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Abstract : A real square matrix A is called a P-matrix if all its principal minors are pos-
itive. Using the sign non-reversal property of matrices, the notion of P-matrix has been re-
cently extended by Kannan and Sivakumar to infinite-dimensional Banach spaces relative to a
given Schauder basis. Motivated by their work, we discuss P-operators on separable real Hilbert
spaces. We also investigate P-operators relative to various orthonormal bases.

1 Introduction

An n × n real matrix A is said to be a P-matrix [4] if all its principal minors are positive. The
study of P-matrices originated in the context of some of the notable classes of matrices, such
as positive matrices, M-matrices, and totally positive matrices. But the first systematic study of
P-matrices appeared in the work of Fiedler and Ptákk [4]. Since then, researchers have been
captivated by this class of matrices. They play an important role in a wide range of applications,
including the linear complementarity problem, global univalence of maps, linear differential
inclusion problems, interval matrices, and computational complexity [1, 2, 3, 5, 7, 8]. The linear
complementarity problem (LCP) is stated as follows : Given an n×n real matrix A and a vector
q ∈ Rn, the LCP is written as LCP (A, q), and it is defined as to find a vector x ∈ Rn such that
x ≥ 0, Ax + q ≥ 0 and xT (Ax + q) = 0, where the notation x ≥ 0 denotes each coordinate
of the vector x is non-negative. It is shown in [3] that given a real square matrix A, the linear
complementarity problem LCP (A, q) has a unique solution for each vector q ∈ Rn if and only
if A is a P-matrix.

We say that an n × n matrix A reverses the sign of a vector x ∈ Rn if xi(Ax)i ≤ 0 for all
i = 1, 2, 3, . . . , n, where xi denotes the ith coordinate of the vector x. Fiedler and Ptákk [4] have
shown that A is a P-matrix if and only if A does not reverse the sign of any non-zero vector.
Inspired by this characterization of P-matrices, Kannan and Sivakumar [9] extended the notion
of P-operator to infinite-dimensional Banach spaces having a Schauder basis. In this paper, we
discuss the notion of P-operator to separable real Hilbert spaces and some results in this setting.

In what follows, we will use separable real Hilbert space H and the term operator on H to
mean a linear operator from H into itself. We denote B(H) for the space of all bounded linear
operators on H. For A ∈ B(H), we denote the adjoint of A by A∗.

2 P-Operators on Hilbert Spaces

Let us begin with the definition of P-operator in Banach spaces introduced by Kannan and
Sivakumar [9]. A sequence {zn}n in a real Banach spaceX is said to be a Schauder basis forX if
for each x ∈ X , there exists a unique sequence of scalars {αn(x)}n such that x =

∑
n αn(x)zn.

In such a case, we denote xn = αn(x), for any natural number n. Throughout the set of natural
numbers is the index set, and we write simply {αn(x)}n instead of {αn(x)}∞n=1.

Definition 2.1. [9] Let X be a Banach space with a Schauder basis. A bounded linear operator
T : X → X is said to be a P-operator relative to the given Schauder basis if for x ∈ X , the
inequalities xn(Tx)n ≤ 0 for all n imply that x = 0.

It is well-known that a countable orthonormal basis B = {en}n exists for every separable
Hilbert space H such that for any x ∈ H we have x =

∑
n〈x, en〉en. If an orthonormal basis
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is known, say {en}n, then any orthonormal basis of H is of the form {Uen}n for some unitary
operator U on H. We define the P-operator on separable real Hilbert spaces as follows.

Definition 2.2. Let B = {en}n be an orthonormal basis ofH. A bounded linear operator T onH
is said to be a P-operator relative to the given orthonormal basis B if for x ∈ H, the inequalities

〈x, en〉〈Tx, en〉 ≤ 0

for all n imply that x = 0.

Example 2.3. Let `2 denote the square summable sequence space of real numbers. Let B =
{en}n be the standard orthonormal basis of `2, where en denotes the vector whose nth entry is
one, and all other entries are zero. Define T : `2 → `2 by

T (x1, x2, x3, . . .) = (α1x1, α2x2, α3x3, . . .),

for any (x1, x2, x3, . . .) ∈ `2 with αn > 0 for all n and supn |αn| < ∞. Then T is a bounded
linear operator, and it is a P-operator relative to B.

Example 2.4. The right shift operator TR and the left shift operator TL on `2 are defined by

TR(x1, x2, x3, . . .) = (0, x1, x2, . . .)

and
TL(x1, x2, x3, . . .) = (x2, x3, x4, . . .)

respectively. The operators TR and TL are not P-operators relative to the standard orthonormal
basis B = {en}n of `2. Indeed, the non-zero element x = (1,− 1

2 ,
1
3 ,−

1
4 , . . .) ∈ `2 satisfies the

inequalities 〈x, en〉〈TR(x), en〉 ≤ 0 and 〈x, en〉〈TL(x), en〉 ≤ 0, for all n.

Example 2.5. The operators I + TR and I + TL on `2 are P-operators relative to the standard
orthonormal basis B = {en}n of `2, where I is the identity operator on `2. Note that I + TR is
a bounded linear operator. Suppose for x = (x1, x2, x3, . . .) ∈ `2, the inequalities 〈x, en〉〈(I +
TR)x, en〉 ≤ 0 for all n. This leads to the inequalities x2

1 ≤ 0, xn−1xn + x2
n ≤ 0, for all n ≥ 2.

From these inequalities, we get that xn = 0, for all n, hence x = 0.
Next, to see that I + TL is a P-operator relative to B, it is noted that I + TL is a bounded

linear operator. Suppose for x = (x1, x2, x3, . . .) 6= 0 ∈ `2 the inequalities

〈x, en〉〈(I + TL)x, en〉 ≤ 0

hold for all n. This implies that x2
n + xnxn+1 ≤ 0 for all n. Suppose xi = 0 for some index

i, then we get that x2
i−1 + xi−1xi ≤ 0, hence xn = 0 for all n ≤ i. Thus x is of the form

x = (0, 0, . . . , 0, 0, xi+1, . . .) with xn 6= 0 for all n ≥ i + 1 satisfying x2
n + xnxn+1 ≤ 0. Thus

|x2
n| ≤ |xn| |xn+1| for all n ≥ i+ 1.

Now as xn 6= 0 for all n ≥ i+ 1, we have |xn| > 0 for all n ≥ i+ 1. Thus by dividing the
inequalities by |xn|, we get |xn| ≤ |xn+1| for all n ≥ i+ 1. This shows that the absolute values
of the components of x are increasing, and hence nth term of x will not converge to 0, hence
x /∈ `2. Thus if 〈x, en〉〈(I + TL)x, en〉 ≤ 0 for all n, then x must be equal to 0.

We next give a result that says that an operator can be a P-operator relative to several or-
thonormal bases.

Theorem 2.6. Let T be a bounded linear operator on H satisfying TU = UT for a unitary
operator U on H. Then T is a P-operator relative to an orthonormal basis B = {en}n of H if
and only if T is a P-operator relative to the orthonormal basis B′ = {Uen}n of H.

Proof. Suppose T is a P -operator relative to the orthonormal basis B = {en}n of H satisfying
TU = UT . Suppose 〈x, Uen〉〈Tx, Uen〉 ≤ 0 for all n. Then 〈U∗x, en〉〈U∗Tx, en〉 ≤ 0 for all n,
hence 〈U∗x, en〉〈TU∗x, en〉 ≤ 0 for all n, because TU = UT . As T is a P-operator relative to
the orthonormal basis B, we get U∗x = 0, hence x = 0. Therefore T is a P-operator relative to
the orthonormal basis B′ = {Uen}n.
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On the other hand, assume that T is a P-operator relative to the orthonormal basis B′ =
{Uen}n of H satisfying TU = UT . Suppose 〈x, en〉〈Tx, en〉 ≤ 0 for all n. As U is a unitary
operator, we get 〈x, U∗Uen〉〈Tx, U∗Uen〉 ≤ 0 for all n, so 〈Ux,Uen〉〈UTx,Uen〉 ≤ 0 for all n.
Hence 〈Ux,Uen〉〈TUx,Uen〉 ≤ 0 for all n. Since T is a P-operator relative to B′ = {Uen}n,
we get Ux = 0, hence x = 0. Therefore T is a P-operator relative to the orthonormal basis
B = {en}n. 2

The condition TU = UT in Theorem 2.6 cannot be dropped which is illustrated in the
example given below. The example also tells that an operator T can be a P-operator relative
to one orthonormal basis, whereas the same operator relative to another orthonormal basis may
not be a P-operator.

Example 2.7. Define T : `2 → `2 by

T (x1, x2, x3, . . .) = (x1, 2x1 + x2, 2x2 + x3, . . .)

for x = (x1, x2, x3, . . .) ∈ `2. Then T is a bounded linear operator and it is a P-operator relative
to the standard orthonormal basis B = {en}n of `2.

Now consider the unitary operator U on `2 given by

U(x1, x2, x3, . . .) =
( x1√

2
+

x2√
2
,
x1√

2
− x2√

2
,
x3√

2
+

x4√
2
,
x3√

2
− x4√

2
, . . .

)
,

then U∗ = U and UT 6= TU . The operator T is not a P-operator relative to the orthonormal
basis B′ = {Uen} of H, because the non-zero element x = (1,−1, 0, 0, . . .) ∈ `2 satisfies the
inequalities 〈x, Uen〉〈Tx, Uen〉 ≤ 0, for all n.

Remark 2.8. Theorem 2.6 tells us that the condition TU = UT is sufficient for the operator T
to be a P-operator relative to the orthonormal bases B = {en}n and B′ = {Uen}n. But it is not a
necessary condition. That is, an operator T can be P-operator relative to two orthonormal bases
B = {en}n and B′ = {Uen}n, but it may not satisfy the relation TU = UT . The following
example shows this fact.

Example 2.9. Define T : `2 → `2 by

T (x1, x2, x3, . . .) = (x1 − x2, x1 + x2, x3 − x4, x3 + x4, . . .)

for x = (x1, x2, x3, . . .) ∈ `2. Then T is a P-operator relative to the standard orthonormal basis
B = {en}n ofH. To see this, here the operator T is bounded linear. Suppose 〈x, en〉〈Tx, en〉 ≤ 0
for all n. Then xn(xn − xn+1) ≤ 0 for odd n and xn(xn + xn−1) ≤ 0 for even n. Solving these
inequalities together will lead to x = 0. Hence T is a P-operator relative to B.

Now consider the unitary operator U on H given by

U(x1, x2, x3, . . .) =
( x1√

2
+

x2√
2
,
x1√

2
− x2√

2
,
x3√

2
+

x4√
2
,
x3√

2
− x4√

2
, . . .

)
,

then U∗ = U and B′ = {Uen}n is the another orthonormal basis of H. Then T is also a P-
operator relative to B′. To see this, suppose 〈x, Uen〉〈Tx, Uen〉 ≤ 0 for all n. Then xn(xn −
xn−1) ≤ 0 for odd n and xn(xn + xn+1) ≤ 0 for even n. Solving these inequalities together will
lead to x = 0. Hence T is a P-operator relative to B′. Note that

UT (x) = (
√

2x1,−
√

2x2,
√

2x3, . . .)

and
TU(x) = (x1, x2, x3, . . .)

for any x = (x1, x2, x3, . . .) ∈ `2, thus TU 6= UT .

Theorem 2.10. Let B = {en}n be an orthonormal basis of H. Then the following statements
hold good :

(a) T is a P-operator on H relative to B if and only if the operator UTU∗ is a P-operator
relative to B′ = {Uen}n, for any unitary operator U.

(b) T is a P-operator on H relative to B′ = {Uen}n of H where U is any unitary operator
on H if and only if the operator U∗TU is a P-operator on H relative to B.
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Proof. (a) Assume that T is a P-operator relative to B. Then we have, if 〈x, en〉〈Tx, en〉 ≤ 0 for
all n imply that x = 0. Suppose 〈x, Uen〉〈UTU∗x, Uen〉 ≤ 0 for all n. Then

〈U∗x, en〉〈TU∗x, en〉 ≤ 0

for all n. As T is a P-operator relative to B, we get here U∗x = 0 and hence x = 0. Therefore
UTU∗ is a P-operator relative to B′ = {Uen}n.

Conversely, assume thatUTU∗ is a P-operator relative to the orthonormal basis B′ = {Uen}n.
Suppose 〈x, en〉〈Tx, en〉 ≤ 0 for all n. Then 〈Ux,Uen〉〈UTU∗Ux,Uen〉 ≤ 0 for all n. AsUTU∗
is a P-operator relative to B′ = {Uen}n, we get that x = 0. Therefore T is a P-operator relative
to B.

(b) Assume that T is a P-operator relative to B′ = {Uen}n. Suppose 〈x, en〉〈U∗TUx, en〉 ≤ 0
for all n. Then 〈Ux,Uen〉〈TUx,Uen〉 ≤ 0 for all n. As T is a P-operator relative to B′, we get
that Ux = 0 and hence x = 0. Therefore U∗TU is a P-operator relative to B.

Conversely, assume that U∗TU is a P-operator relative to B. Suppose that

〈x, Uen〉〈Tx, Uen〉 ≤ 0

for all n. Then 〈U∗x, en〉〈U∗TUU∗x, en〉 ≤ 0 for all n. As U∗TU is a P-operator relative to B,
we get that x = 0. Therefore T is a P-operator relative to B′ = {Uen}n. 2

Remark 2.11. A bounded linear operator T on H is called invertible if there is a bounded linear
operator S on H so that ST and TS are the identity operators. We say that S is the inverse of
T in this case and it is denoted by T−1. It is observed in [9] that every P-matrix is invertible
and its inverse is also a P-matrix. But P-operator does not guarantee its invertibility in infinite-
dimensional spaces which is shown in the following example. Moreover, if we have a P-operator
which is invertible, then its inverse is also a P-operator.

Example 2.12. Consider the linear operator T : `2 → `2 defined by

T (x1, x2, x3, . . .) =
(
x1,

x2

2
,
x3

3
, . . .),

for x = (x1, x2, x3, . . .
)
∈ `2. Then T is a P-operator relative to the standard orthonormal basis

of `2 but T is not invertible.

Theorem 2.13. Let T be an invertible P-operator on H relative to an orthonormal basis B =
{en}n. Then the inverse of T is also a P-operator relative to B.

Proof. Since T is a P-operator onH relative to B, we have, if the inequalities 〈x, en〉〈Tx, en〉 ≤ 0
for all n imply x = 0. Suppose 〈y, en〉〈T−1y, en〉 ≤ 0 for all n. Hence 〈Tx, en〉〈x, en〉 ≤ 0 for
all n, where x = T−1y. As T is a P-operator, we get x = 0, hence y = 0. Thus T−1 is a
P-operator relative to the orthonormal basis B. 2

Theorem 2.14. Let T be a positive definite operator onH. Then T is a P-operator onH relative
to any orthonormal basis B = {en}n of H.

Proof. Assume that T is a positive definite operator onH. Then for every 0 6= x ∈ H, 〈Tx, x〉 >
0. Let x be a non-zero element of H. Then x =

∑
n xnen and Tx =

∑
n(Tx)nen. Then

〈Tx, x〉 =
∑

n(Tx)nxn > 0. Therefore there exists some m, for which 〈x, em〉〈Tx, em〉 > 0.
Hence if 〈x, en〉〈Tx, en〉 ≤ 0 for all n, imply that x = 0. Hence T is a P-operator. 2

The converse of the above theorem need not be true which is shown in the following example.

Example 2.15. Let T : `2 → `2 be defined by

T (x1, x2, x3, . . .) = (x1 − 7x2, x2, x3, . . .),

for x = (x1, x2, x3, . . .) ∈ `2. Then T is a P-operator on `2 relative to the standard basis B of
`2 as 〈x, en〉〈Tx, en〉 ≤ 0 for all n imply that x = 0. But T is not a positive definite operator
because 〈Tx, x〉 = x2

1 − 7x1x2 + x2
2 is negative for x = (1, 1, 0, . . .) 6= 0.
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