clear to observeg

3,
(7

Set g(7,2) = ,2(7)) € C1, %[1 2]. Moreover,
0.5 —1/60 1 -1
K| = ‘ [F(0.8334) - (8((3/2())5_1) )} ~0.1248 < 1,

1.334

B K x F(i) (3/2)05 1N | 212 06 .
o= Fr T 8( — ) + r(3/5)< — ) ~ 06285 < 1,

- I'(0.8334) (3/2)%5 — 1\ 212 1\
~ 2xI(1.5T(3/5+5/6) (K x 8(05> + ( 03 ) ~ 0.6840 < 1.

Corresponding to the values of | K|, ¢ and v, the NTVP (4.2) holds assumptions Theorems 3.2,
3.3. Thus, NTVP (4.2) has at least one solution in ¢, , [1,2].

5 Conclusions

The NTVP for the class of H-K differential problem is extensively studied. The terminal con-
dition is considered in a nonlocal sense, and the conclusions are driven with fixed point theory.
The results obtained here in this study generalised the existing results in the research literature.
With some appropriate examples, our theoretical findings are supported.
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