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Abstract In this manuscript, Schurer Type Modification of Lupas-Jain operators are investi-
gated, they are called as Lupas-Jain-Schurer (LJS-) operators. An estimation of these operators,
using moduli of smoothness of the first and second order are discussed. Also, a Voronvskaja-type
result is present. Furthermore, discussed these LJS-operators preserve a modulus of continuity.
When the attached function is convex and non-decreasing, monotonicity of these sequence of
positive linear operators discussed at the end of the paper.

1 Introduction

In 2015, Patel and Mishra [1] modified Jain operators as a variant of the Lupas operators [2]
defined by

, o~ (9 Ry (K
Pgy) = 3o e yevehig (£) 20, gijoo) 5 R ()
k=0

where (ny + kp), = 1, (ny + kp)y = ny and (ny + kp)r = ny(ny + kp + 1)(ny + kp +
2)...(ny+kp+k—1), k> 2, by using analogous Abel and Jensen combinatorial formulas for
factorial powers (see [3]). In [4], the authors modified the operators (1.1) into following sense

Zny(ny + 14+ k) e—1,_(n k
Ll(g.y) = 3 WL E et <y+’““)g(n)7 (1.2)
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and L' ](g,O) = ¢(0) for real valued bounded functions ¢ on [0, c0), where 0 < p < 1 and
depending only on n. The authors called these operators (1.2) as Lupag-Jain operators.
The following operators was introduced by Schurer [5] in year 1965

Crau N, () ()M
Snalg.y) = ¢ <+q>JZg() % (1.3)

n
k=0

where y € [0,c], ¢ > 0,n € N, ¢ > 0 and g is real valued and bounded function on [0, c0).
In particular, ¢ = 0, the operators (1.3) reduced to the known Sz4sz-Mirakjan operators. Many
other generalization Sz4sz-Mirakjan operators are found in [6, 7, 8, 9, 10, 11] with references
therein. Schurer’s type generalization of many other operators can be found in [12, 13, 14, 15].
Motivated by these works, Schurer’s generalization for the Lupas-Jain operators (1.2) is defined
as follow: for a fixed¢g =0,1,2,...,

y)=9 (fz> @yl )y = L b 2= ((ntaytki) 4 e [0,00)  (1.4)

2k k!

and L% (g,0) = ¢(0), for g € Cp ([0,00)), where C ([0, 00)) is the set of all continuous and

bounded function on [0, 00), 1 € [0, 1). One can call L% , as Lupas-Jain-Schurer operators. For
q = 0, the operators (1.4) reduce to the operators (1.2). The operators defined by equation (1.4),
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maps Cp ([0, 00)) into C' ([0, 00)). With the help to the moduli of continuity of first and second
order, we have obtain the rate of convergence for the function g € C ([0, 00)). A Voronovskaja-
type result are established. The preservation properties of these operators L}, = for a general
modulus of continuity is established. When the function g is convex and non-decreasing, the
monotonicity of the sequence of the operators L/, , with respect to n is discussed.

Now, denoting e;(t) = #/,j € NU {0} and ¢J(t) := (¢t —y)’, j € N. For the Lupas-Jain
operators, we have

Lemma 1.1 ([4]). For the operators L given by (1.2), we have
(i) Liy(1,y) =1;

R
(ii) LY (t,y) T
i) Li(y) = Y W
e (I=p)?  n(l—p)?
3 2
. 3y Y 6y 6(1+p)y
(iv) LL(t,y) = (17’u>3 +n(1,ﬂ)4 nz(lf,lL)S,
4 3 2 2
pd 12y 12(2u+3)y” | 2(13p” +34u+ 13)y
(v) La(#.y) (1 —p)* +n(l—,u)5 n?(1 — p)s (1 = p)’

In the following Lemmas 1.1, the moments and central moments of the operators L} , are
established. We omit the calculation as it is straightforward.

Lemma 1.2. For the Lupas-Jain-Schurer operators defined by (1.4), We have

L n+q )
L o (ej,y) = L <ej,< - )y),]—OJ,....

Lemma 1.3. For the Lupas-Jain-Schurer operators defined by (1.4), We have

Y
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2 Rate of Convergence

The aim of this section is the extend the results of Patel and Mishra [1] for the Lupas-Jain-
Schurer operators. To discussed this, let us recall some notations and terminology that will be
help us to discussed the rate of convergence. Consider

Cp ([0,00)) ={g: [0,00] — R : g is bounded and continuos on [0, co)}.

Note that Cp ([0, 00)) is norm linear space with the norm ||g[| = sup,¢(y o) [9(y)|- for g €
Cg ([0,00)). Consider

UCg ([0,00)) = {g : [0,00] — R : g is bounded and uniformly continuos on [0, o) }.
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Let g be bounded, real valued function defined on [0, co0) and ¢ > 0. Define

wi(g,0) = sup  sup  [g(y+h)—g(y)l
|h| <6 y,y+h€e[0,00)
and

wi(g.8)=sup  sup  [g(y+2h) = 29(y +h) +9(y)|-
|R|<8 y,y+h,y+2he[0,00)

The w; and w;, are called first and second moduli of continuity of first and second order respec-
tively. In [12, p. 266, Lemma 5.1.1], the following property of the modulus of smoothness is
elaborated.

Remark 2.1. If g € UC5 ([0, 0)), then lims_, o+ wy(g,0) = 0 for k = 1,2.

Define
K(g,6) = inf{h € C[0,00) : |lg — hl| + 5|[n"||}, for 6 > 0.

The functional K (g, &) is known as Peetre’s K-functional. Denote C% ([0, c0)) as the set of all
function g € C ([0,00)) such that ¢, ¢ are in Cp ([0,00)). The following inequities for the
modulus of smoothness and the K-functional of an g € Cp (]0,00)) are established in [16, p.
177, Theorem 2.4].

diwn(g,8) < K(g,6%) < daw(g,0) @1
for some positive constant d; and d,. In the following theorem quantitative estimation of the
sequence operators {L%‘ }}] tn>1 is discussed.

Theorem 2.2. Let p € N U {0} be fixed, u € [0,1) and g € Cg([0,0)). Then, for each
y € (0,00), one has

|k (g,9) —9(y)] S wi <g, (u + %) 1€u> + Cw; (9,04 ,(v)) (2.2)

where C > 0 is a constant and

Sk (y) = ;\/<H+ %)2 q fzw o gu)3 (1 + %) 2.3)

Proof. For f € Cp([0,00)) and n € N, defined the following auxiliary operators

Lt (g9,y) =Lk (9,9) +9(y) — g <(1 + %) lfﬂ> , (2.4)

We note that, I_/ﬁy o are linear and positive. Also, they preserves the linear functions. Let h €
C210,00). For any y € [0, 00), using Taylor’s formula one has

) = ho) + K= 0) + [ " (¢ — W (u)du @5)

for t € [0, 00). Applying the operators L¥ , both side, we obtain

_ ) _ y
Ly o (hoy) = h(y) = W' (y) Ly o (¢ — v, y) + L3, ( /t (t = w)h" (u)du, y) (2.6)
Using the definition of L# , and g(t) = [”(t — u)h” (u)du, the above equality gives

1L

Ly o (hy)=h(y) = L , (/ty(t —u)h"(u)du, y) —/J( ”>ﬁ {(1 +4) - u] B () du.

n/l—pu
Using the fact
q

/y<”n>l£u [(1 e u} g (u)dul| <

2
LH t— h//
n/1—p ( o ( y7y)) A1,

N —
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By Lemma 1.3, we obtain

L (hoy) — hy)| < L, (

/t "= W)W (w)du

q

)
" /<1+n>1gﬂ [(1 n %) Y _ u] B (w)du

L—p

<V e (6t + (0 eho)]

= [|n"] KWLZ)Z(IEZM) + (13 e (1+2 )} @7

From L# , and using Lemma 1.2, For any g € C5 ([0, 00)), we achieve

Lt (9,9)] < Lk (g, 9)] +2llgll < 3lgll- (2.8)
Using (2.4), (2.7) and (2.8), for g, h € C (|0, o)) one has
|Lh (9:9) = 9(v)| < |Lh (9 = hyy) — (9 = P)(y)| + | Lh o (R y) — h(y)]

+’g(y)—g<(1+z)lfu>‘
SM( (M+ )13 )
4{9—hll+4 [(;HZ)"‘ ; yzmz + n(lﬁw (1 +Z>} Ih”}.

Now, taking infrimum over all 2 € C% ([0, 00)) and applying (2.1), we obtain

|Lk (9,9) — 9(y)| <wi (97 (u + %) &) + K (9, (5Z,q(y))2)
<w (g, (u + %) 12/) + Cuwy (9,04 ,(v))

where 6% (y) is given by (2.3). i

The particular result [17] can be achieve using the above Theorem by putting ¢ = 0.

3 A Voronovskaja Approximation Result

In [1], Patel and Mishra have discussed the version of L# and established following Voronovskaja-
type result for operators as

Jim 0 (Pg.m) —9(v)) =wg"(v), v >0,9€ C*(0,00)),
where C? ([0, o)) is denoted by the space of all continuous functions having continuous second
order derivative and 0 < 1, < 1 is a sequence such that lim 1, = 0and lim niy, = 0.

In this section is to establish a Voronovskaja approx1mat10n result for the LJ S operators Lf
n € N, which is generalized the above result.

Theorem 3.1. Ler p € N U {0} be fixed and {u,} be a sequence satisfies j,, € [0,1) with
lim nu, = 0and lim p, = 0. If g € Cp([0,00)), also g has the second order derivative at

n— oo n— oo

some y € (0,00), then

lim n {Li" (9,y) —9(y)} = pyg' (y) +yg" (v)-

n—0o0
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Proof. Applying Taylor’s formula on g, we have

o(t) = 9v) + 9 )AL (D) + 39" ()G0) + nlt — 1) (1) 1)

at fixed point y € [0, 00), where 7(t — y) is bounded for all ¢ € [0, c0) and }im n(t —y) = 0.
—y
Applying the operators L#~ to (3.1) gives

n,q

n (Lt (g,9) — 9(y)] = o' (y)nLhr, (6, (), y) + %g”(y)an (¢7(t),y) +nLim, (n(t —y)dy(t), y) -

Using the conditions lim g, =0, lim nu, = 0 and Lemma 1.3, we obtain
n—oo n—oo

lim nLi () (t),y) = py

n=roo
and

Jim nLi (63(1),y) = 2y.
Hence,

lim n [L47 (g,y) — 9(v)] = pyg'(v) +yg" () + lim nLh (n(t — )¢ (1)) -

n—oo n—oQ

Itis enough to prove that lim nLj (n(t —y)(t — y)*,y) = 0. By defining 7(0) = 0 and using

lim;_,, n(t — y) = 0, we say that  is continuous at y. Therefore, for each ¢ > 0 such that
[n(t —y)| < e for all ¢ such that [t — y| < d.

As n(t — y) is bounded on [0, o), there exist M > 0 such that |n(t — y)| < M for all ¢. Hence,
t—y)? t —)?
[n(t—y)| < M( 623/) , whenever |t —y| > §. Hence, |n(t —y)| < e—I—M( 62y)

monotonicity and linearity of L, _ given that

for all ¢t. The

M
Lty (0t = )9, (1), 9) < Lz, (& (8),y) + F5 Loy (6,(1),9) -

Using Lemma 1.3, with p = i,

lim nLir (n(t —y)éy(t),y) =0,

n—oo

which completes the proof. O

4 Preserves of Modulus of Continuity

A continuos function w : [0, 00) — R satisfied the following conditions

() w(z+y) <w(x)+wly) forz,y,z+y € [0,00), i.e. wis semi-additive.

(i) w(z) > w(y) forz >y > 0, i.e. w is non-decreasing.
(iii) lim w(z) =w(0) =0, [18, pp. 106]

x—0+

is called a modulus of continuity. For the Bernstein polynomial preserves the properties of
modulus of continuity on [0, 1] was discussed by Li [19]. This motivated us to discussed the
same results for LJS operator. To establish the proof, we need the Jensen and Abel combinatorial

formulas for factorial powers. The following formula is obtain by from the work of Stancu and
Occorsio [3, pp.175-176] for the increment —1, respectively

m

(utv)(uto+l+mu)p = (’Z) w(u+ 1+ k) 1o(v+ 1+ (m — k) p)mer_1 (4.1)
k=0

and

(u+v+mp), = i (7]:) (u+kp)pv(v+ 1+ (m—k)p)m—k—1- 4.2)
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Theorem 4.1. Let w be a modulus of continuous function. Then, L}, | (w) is a modulus of conti-
nuity function, for all n.

Proof. Take z,y € [0, 00) with z < y. From the definition of L¥ _, we write

n,q>
_ i (n+qy((n+ gy + 1+ kp)e— 7~ ((nt+)y+kp) <k> .

2k n

k=0
Replacing (n + ¢)x and (n + ¢)(y — ) and u and v, respectively in (4.1), we have
(n+Qy((n+ @y + 1+ mp)m—
= Z ( ) n+qz((n+ gz + 1+in)ia(n+ o)y —2)((n+q)(y —z) + 1+ (k= iu)k—i-1,

=0

4.3)
which implies
o k .
’ (n+@z((n+ @z +1+im) i1 _(n ,
Ly, ZZw( ) < ) o 2~ ((n+a)y+h)
k=0 i=0
x (n+q)(y - @) ((n+ )y — @) + 1+ (k — )iir.
By swapping the order of above summations, we have
z')! 2k
=0 k=t
X (n+q)(y - x)((n +q)y—2) + 1+ (k= i)p)si-- “4.4)

Putting k£ — i = [, (4.4) lower down to

Z Z <Z + 1> (n+@z((n+ gz + 1+ ip)iy 9= ((n+q)y+(i-+1)n)
i

2i+l

=0 =0
X(n+q)(y—x)((n+q)(y—x)+ 14+ 1u)_. 4.5)

Also, Lk (w, ) can be express as

, — (i (n+Qz((n+Qz+1+im)i 15 (nigurin
L (w,2) =) w (n> 2~ ((nta)atin)

: 2i3!

=0

infty . .

= Z wl (n + g)z((n + q)az 1 +ip)ion 2~ ((ntaytip)p(nta)ly=2) (4 6)
4 n 24!
=0
Since,
e} —lp
2(mtall Z z)(n(y —z)+ 1+ lu)l—lﬁ

. !

then, one may write

infty oo . .
Zy Z (n+qz((n+ gz +1+in)i 2~ ((nta)y+(i+)p)
201!

i=0 1=0
x (n+q)(y —z)((n+ag)nly —x) + 1+ 1p)i- 4.7
Subtracting (4.7) from (4.5), we get

e ttgen -EEL(3]) ( eoteersen

i=0 1=0

x 27 (D) (1 4 Y (y — 2)(n+ @) (y — ) + 1+ 1)y (4.8)
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and using the given condition, w is a modulus of continuity function, we have

(oo} (oo} .
L\ (nt+gz((n+ @z +1+ip)io1 5 (@ i
Ly g(w,y) = L y(w,2) <Y w () S 2~ ((nta)y+(i+)p)

x(n+q)y—x)(n+q)(y—x)+ 14+ 1u)i

2-in
= (it ga((n+ o+ 1+ ip)ioi 5y
i=0 ’
© 1\ 2-((n+a)y+in)
S (1) g e = ) ()~ 2)+ 1 ey
=0

° 1\ 2—((n+a)(y—=)+in)
> (L) S - )+ )= )+ 1+ b

=L} (w,y—x). 4.9)

This proves that L%  (w) satisfying the subjectivity property. Using (4.8), we say that Ll  (w,y) >
L (w,z) when y > x, namely, L} (w) is non-decreasing because omega is non-decreasing.

Also, lim L (w,z) = L} ,(w,0) = w(0) = 0, which is follows from the definition of L .
a0 " ’ ’

Hence, L*

t ,(w) is a function of modulus of continuity. i

5 The Monotonicity of the sequence of LJS Operators

A continuous function g is said to be convex in D C R, if

g (i 0411%‘) < zn:aig(tqz)

for every t,t,,...t, € D and for every non-negative numbers a1, o, . . . &, such that a; +ap +
et a, =1

Cheney and Sharma [20] have establish the monotonicity of Szazs-Mirakjan operators of convex
function. Erengin et al. [21] have prove the same result for the Lupas operators. In [4], authors
present the monotonicity of the Lupas-Jain. Now, we discussed the monotonicity of the operators
L}, , forn, when g is a convex function.

Theorem 5.1. Let g : [0,00) — R be a convex function. Then Lk, (g) is non-decreasing in n.

Proof. Clearly, the result is true for y = 0. For y > 0, we have

(T o 73 [
2= Z 2k 2
k=0

by [4, p. 527] with a = y. Using above formula, we get
LZ,q(.g? y) - Lﬁ+1’q(g, y)

M ; <k) (n+ 2)y((1+ @)y + 1+ Fik—1 5 (g sin)
2kl

0
_ ig ( k ) (n+g+Dy((n+g+Dy+1+ ku)kflz—((n+]+p)y+ku)

k
I\t 25k
— i wzflu ig (k> (n+q)y((n + i)?lv + 1+ kg1 o~ ((nta+1)y+hp)
pare 20! —"\n 2k
_ ig B\ (gt Dy((nt g+ Dy + 1+ Epiet ) (stipysin
n+1 2k %1
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Further,

L o(9,y) — Ly o(9,)

yly+ 14 1u)—

—1
24! 2

g E=1\ (n+@y((n+qy+1+(k—-Dp)pi 2~ ((nta+1)y+(k—1)p)
21k — 1!

.- E\ (04 g+ Dy((n+ g+ Dy + 1+ kp)et 0 (st
-9 | 2 .
n+1 2k

On swapping order of the above summations, we have

Ly

n,

»Q
—~

9:9) — Lyi1,4(9:9)

Xk: y(y +1 + iy (k=1 (04 @)y((n+ )y + 1+ (k= Dii-i-1 5 (nrgr1)g+h)
n 2k —1)!

IMe T 1M

l

=0
( ) n+g+ Dy((n+ g+ Dy+ L4kt 5 (nr14p)yhn)

g 25k

{Zk: yly+1+k—-Dp )kflflg (l> (n+@y((n+qy+ 1+ 1)

; n 25(k — 1)!

R

k ) n+qg+Dy((n+qg+1)y+1+ku)r_ } 2~ ((n+14p)y-+kp) 5.1
n+1 ' '

—9 2Kk

Now, denote

o= () ¥+ 1+ (k=D +@)y((n+ @)y + 1+ )i =0
' (m+a+Dy((n+q+ Dy + 1+ k)i

and
l

t = .
n+q

Taking u = (n + q)y, v =y and m = k in (4.1), one has

(n+q+ Dy((n+q+y+1+ku),_,

=) <k> (m+ay((n+a)y+1+n)iay(y+ 1+ (k= Dp)e-i-1,

which gives
k
Zal =1.
1=0
Takingu = (n+q)y +p+ 1, v=yand m =k — 1 in (4.2), it has
(n+t@y+p+1+y+k—Dpe-1=(n+q+1)y+1+ku)e

k—1
( ) +Qy+p+T+lpy(y+1+ k=1 =Du)g—i-2.
=0
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Using the above fact, we can write

k

S (?) yly + 1+ (k= Dpe—i—1(n + @)y((n + @)y + 1+ )i — T

t =
zz:(;al l (n+q+Dy((n+q+Dy+ 14k

kS (k ; 1) yy+ 14k —=1=Dwra(n+qu((n+qy+ 1+ p+1u)

(n+g)(n+q+Dy((n+q+ 1)y + 1+ k)

(k=1
. fol< z )y(y+1+(k‘—1—l)u)kzz((n+Q)y+l+u+lu)z

n+q+1 (n+q+Dy+1+kp)—
_ k-
n+q+1°

Therefore, using the convexity of g, (5.1) provide that

Ly (9,9) > Ly, (9:0)

for all n € N, which completes the proof. O

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]
[12]
[13]

[14]
[15]

[16]
[17]

(18]
[19]

P. Patel, V. N. Mishra, On new class of linear and positive operators, Boll. Unione Mat. Ital. 8 (2), 81-96
(2015).

A. Lupas, The approximation by some positive linear operators, Proc. Int. Dortmund Meeting on Approx.
Theory, Akademie Verlag, Berlin, 201-229 (1995).

D. Stancu, M. Occorsio, On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal.
Numer. Theor. Approx. 27 (1), 167-181 (1998).

G. Bascanbaz-Tunca, M. Bodur, D. Soylemez, On Lupas—Jain operators, Stud. Univ. Babes,-Bolyai Inform
63 (4), 525-537 (2018).

F. Schurer, On linear positive operators in approximation theory (1965).

P. Patel, V. N. Mishra, Some approximation properties of a new class of linear operators, Comput. Math.
Methods Med. 1 (5),e1051 (2019).

M. Bodur, O. G. Yilmaz, A. Ali, Approximation by Baskakov-Szdsz-Stancu operators preserving expo-
nential functions, Constr. Math. Anal. 1 (1), 1-8 (2018).

N. Cetin, N. Ispir, Approximation by complex modified Szdsz-Mirakjan operators, Studia Sci. Math.
Hungar. 50 (3), 355-372 (2013).

V. Gupta, T. M. Rassias, Direct estimates for certain Szdsz type operators, Appl. Math. Comput. 251,
469-474 (2015).

V. Gupta, G. Greubel, Moment estimations of new Szdsz—Mirakyan—Durrmeyer operators, Appl. Math.
Comput. 271, 540-547 (2015).

P. Patel, M. Bodur. On integral generalization of Lupag-Jain Operators, Filomat 36(3), 729-740 (2022).
F. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, de Gruyter, (2011).

A. Lépez-Moreno, J. Jédar, F. Mufioz-Delgado, Exponential type moments and localization results for
multivariate Baskakov—Schurer operators, Internat. J. Differ. Equ. Appl. 6 (1), 53-67 (2002).

P. Sikkema, On some linear positive operators, in: Indag. Math. (Proceedings) 73, 327-337 (1970).

N. Cetin, G. Bagcanbaz-Tunca, Approximation by Jain-Schurer operators, Facta Univ. Ser. Math. Inform.
35(5), 1343-1356 (2021).

R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer Verlag 303 (1993).

P. Patel, Some approximation properties of new families of positive linear operators, Filomat 33 (17),
5477-5488 (2019).

H. N. Mhaskar, D. V. Pai, Fundamentals of approximation theory, CRC Press (2000).
Z. Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory 102 (1), 171-174 (2000).



84 Prashantkumar Patel

[20] E. Cheney, A. Sharma, Bernstein power series, Canad. J. Math. 16, 241-252 (1964).

[21] A. Erencin, G. Bascanbaz-Tunca, F. Tasdelen, Some properties of the operators defined by Lupas, Rev.
Anal. Numer. Theor. Approx. 43 (2), 168—174 (2014).

Author information

Prashantkumar Patel, Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120 (Gu-
jarat), India.
E-mail: prashant225@gmail . com



	1 Introduction
	2 Rate of Convergence
	3 A Voronovskaja Approximation Result
	4 Preserves of Modulus of Continuity
	5 The Monotonicity of the sequence of LJS Operators

