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Abstract In this present work, we determine the error of approximation of functions f be-
longing to L[0,∞)-class by Cγ .T (γ ≥ 1)-means of its Fourier-Laguerre series at a point x = 0.
Our results generalize previously known results of Krasniqi [On the degree of approximation of
a function by (C, 1)(E, q) means of its Fourier-Laguerre series, Int. J. Anal. Appl. 1(1), 33-
39 (2013)], Sonker [Approximation of functions by (C, 2)(E, q) means of its Fourier–Laguerre
series, In Proc. ICMS-2014 ISBN: 978-93-5107-261-4, 125– 128 (2014)] and Sonker [Approxi-
mation of functions by (C1.T )means of its Fourier-Laguerre series, In Proc. ICMS-2014 ISBN:
978-1-61804-267-5 1(1), 122-125 (2014)]. We also discuss some particular cases of Cγ .T -
means.

1 Introduction

The Fourier-Laguerre expansion of function f ∈ L[0,∞) is given by

f(x) ∼
∞∑
n=0

an L
(α)
n (x), (1.1)

where
an =

n! α!
(n+ α)! Γ(α+ 1)

∫ ∞
0

xα e−x f(x)L(α)
n (x)dx and (1.2)

L
(α)
n (x) is nth Laguerre polynomial of order α > −1, is defined by the generating function

∞∑
n=0

L(α)
n (x)ωn =

e
ω x
ω−1

(1− ω)1+α .

It is pretended that integral 1.2 exists.
The (n+ 1)th partial sum of the Fourier-Laguerre series of 1.1 is defined by

sn(f ;x) =
n∑
k=0

ak L
(α)
k (x), n ∈ N0. (1.3)

Define

[t]n(f ;x) =
n∑
k=0

an,k sk(f ;x), n ∈ N0,

where T ≡ (an,k ≥ 0 for everyn, k) is a lower triangular matrix such that an,−1 = 0,An,k =∑n
k=r an,k and An,0 = 1, n ∈ N0. The Fourier-Laguerre series is called T -summable to s, if

[t]n(f ;x)→ s as n→∞.

If an,k =

{
n! γ!

(n+γ)!(
n+γ−k−1

γ−1 ), 0 ≤ k ≤ n,
0 , k > n,

then the matrix T converts to Cesàro matrix of
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order γ ≥ 1 and denoted by Cγ . The Fourier-Laguerre series is called Cγ-summable to s, if
[Cγ ]n(f ;x)→ s as n→∞.

The product ofCγ-summable with T -summable definesCγ .T -summable. ThusCγ .T -summability
of sequence {sn(f ;x)} denoted by

[Cγ .T ]n(f ;x) =
n! γ!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,ksk(f ;x). (1.4)

If [Cγ .T ]n(f ;x) → s as n → ∞, then the Fourier-Laguerre series is called Cγ .T -summable
to s. The regularity of T and Cγ methods implies the regularity of the Cγ .T method. The
following cases are important and particular cases of Cγ .T method:

(i) If av,k =
pv−k

Pv
where Pv =

∑v
k=0 pk 6= 0, then Cγ .T reduce to Cγ .Np or (C, γ)(N, pv).

(ii) If av,k = 1
(v−k+1) log(v+1) , then Cγ .T reduce to Cγ .H or (C, γ)(H, 1

v+1).

(iii) If av,k = pk
Pv

, then Cγ .T reduce to Cγ .Np or (C, γ)(N, pv).

(iv) If av,k = 1
(1+q)v (

v
k)q

v−k, then Cγ .T reduce to Cγ .Eq or (C, γ)(E, q).

(v) If av,k =
pv−k qk
Rv

whereRv =
∑v
k=0 pk qv−k, thenCγ .T reduce toCγ .Npq or (C, γ)(N, p, q).

(vi) If av,k = 1
2v (

v
k), then Cγ .T reduce to Cγ .E1 or (C, γ)(E, 1).

If we take γ = 1 in the above cases, then we get

(vii) If av,k =
pv−k

Pv
where Pv =

∑v
k=0 pk 6= 0, then C1.T reduce to C1.Np or (C, 1)(N, pv).

(viii) If av,k = 1
(v−k+1) log(v+1) , then C1.T reduce to C1.H or (C, 1)(H, 1

v+1).

(ix) If av,k = pk
Pv

, then C1.T reduce to C1.Np or (C, 1)(N, pv).

(x) If av,k = 1
(1+q)v (

v
k)q

v−k, then C1.T reduce to C1.Eq or (C, 1)(E, q).

(xi) If av,k =
pv−k qk
Rv

whereRv =
∑v
k=0 pk qv−k, thenC1.T reduce toC1.Npq or (C, 1)(N, p, q).

(xii) If av,k = 1
2v (

v
k), then C1.T reduce to C1.E1 or (C, 1)(E, 1).

where pv and qv are non-negative, monotonic and non-increasing sequence of real constants.

Remark 1.1. We consider the series 1 − 2n
∑∞
i=1(−2n + 1)i−1 and matrix ai,k = 1

ni (
i
k)(n −

1)i−k forn ∈ N, then the ith partial sum of the series is given by si = (−2n + 1)i. It can be
seen that the series is not T -summable and also not Cγ-summable (for γ = 1), but it is Cγ .T -
summable (for γ = 1). We can observe that product summabilities are more effective than the
single summability.

We also use the following notations:

φ(x) =
f(x)− f(0)

Γ(α+ 1)
and L(α)

n (0) =
(n+ α)!
α! n!

.

2 Known Results

Many investigators have analyzed the problem of approximation of a function using single or
product means of its Fourier-Laguerre series at a point x = 0. Some authors like Gupta [3],
Singh [12, 13], Beohar and Jadiya [1, 2], Nigam and Sharma [9], Lal and Nigam [6], Singh
and Saini [11, 14] and Sahani et al. [10] have used the single summability method to obtain
error of approximation. Gupta [3], Singh [13], and Beohar and Jadiya [1] have got the result
using Cesàro mean of order k > α + 1/2. In 1980, Beohar and Jadiya [2] extended the results
of Gupta [3], Singh [13], and Beohar and Jadiya [1] using Cesàro mean of order k > α >
−1. Further, Nigam and Sharma [9], and Lal and Nigam [6] have obtained interesting results
using (E, 1) and (N, p, q) means. Also, Singh and Saini [11] have obtained the same result
using the Hausdorff mean, and using this result, they generalized previously known results. The
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Laguerre functions form an orthogonal basis for L2[0,∞)-space, which successively defines
the Fourier-Laguerre series. It has also been shown that Laguerre’s polynomial theory directly
solves the problem of determining Fourier-Laguerre approximations for a large class of delay
systems. Moreover, these findings are necessary for studying the regular order of identification
as a standard method for identifying infinite-dimensional systems [7]. Recently, Singh and Saini
[14] extended this study to generalized Laguerre polynomials to obtain an approximation of
functions f ∈ L[0,∞) using the Cesàro mean of its Fourier-Laguerre series for x > 0. In 2020,
Sahani et al. [10] have obtained error of approximation using the Nörlund summability method.
As mentioned in Remark 1.1, product summability is more effective than single summability.
Thus product summability provides an approximation for a vast class of functions than the single
summability. Keeping this vital point in mind, many investigators such as Krasniqi [5], Sonker
[15, 16], Khatri and Mishra [4], and Mittal and Singh [8] have obtained error of approximation
using different types of product summability methods. In 2013, Krasniqi [5] obtained the the
error of approximation using product mean (C, 1)(E, q), q ≥ 1- means of its Fourier-Laguerre
series. Sonker [15, 16] derived same results using (C, 2)(E, q) and C1.T - means of its Fourier-
Laguerre series, respectively. Krasniqi [5, pp. 35] and Sonker [15, 16] have used α ∈ (−1,−1/2)
in their results. Khatri and Mishra [4] have obtained error of approximation using Harmonic-
Euler means. On the other hand, Mittal and Singh [8] have obtained an error of approximation
using Matrix-Euler operators.

Remark 2.1. In 2015, Saini and Singh [11, pp. 210, Remark 1] noted that Krasniqi [5, pp.
37] had optimized

∑v
k=0 (

v
k)q

kk(2α+1)/4 by its supreme value (q + 1)vv(2α+1)/4 but it is true, if
α > −1/2. The same error can also be seen in [15].

3 Main Results

The above-mentioned particular cases of Cγ .T -means, the importance of the product summa-
bility method discussed in Remark 1.1 and the observation mentioned in Remark 2.1 motivate
us to generalize the above results. In this present work, we analyze the problem of the error of
approximation of functions f using the product mean Cγ .T . More precisely, we prove:

Theorem 3.1. Let T ≡ (an,k) be a lower triangular regular matrix satisfy the following condi-
tions:

(i) an,k be a non-negative and non-decreasing with respect to k, for 0 ≤ k ≤ n,

(ii)
n∑
v=t

Av,v−t = O(n+ 1), n ∈ N0.

Then error of approximation of functions f ∈ L[0,∞)-class by Cγ .T -means of its Fourier-
Laguerre series at a point x = 0 by is given by

|[Cγ .T ]n(0)− f(0)| = o(ξ(n)), (3.1)

provided φ(t) satisfies following conditions:

Φ(t) =

∫ t

0
e−y|yα φ(y)|dy = o

(
tα+1 ξ

(
1
t

))
, t→ 0, (3.2)

∫ n

η

e−y/2 |φ(y)|
y(3−2α)/4 dy = o

(
ξ(n)

n(2α+1)/4

)
, (3.3)

∫ ∞
n

e−y/2 |φ(y)|
y(1−3α)/3 dy = o(ξ(n)), n→∞, (3.4)

where η is a fixed positive number, α > −1/2 and ξ(t) is a positive monotonically increasing
function such that ξ(t)→∞ as t→∞.

Here few lemmas are given, which are useful to prove our theorems:
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Lemma 3.2. Let ε be a fixed positive constant and α be an arbitrary real number. Then

L(α)
n (x) =

{
O(nα) , 0 ≤ x ≤ 1/n,
O(x−(2α+1)/4 n(2α−1)/4), 1/n ≤ x ≤ ε,

as n→∞.

The proof is given in [17, pp. 177, Theorem 7.6.4] .

Lemma 3.3. Let ρ and α be arbitrary real numbers, 0 < η < 4 and ω > 0. Then

max e(−x/2)xρ|L(α)
n (x)|= O(nQ),

where

Q =

{
max

(
ρ− 1

2 ,
α
2 −

1
4

)
, ω ≤ x ≤ (4− η)n,

max
(
ρ− 1

3 ,
α
2 −

1
4

)
, x > n.

The proof is given in [17, pp. 241, Theorem 8.91.7] .

Proof of Theorem 3.1. We have

sn(0) =
n∑
k=0

ak L
(α)
k (0)

=
1

Γ(α+ 1)

∫ ∞
0

yα e−y f(y)L(α+1)
n (y) dy (3.5)

Applying T -summability on equation 3.5,

[T ]n(0) =
n∑
k=0

an,k sk(0)

=
1

Γ(α+ 1)

n∑
k=0

an,k

∫ ∞
0

yα e−y f(y)L
(α+1)
k (y) dy. (3.6)

Applying (C, γ)-summability on equation 3.6,

(3.7)
[Cγ .T ]n(0)

=
γ! n!

(n+ γ)! Γ(α+ 1)

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ ∞
0

yα e−y f(y)L
(α+1)
k (y) dy,

we have

[Cγ .T ]n(0)− f(0) =
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k ×∫ ∞
0

yα e−y φ(y)L
(α+1)
k (y) dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k ×[∫ 1/n

0
+

∫ η

1/n
+

∫ n

η

+

∫ ∞
n

]
yα e−y φ(y)L

(α+1)
k (y) dy

=
4∑

m=1

Jm (3.8)



94 Sachin Devaiya and Shailesh Kumar Srivastava

Applying property of the orthogonality, condition 3.2 and Lemma 3.2, we have

|J1| =

∣∣∣∣∣ γ! n!
(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ 1/n

0
yα e−y φ(y)L

(α+1)
k (y) dy

∣∣∣∣∣
≤ γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ 1/n

0
e−y |yα φ(y)| |L(α+1)

k (y)| dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k O
(
kα+1) ∫ 1/n

0
e−y |yα φ(y)| dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k O
(
nα+1) o( ξ(n)

nα+1

)

= o(ξ(n))
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

= o(ξ(n)). (3.9)

Applying property of the orthogonality, condition 3.3 and Lemma 3.2, we have

|J2| =

∣∣∣∣∣ γ! n!
(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ η

1/n
yα e−y φ(y)L

(α+1)
k (y) dy

∣∣∣∣∣
≤ γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ η

1/n
e−y |yα φ(y)| |L(α+1)

k (y)| dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k O
(
k(2α+1)/4

)
×

∫ η

1/n
y−(2α+3)/4 e−y |yα φ(y)| dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k O
(
k(2α+1)/4

)
o

(
ξ(n)

n(2α+1)/4

)

= o(ξ(n))
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

= o(ξ(n)). (3.10)

as stated in [9, pp. 6]
∫ η

1/n
y−(2α+3)/4 e−y |yα φ(y)| dy = o

(
ξ(n)

n(2α+1)/4

)
.

Applying property of the orthogonality, condition 3.3 and Lemma 3.3 (taking η = 3 and α + 1
for α), we have

|J3| =

∣∣∣∣∣ γ! n!
(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ n

η

yα e−y φ(y)L
(α+1)
k (y) dy

∣∣∣∣∣
≤ γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ n

η

e−y/2 |φ(y)|
y(3−2α)/4

y(2α+3)/4|L(α+1)
k (y)|

ey/2 dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−kO

(
k(2α+1)/4

∫ n

η

e−y/2 |φ(y)|
y(3−2α)/4 dy

)
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=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−kO(k
(2α+1)/4)o

(
n−(2α+1)/4ξ(n)

)

= o (ξ(n))
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

= o(ξ(n)). (3.11)

Applying property of the orthogonality, Lemma 3.3 and condition 3.4, we have

|J4| =

∣∣∣∣∣ γ! n!
(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ ∞
n

yα e−y φ(y)L
(α+1)
k (y) dy

∣∣∣∣∣
≤ γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

∫ ∞
n

y(3α−5)/6|φ(y)|
ey/2

y(3α+5)/6|L(α+1)
k (y)|

ey/2 dy

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−kO

(
k(α+1)/2

∫ ∞
n

e−y/2y(3α−1)/3|φ(y)|
y(α+1)/2 dy

)

=
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−kO(k
(α+1)/2)o

(
n−(α+1)/2ξ(n)

)

= o (ξ(n))
γ! n!

(n+ γ)!

n∑
v=0

(
n+ γ − v − 1

γ − 1

) v∑
k=0

av,v−k

= o(ξ(n)). (3.12)

Combining 3.8− 3.12, we have

|[Cγ .T ]n(0)− f(0)| = o(ξ(n)).

This completes the proof of Thoerem 3.1. 2

4 Corollaries

Here few corollaries are given, which are derived from our Theorem 3.1.

Corollary 4.1. If we take av,k = pv−k

Pv
, where Pv =

∑v
k=0 pk 6= 0 in equation 1.4, then Cγ .T

reduce to Cγ .Np or (C, γ)(N, pv), then for f ∈ L[0,∞), we have

|[Cγ .Np]n(0)− f(0)| = o(ξ(n)).

Corollary 4.2. If we take av,k = 1
(v−k+1) log(v+1) in equation 1.4, then Cγ .T reduce to Cγ .H or

(C, γ)(H, 1
v+1), then for f ∈ L[0,∞), we have

|[Cγ .H]n(0)− f(0)| = o(ξ(n)).

Corollary 4.3. If we take av,k = pk
Pv

in equation 1.4, thenCγ .T reduce toCγ .Np or (C, γ)(N, pv),
then for f ∈ L[0,∞), we have ∣∣[Cγ .Np]n(0)− f(0)

∣∣ = o(ξ(n)).

Corollary 4.4. If we take av,k = 1
(1+q)v (

v
k)q

v−k in equation 1.4, then Cγ .T reduce to Cγ .Eq or
(C, γ)(E, q), then for f ∈ L[0,∞), we have

|[Cγ .Eq]n(0)− f(0)| = o(ξ(n)).

Corollary 4.5. If we take av,k =
pv−k qk
Rv

, where Rv =
∑v
k=0 pk qv−k in equation 1.4, then Cγ .T

reduce to Cγ .Npq or (C, γ)(N, p, q), then for f ∈ L[0,∞), we have

|[Cγ .Npq]n(0)− f(0)| = o(ξ(n)).



96 Sachin Devaiya and Shailesh Kumar Srivastava

Corollary 4.6. If we take av,k = 1
2v (

v
k) in equation 1.4, thenCγ .T reduce toCγ .E1 or (C, γ)(E, 1),

then for f ∈ L[0,∞), we have ∣∣[Cγ .E1]n(0)− f(0)
∣∣ = o(ξ(n)).

Remark 4.7. If we take γ = 1 in the above cases, then we getC1.Np, C
1.H,C1.Np, (C, 1)(E, q),

(C, 1)(N, p, q) and (C, 1)(E, 1) are also particular cases of the Cγ .T method.

5 Conclusion

The results of this paper are aimed to construct the problem of approximation of function f using
Cγ .T -means of its Fourier-Laguerre series in a simpler manner. The followings are the particular
cases of the results of this paper :

Remark 5.1. If we take γ = 1 and replace matrix means T by (E, q) in Theorem 3.1, then Cγ .T
reduce to (C, 1)(E, q), then result of Krasniqi [5] become a particular case of our Theorem 3.1.

Remark 5.2. If we take γ = 2 and replace matrix means T by (E, q) in Theorem 3.1, then Cγ .T
reduce to (C, 2)(E, q), then result of Sonker [15] become a particular case of our Theorem 3.1.

Remark 5.3. If we take γ = 1 in Theorem 3.1, then Cγ .T reduce to C1.T , then result of Sonker
[16] become a particular case of our Theorem 3.1.
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