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Abstract In this paper, we compute the partition dimension and local metric dimension
of the extended annihilating-ideal graph EAG(R) associated to a commutative ring R which
is denoted by dimP (EAG(R)) and diml(EAG(R)) respectively. In addition, we characterize
diml(EAG(R)) for direct product of rings and the ring of integers Zn.

1 Introduction

All over this paper R denotes a commutative ring with identity 1 6= 0 and I(R) is the collection
of all ideals of R. An ideal I is called an annihilating-ideal of R if IJ = (0) for some ideal
J 6= (0) of R and A(R) is the collection of all annihilating-ideals of R. Typically, Z, Zn, Z+

and R denote the integers, integers modulo n, positive integers and the real numbers respectively.
For ring theoretic definitions, refer to [3].

In [9], Nithya and Elavarasi initiated and examined the extended annihilating-ideal graph
EAG(R) related to R, whose vertices are A(R)∗ = A(R)\{(0)} and for distinct vertices I and J
are adjacent if and only if InJm = (0) with In 6= (0) and Jm 6= (0), for some n,m ∈ Z+. The
authors discussed in detail the diameter and girth of EAG(R) and investigated the coincidence of
EAG(R) and AG(R). They noted that EAG(R) is a null graph if and only if R is an integral do-
main. Also in [10], the authors studied the metric dimension, upper dimension and the resolving
number of EAG(R) denoted by dimM (EAG(R)), dim+(EAG(R)) and res(EAG(R)) respec-
tively and illustrated these parameters with examples. One can refer [2] and [8], for studying
various graphs from ring theoretic structures and the metric dimension of the annihilating-ideal
graph of a finite commutative ring respectively.

Let G be a graph with vertex set V (G) and edge set E(G). Recall that S ⊆ V (G), the in-
duced subgraph 〈S〉 is the graph with vertex set S and two vertices are adjacent if and only if
they are adjacent in G. The distance between two vertices x and y of G, d(x, y) is the length of
the shortest path from x to y. A complete graph is a graph where every pair of distinct vertices
are adjacent and Kn denotes the complete graph on n vertices. If V (G) can be split into two
disjoint sets V1 and V2 such that every edge joins a vertex in V1 to one in V2, then G is a bipartite
graph. A complete bipartite graph is a bipartite graph in which every vertex of one set is adjacent
to every vertex of the other set and Km,n is the complete bipartite graph on m and n vertices and
K1,n is a star graph. The order of the largest complete subgraph (clique) in G is known as the
clique number ω(G) of G. The set of all vertices of G adjacent to the vertex v is known as the
neighborhood N(v) of v and N [v] = N(v) ∪ {v}. For |V (G)| ≥ 2, if d(u, x) = d(v, x), for all
x ∈ V (G)\{u, v} and u 6= v, then u and v are twins. If uv /∈ E(G) and N(u) = N(v), then
they are referred to as false twins. If uv ∈ E(G) and N [u] = N [v], then they are known as true
twins. It can be verified that the twins produce an equivalence relation on V (G) and two distinct
vertices u and v are twins if they are either false twin vertices or true twin vertices. See [7], for
terminology and notations in graph theory not described here .

In Sections 2 and 3, we discuss the partition dimension and local metric dimension of EAG(R)
respectively.
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2 Partition dimension of EAG(R)

The concept of partition dimension of a connected graph was studied in [5, 6]. For S ⊆ V (G)
and a vertex v ∈ G, the distance between v and S is defined as d(v, S) = min{d(v, x)|x ∈ S}.
For an ordered k-partition Π = {S1, S2, ..., Sk} of V (G) and a vertex v ∈ G, the representation of
v with respect to Π is defined as the k-vector D(v|Π) = (d(v, S1), d(v, S2), ..., d(v, Sk)). If the
k-vectors D(v|Π), v ∈ V (G), are distinct, then Π is called a resolving partition. The minimum
k for which there is a resolving k-partition of V (G) is the partition dimension dimP (G) of G.
In this Section, we ascertain the exact value of partition dimension of EAG(R). The following
theorem shows the comparison between the metric dimension and the partition dimension of G
as seen in [5].

Theorem 2.1. [5, Theorem 1.1] IfG is a nontrivial connected graph, then dimP (G) ≤ dimM (G)+
1.

Note that if G is a connected graph of order n ≥ 4 that is neither a path nor a complete graph,
then 3 ≤ dimP (G) ≤ n− 1.

Theorem 2.2. If R ∼= R1 ×R2 × ...×Rn where R′is are fields for every i = 1 to n, then

(i) dimp(EAG(R)) = n for n = 2, 3, 4.

(ii) dimp(EAG(R)) ≤ n+ 1 for n ≥ 5.

Proof. (i) For n = 2, clearly EAG(R) ∼= K2 so that dimP (EAG(R)) = 2. For n = 3, as said
in the above note and Theorem 2.1, 3 ≤ dimP (EAG(R)) ≤ dimM (EAG(R))+ 1. Theorem 2.5
(i) in [10] shows that dimM (EAG(R)) = 2 and hence dimP (EAG(R)) = 3.

Figure 2.1
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For n = 4, again Theorem 2.5 (i) in [10] implies that dimM (EAG(R)) = 3 and so 3 ≤
dimp(EAG(R)) ≤ 4. Let I1 = R1 × (0) × (0) × (0), I2 = (0) × R2 × (0) × (0), I3 =
(0) × (0) × R3 × (0), I4 = (0) × (0) × (0) × R4, I5 = R1 × R2 × (0) × (0), I6 = R1 × (0) ×
R3 × (0), I7 = R1 × (0)× (0)×R4, I8 = (0)×R2 ×R3 × (0), I9 = (0)×R2 × (0)×R4, I10 =
(0)×(0)×R3×R4, I11 = R1×R2×R3×(0), I12 = R1×R2×(0)×R4, I13 = R1×(0)×R3×R4
and I14 = (0) × R2 × R3 × R4. Consider 3-partition Π = {S1, S2, S3} of A(R)∗, where
S1 = {I1, I2, I5, I8, I13}, S2 = {I3, I6, I9, I12, I14} and S3 = {I4, I7, I10, I11, }. Then D(I1|Π) =
D(I2|Π) = D(I5|Π) implies Π is not a resolving 3-partition. From Figure 2.1, one can verify
that resolving 3-partition does not exist in EAG(R) for other cases. Hence dimP (EAG(R)) = 4.
(ii) Follows from Theorem 2.1 and Theorem 2.5 (ii) and (iii) in [10].

Recall that R is called a principal ideal ring (PIR), if every ideal is a principal ideal in R. An
integral domain in which every ideal is principal is called a principal ideal domain (PID). A local
artinian PIR is called a special principal ring (SPR) and it has only finitely many ideals, each of
which is a power of the maximal ideal.

Theorem 2.3. If R is a SPR, then dimP (EAG(R)) = |A(R)∗|.
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Proof. By Theorem 2.4 in [9] and Proposition 2.3 in [5], the result holds.

The following theorem computes dimp(EAG(R)) for direct product of certain rings.

Theorem 2.4. If R ∼= R1 ×R2, then the following cases occur.

(i) IfR1 is a field andR2 is a ring with unique nonzero proper ideal, then dimP (EAG(R)) = 3.

(ii) If R1 and R2 are rings with unique nonzero proper ideal, then dimP (EAG(R)) = 4.

(iii) IfR1 is a field andR2 is a SPR with more than one nonzero proper ideals, then dimP (EAG(R))
= |I(R2)|.

Proof. (i) As EAG(R) ∼= K2,2, then by Theorem 2.4 in [5], dimP (EAG(R)) = 3.
(ii) Assume thatR1 andR2 are rings with unique nonzero proper ideal, say I1 and I2 respectively.
Then the above note and Theorem 2.1 show that 3 ≤ dimP (EAG(R)) ≤ dimM (EAG(R)) + 1.
As noted in the proof of the Theorem 2.6 in [10], dimM (EAG(R)) = 3 implies that 3 ≤
dimP (EAG(R)) ≤ 4. Clearly d(R1 × (0), J) = d(R1 × I2, J), for all J ∈ A(R)∗\{R1 ×
(0), R1 × I2} and d((0) × R2, J) = d(I1 × R2, J), for all J ∈ A(R)∗\{(0) × R2, I1 × R2}.
Suppose that 3-partition Π = {S1, S2, S3} of A(R)∗. Then by Lemma 2.2 in [5], R1 × (0) and
R1× I2 contained in distinct elements of Π. Similarly, (0)×R2 and I1×R2 contained in distinct
elements of Π. Let S1 = {(0) × R2, R1 × (0)}, S2 = {I1 × R2, R1 × I2} and the remaining
vertices J1 = I1 × (0), J2 = (0) × I2, J3 = I1 × I2 contained in anyone of the elements of Π.
Consider S3 = {J1, J2, J3}. Then D(J1|Π) = D(J2|Π) implies Π is not a resolving 3-partition.
From Figure 2.2, one can view that Π is not a resolving 3-partition for other cases. Hence
dimP (EAG(R)) = 4.

I1 ×R2

R1 × (0) R1 × I2

(0)×R2 (0)× I2

I1 × (0)

I1 × I2

Figure 2.2

(iii) Let M2 be the maximal ideal in R2 such that M2
m = (0). The nonzero annihilating-ideals

of R are R1 × (0), (0) × R2, V1 = {(0) ×M2
j} and V2 = {R1 ×M2

j}, for 1 ≤ j < m. The
induced subgraphs 〈V1〉 is complete and 〈V2〉 is totally disconnected. Also any one edge ends at
Vi means that edge adjacent to all the vertices in Vi.

R1 × (0)

(0)×R2
V1

V2

Figure 2.3

From Figure 2.3, d((0) ×M2, J) = d((0) ×M2
2, J) = ... = d((0) ×M2

m−1, J), for all J ∈
A(R)∗\V1 and d(R1 × (0), J) = d(R1 ×M2, J) = d(R1 ×M2

2, J) = ... = d(R1 ×M2
m−1, J),

for all J ∈ A(R)∗\({R1× (0)}∪V2). Now let m+1-partition Π = {S1, S2, ..., Sm+1} of A(R)∗.
Then again by Lemma 2.2 in [5], consider S1 = {(0)×M2, R1 ×M2}, S2 = {(0)×M2

2, R1 ×
M2

2}, ..., Sm−1 = {(0)×M2
m−1, R1×M2

m−1}, Sm = {R1×(0)}, Sm+1 = {(0)×R2}. Clearly,
Π is a resolving (m+ 1)-partition and so |I(R2)∗| = m ≤ dimP (EAG(R)) ≤ m+ 1 = |I(R2)|.
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Suppose that m-partition Π = {S1, S2, ..., Sm} of A(R)∗, where S1, S2, ..., Sm are constructed
as above and the remaining vertex (0) × R2 contained in any one of the elements of Π. If
(0)× R2 ∈ Si, then D((0)× R2|Π) = D((0)×M2

i|Π), for i = 1 to m− 1. If (0)× R2 ∈ Sm,
then vertices in each Si have same partition metric representations about Π, for every i = 1 to
m. Thus Π is not a resolving m-partition. Finally, resolving m-partition does not exist for all
cases. Thus dimp(EAG(R)) = m+ 1 = |I(R2)|.

The following examples point up the previous theorem.

Example 2.5. (a) IfR ∼= Z2[X]
(X2+X+1)×

R[X]
(X2)

where Z2[X]
(X2+X+1) is a field and (X) is a unique nonzero

proper ideal in R[X]
(X2)

, then clearly EAG(R) ∼= K2,2. Consider 3-partition Π = {S1, S2, S3} of

A(R)∗, where S1 = {(0)×(X), Z2[X]
(X2+X+1)×(0)}, S2 = {(0)×R[X]

(X2)
} and S3 = { Z2[X]

(X2+X+1)×(X)}.
From this, Π is a resolving 3-partition and hence dimP (EAG(R)) = 3.
(b) Let R ∼= Z2[X]

(X2)
× Z[i]

(1+i)2 . In this case, (X) and (1 + i) are the unique nonzero proper ideal in
Z2[X]
(X2)

and Z[i]
(1+i)2 respectively. Consider 4-partition Π = {S1, S2, S3, S4} of A(R)∗, where S1 =

{Z2[X]
(X2)
× (0), (0)× (1+ i)}, S2 = {Z2[X]

(X2)
× (1+ i), (X)× (1+ i)}, S3 = {(0)× Z[i]

(1+i)2 , (X)× (0)}
and S4 = {(X)× Z[i]

(1+i)2 }. This forms a resolving 4-partition and so dimP (EAG(R)) = 4.

(c) Let R ∼= Z2 × R[X]
(X3)

where R[X]
(X3)

is a SPR with the maximal ideal (X) such that (X3) = (0)

and A(R)∗ = {Z2 × (0), (0) × R[X]
(X3)
} ∪ V1 ∪ V2 where V1 = {(0) × (X), (0) × (X2)} and

V2 = {Z2 × (X),Z2 × (X2)}. Consider 4-partition Π = {S1, S2, S3, S4} of A(R)∗, where
S1 = {(0) × (X),Z2 × (X)}, S2 = {(0) × (X2),Z2 × (X2)}, S3 = {(0) × R[X]

(X3)
} and

S4 = {Z2 × (0)}. This implies Π is a resolving 4-partition and hence dimP (EAG(R)) = 4.

Theorem 2.6. If R ∼= R1 ×R2 ×R3, then the following holds.

(i) If R1, R2 are fields and R3 is a SPR and not a field, then dimP (EAG(R)) = |A(R3)|+ 2.

(ii) IfR1 is a field,R2 andR3 are rings with unique nonzero proper ideal, then dimP (EAG(R))
= 6.

(iii) If R1, R2 and R3 are rings with unique nonzero proper ideal, then dimP (EAG(R)) = 7.

Proof. (i) Let M3 be the maximal ideal in R3 such that M3
r = (0). Consider V1 = {(0)× (0)×

M3
k}, V2 = {(0) × R2 ×M3

k}, V3 = {R1 × (0) ×M3
k} and V4 = {R1 × R2 ×M3

k}, for
1 ≤ k < r. In Figure 2.4, the induced subgraphs 〈V1〉 is complete and 〈V2〉 , 〈V3〉 and 〈V4〉 are
totally disconnected. Also d((0)×(0)×M3

k1 , J) = d((0)×(0)×M3
k2 , J), for all J ∈ A(R)∗\V1,

d((0)×R2×M3
k1 , J) = d((0)×R2×M3

k2 , J) = d((0)×R2×(0), J), for all J ∈ A(R)∗\(V2∪
{(0)×R2 × (0)}), d(R1 × (0)×M3

k1 , J) = d(R1 × (0)×M3
k2 , J) = d(R1 × (0)× (0), J), for

all J ∈ A(R)∗\(V3 ∪ {R1 × (0)× (0)}) and d(R1 ×R2 ×M3
k1 , J) = d(R1 ×R2 ×M3

k2 , J) =
d(R1 × R2 × (0), J), for all J ∈ A(R)∗\(V4 ∪ {R1 × R2 × (0)}) and 1 ≤ k1 < k2 < r. Let Π

be a partition of A(R)∗. Then by Lemma 2.2 in [5], |A(R3)| = r ≤ dimP (EAG(R)). Choose
r-partition Π = {S1, S2, ..., Sr} of A(R)∗ and S1 = {(0) × (0) × M3, (0) × R2 × M3, R1 ×
(0) ×M3, R1 × R2 ×M3}, S2 = {(0) × (0) ×M3

2, (0) × R2 ×M3
2, R1 × (0) ×M3

2, R1 ×
R2 ×M3

2}, ..., Sr−1 = {(0)× (0)×M3
r−1, (0)× R2 ×M3

r−1, R1 × (0)×M3
r−1, R1 × R2 ×

M3
r−1}, Sr = {(0)×R2 × (0), R1 ×R2 × (0), R1 × (0)× (0)} and the remaining vertices J1 =

(0)×R2×R3, J2 = R1× (0)×R3 and J3 = (0)× (0)×R3 contained in any one of Si, for i = 1
to r. ThenD((0)×(0)×M3|Π) = D((0)×R2×M3|Π) = D(R1×(0)×M3|Π) = (0, 1, 1, ..., 1)
and so Π is not a resolving r-partition. From Figure 2.4, resolving r-partition does not exist for
all cases. Hence |A(R3)|+ 1 = r + 1 ≤ dimP (EAG(R)).
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Figure 2.4

Consider r + 1-partition Π = {S1, S2, ..., Sr+1} of A(R)∗ and S1, S2, ..., Sr are constructed
as above. Consider either Sr+1 = {J1, J2, J3} or any two vertices of J1, J2, J3 contained in
Sr+1. Then D((0) × R2 × M3

k|Π) = D(R1 × (0) × M3
k|Π), for 1 ≤ k < r implies Π is

not a resolving (r + 1)-partition. Suppose that any one vertex of J1, J2, J3 contained in Sr+1
and remaining two vertices in any one of Si, for all i = 1 to r. Consider J1 ∈ Sr+1, then
D((0) × (0) ×M3|Π) = D((0) × R2 ×M3|Π) = (0, 1, 1, ..., 1, 2). Suppose J2 ∈ Sr+1, then
D((0)×(0)×M3|Π) = D(R1×(0)×M3|Π) = (0, 1, 1, ..., 1, 2). If J3 ∈ Sr+1, thenD((0)×R2×
M3|Π) = D(R1 × (0)×M3|Π) = (0, 1, 1, .., 1, 1). This shows that Π is not a resolving (r+ 1)-
partition. Hence in all cases, resolving (r+1)-partition does not exist and so dimp(EAG(R)) ≥
r + 2 = |A(R3)|+ 2.
Consider r+2-partition Π = {S1, S2, ..., Sr+2} of A(R)∗, where S1, S2, ..., Sr−1 are constructed
as above and Sr = {(0)×R2×(0), R1×R2×(0), R1×(0)×(0), J3}, Sr+1 = {J2}, Sr+2 = {J1}.
It is clear that the vertices in A(R)∗ have different partition metric representations about Π and
so Π is a resolving (r + 2)-partition. Hence dimP (EAG(R)) = r + 2 = |A(R3)|+ 2.
(ii) Let I2 and I3 be unique nonzero proper ideal inR2 andR3 respectively. Clearly d(R1×(0)×
(0), J) = d(R1×(0)×I3, J) = d(R1×I2×(0), J) = d(R1×I2×I3, J), for all J ∈ A(R)∗\{R1×
(0)× (0), R1× (0)× I3, R1× I2× (0), R1× I2× I3}, d(R1× (0)×R3, J) = d(R1× I2×R3, J),
for all J ∈ A(R)∗\{R1× (0)×R3, R1× I2×R3}, d(R1×R2× (0), J) = d(R1×R2× I3, J), for
all J ∈ A(R)∗\{R1×R2× (0), R1×R2×I3}, d((0)× (0)×R3, J) = d((0)×I2×R3, J), for all
J ∈ A(R)∗\{(0)× (0)×R3, (0)× I2×R3}, d((0)×R2× (0), J) = d((0)×R2× I3, J), for all
J ∈ A(R)∗\{(0) × R2 × (0), (0) × R2 × I3}. Consider 6-partition Π = {S1, S2, S3, S4, S5, S6}
of A(R)∗. By Lemma 2.2 in [5], S1 = {R1× (0)× (0), R1× (0)×R3, (0)× (0)×R3, R1×R2×
(0), (0)×R2× (0)}, S2 = {R1× (0)× I3, R1× I2×R3, (0)× I2×R3, R1×R2× I3, (0)×R2×
I3}, S3 = {R1×I2×(0), (0)×R2×R3, (0)×(0)×I3}, S4 = {R1×I2×I3}, S5 = {(0)×I2×I3}
and S6 = {(0)× I2 × (0)}. Then Π is a resolving 6-partition and so 4 ≤ dimP (EAG(R)) ≤ 6.
Suppose that 4-partition Π = {S1, S2, S3, S4} of A(R)∗ and S1 = {R1 × (0) × (0), R1 × (0) ×
R3, (0)× (0)×R3, R1×R2× (0), (0)×R2× (0)}, S2 = {R1× (0)× I3, R1× I2×R3, (0)× I2×
R3, R1×R2× I3, (0)×R2× I3}, S3 = {R1× I2× (0)}, S4 = {R1× I2× I3} and the remaining
vertices J1 = (0)×R2×R3, J2 = (0)×(0)×I3, J3 = (0)×I2×I3, J4 = (0)×I2×(0) contained
in any set of Si′s, for all i = 1 to 4, implies that D((0)× (0)×R3|Π) = D((0)×R2× (0)|Π) =
(0, 1, 1, 1) and so Π is not a resolving 4-partition. Similarly in all cases, dimP (EAG(R)) ≥ 5.
Consider 5-partition Π = {S1, S2, S3, S4, S5} of A(R)∗ and S1, S2, S3, S4 are constructed as
above. Consider any set of k vertices of J1, J2, J3, J4 contained in S5, for k = 2 to 4, then
D(Jt|Π) = D(Jm|Π) = (1, 1, 1, 1, 0) where Jt, Jm ∈ S5, t,m = 1 to 4 and t 6= m. Hence
Π is not a resolving 5-partition. Suppose that any one vertex of J1, J2, J3, J4 contained in S5
and remaining three vertices in any one of Si, for all i = 1 to 4. Consider J1 ∈ S5, then
D((0) × (0) × R3|Π) = D((0) × R2 × (0)|Π) = (0, 1, 1, 1, 2). Thus Π is not a resolving 5-
partition. Similarly, resolving 5-partition does not exist for all cases so that dimp(EAG(R)) = 6.
(iii) Let I1, I2 and I3 be unique nonzero proper ideal in R1, R2 and R3 respectively. It is clear
that d(R1×(0)×(0), J) = d(R1×(0)×I3, J) = d(R1×I2×(0), J) = d(R1×I2×I3, J), for all
J ∈ A(R)∗\{R1×(0)×(0), R1×(0)×I3, R1×I2×(0), R1×I2×I3}, d((0)×(0)×R3, J) = d((0)×
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I2×R3, J) = d(I1×I2×R3, J) = d(I1×(0)×R3, J), for all J ∈ A(R)∗\{(0)×(0)×R3, (0)×I2×
R3, I1×I2×R3, I1×(0)×R3}, d((0)×R2×(0), J) = d((0)×R2×I3, J) = d(I1×R2×(0), J) =
d(I1×R2×I3, J), for all J ∈ A(R)∗\{(0)×R2×(0), (0)×R2×I3, I1×R2×(0), I1×R2×I3},
d((0)×R2 ×R3, J) = d(I1 ×R2 ×R3, J), for all J ∈ A(R)∗\{(0)×R2 ×R3, I1 ×R2 ×R3},
d(R1 ×R2 × (0), J) = d(R1 ×R2 × I3, J), for all J ∈ A(R)∗\{R1 ×R2 × (0), R1 ×R2 × I3},
d(R1 × (0)×R3, J) = d(R1 × I2 ×R3, J), for all J ∈ A(R)∗\{R1 × (0)×R3, R1 × I2 ×R3}.
Suppose that 7-partition Π = {S1, S2, S3, S4, S5, S6, S7} of A(R)∗. Then again by Lemma 2.2 in
[5], consider S1 = {R1 × (0)× (0), (0)× (0)×R3, (0)×R2 × (0), R1 ×R2 × (0), R1 × (0)×
R3, (0)×R2×R3, (0)× I2× I3}, S2 = {R1× (0)× I3, (0)× I2×R3, (0)×R2× I3, R1×R2×
I3, R1× I2×R3, I1×R2×R3}, S3 = {R1× I2× (0), I1× I2×R3, I1×R2× (0), I1× (0)× I3},
S4 = {R1×I2×I3, I1× (0)×R3, I1×R2×I3, I1×I2× (0)}, S5 = {I1× (0)× (0), I1×I2×I3},
S6 = {(0)× I2 × (0)} and S7 = {(0)× (0)× I3}. Then the vertex in every Si, for all i = 1 to 7
has distinct partition metric representations about Π. Consequently, Π is a resolving 7-partition
and so 4 ≤ dimP (EAG(R)) ≤ 7. Suppose that 4-partition Π = {S1, S2, S3, S4} of A(R)∗ and
S1 = {R1×(0)×(0), (0)×(0)×R3, (0)×R2×(0), R1×R2×(0), R1×(0)×R3, (0)×R2×R3},
S2 = {R1 × (0)× I3, (0)× I2 ×R3, (0)×R2 × I3, R1 ×R2 × I3, R1 × I2 ×R3, I1 ×R2 ×R3},
S3 = {R1×I2×(0), I1×I2×R3, I1×R2×(0)}, S4 = {R1×I2×I3, I1×(0)×R3, I1×R2×I3}
and the remaining vertices J1 = (0) × I2 × I3, J2 = I1 × (0) × I3, J3 = I1 × I2 × (0), J4 =
I1 × (0) × (0), J5 = I1 × I2 × I3, J6 = (0) × I2 × (0) and J7 = (0) × (0) × I3 contained in
any one of Si, for i = 1 to 4. This implies D((0) × (0) × R3|Π) = D((0) × R2 × (0)|Π) =
D((0)× R2 × R3|Π) = (0, 1, 1, 1) and so Π is not a resolving 4-partition. As similar argument
for all other cases, dimP (EAG(R)) ≥ 5.
Consider 5-partition Π = {S1, S2, S3, S4, S5} of A(R)∗ and S1, S2, S3, S4 are constructed as
above. Any set of k vertices of J1, J2, J3, J4, J5, J6, J7 contained in S5, for k = 1 to 7 does
not form a resolving 5-partition about Π. Since D(I|Π) = (0, 1, 1, 1, d(I, S5)), for all I ∈
S1\{J5} and d(I, S5) = 1 or 2 implies that any two vertices in S1 have same partition metric
representations about Π. Argument is similar if the vertices of Si are replaced, for i = 1 to 5.
Hence dimP (EAG(R)) ≥ 6.
Suppose that 6-partition Π = {S1, S2, S3, S4, S5, S6} of A(R)∗ and S1, S2, S3, S4 are constructed
as above and if J1 ∈ S1, J2 ∈ S3, J3 ∈ S4, S5 = {J4, J5} and S6 = {J6, J7}, then D((0)× (0)×
R3|Π) = D((0) × R2 × (0)|Π) = D(J1|Π). Hence Π is not a resolving 6-partition. Similarly,
placing Jt in any Si, for all t = 1 to 7 and i = 1 to 6 implies that Π is not a resolving 6-partition.
Also in all cases, dimP (EAG(R)) ≥ 7, so that dimP (EAG(R))) = 7.

We conclude this section by providing certain examples which demonstrates the previous
theorem.

Example 2.7. (a) Let R ∼= Z5[X]
(X2+2) ×

Z5[X]
(X2+2) ×

R[X]
(X3)

. Here (X) is the maximal ideal in R[X]
(X3)

.
Consider 5-partition Π = {S1, S2, S3, S4, S5} of A(R)∗, where S1 = {(0) × (0) × (X), (0) ×
Z5[X]
(X2+2) × (X), Z5[X]

(X2+2) × (0) × (X), Z5[X]
(X2+2) ×

Z5[X]
(X2+2) × (X)}, S2 = {(0) × (0) × (X2), (0) ×

Z5[X]
(X2+2)×(X

2), Z5[X]
(X2+2)×(0)×(X

2), Z5[X]
(X2+2)×

Z5[X]
(X2+2)×(X

2)}, S3 = {(0)× Z5[X]
(X2+2)×(0),

Z5[X]
(X2+2)×

(0) × (0), Z5[X]
(X2+2) ×

Z5[X]
(X2+2) × (0), (0) × (0) × Z5[X]

(X2+2)}, S4 = { Z5[X]
(X2+2) × (0) × R[X]

(X3)
} and S5 =

{(0)× Z5[X]
(X2+2) ×

R[X]
(X3)
}. This forms a resolving 5-partition so that dimP (EAG(R)) = 5.

(b) Let R ∼= Z5[X]
(X2+2) × Z4 × Z9. In this, (2) and (3) are the unique nonzero proper ideal in

Z4 and Z9 respectively. Consider 6-partition Π = {S1, S2, S3, S4, S5, S6} of A(R)∗, where
S1 = { Z5[X]

(X2+2) × (0)× (0), Z5[X]
(X2+2) × (0)×Z9, (0)× (0)×Z9,

Z5[X]
(X2+2) ×Z4× (0), (0)×Z4× (0)},

S2 = { Z5[X]
(X2+2) × (0)× (3), Z5[X]

(X2+2) × (2)×Z9, (0)× (2)×Z9,
Z5[X]
(X2+2) ×Z4× (3), (0)×Z4× (3)},

S3 = { Z5[X]
(X2+2) × (2) × (0), (0) × Z4 × Z9, (0) × (0) × (3)}, S4 = { Z5[X]

(X2+2) × (2) × (3)}, S5 =

{(0) × (2) × (3)} and S6 = {(0) × (2) × (0)}. From this, Π is a resolving 6-partition and so
dimp(EAG(R)) = 6.
(c) LetR ∼= R[X]

(X2)
× R[X]

(X2)
× R[X]

(X2)
. Here (X) is a unique nonzero proper ideal in R[X]

(X2)
. Suppose that

7-partition Π = {S1, S2, S3, S4, S5, S6, S7} of A(R)∗, where S1 = {R[X]
(X2)
× (0)× (0), (0)× (0)×

R[X]
(X2)

, (0)× R[X]
(X2)
× (0), R[X]

(X2)
× R[X]

(X2)
× (0), R[X]

(X2)
× (0)× R[X]

(X2)
, (0)× R[X]

(X2)
× R[X]

(X2)
, (0)× (X)× (X)},
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S2 = {R[X]
(X2)
× (0)× (X), (0)× (X)× R[X]

(X2)
, (0)× R[X]

(X2)
× (X), R[X]

(X2)
× R[X]

(X2)
× (X), R[X]

(X2)
× (X)×

R[X]
(X2)

, (X)× R[X]
(X2)
× R[X]

(X2)
}, S3 = {R[X]

(X2)
× (X)× (0), (X)× (X)× R[X]

(X2)
, (X)× R[X]

(X2)
× (0), (X)×

(0)× (X)}, S4 = {R[X]
(X2)
× (X)× (X), (X)× (0)× R[X]

(X2)
, (X)× R[X]

(X2)
× (X), (X)× (X)× (0)},

S5 = {(X)× (0)× (0), (X)× (X)× (X)}, S6 = {(0)× (X)× (0)} and S7 = {(0)× (0)× (X)}.
This forms a resolving 7-partition. Hence dimp(EAG(R)) = 7.

3 Local metric dimension of EAG(R)

The local metric dimension of a graph was introduced by Okamoto et al. [11]. For an ordered
subsetW = {v1, v2, ..., vk} of V (G) and a vertex v ∈ G, the representation of v with respect toW
is defined as the k-vector D(v|W ) = (d(v, v1), d(v, v2), ..., d(v, vk)). If D(u|W ) 6= D(v|W ) for
every pair u, v of adjacent vertices of G, then the set W is a local metric set of G. The minimum
cardinality of a local metric set W is the local metric basis for G and the number of elements in
the local metric basis is the local metric dimension of G and it is denoted by diml(G). Note that
if G is a nontrivial connected graph of order n, then 1 ≤ diml(G) ≤ dimM (G) ≤ n− 1. In this
Section, we explore the local metric dimension of EAG(R). The following theorem computes
diml(EAG(R)) for direct product of fields.

Theorem 3.1. If R ∼= R1 × R2 × ... × Rn where R′is are fields for every i = 1 to n and n ≥ 2,
then

(i) diml(EAG(R)) = n− 1 where 2 ≤ n ≤ 5.

(ii) diml(EAG(R)) ≤ n where n ≥ 6.

Proof. (i) For n = 2. Then clearly diml(EAG(R)) = 1. Let n = 3. As diml(EAG(R)) ≤
dimM (EAG(R)), then by Theorem 2.5 (i) in [10], diml(EAG(R)) ≤ 2. Since ω(EAG(R)) =
3, then by Theorem 3.1 in [11]., diml(EAG(R)) ≥ dlog23e. As dlog23e = 2, diml(EAG(R)) ≥
2. Hence diml(EAG(R)) = 2. For n = 4, by Theorem 2.5 (i) in [10], diml(EAG(R)) ≤ 3.
From Figure 2.1, ω(EAG(R)) = 4. Then again by Theorem 3.1 in [11], diml(EAG(R)) ≥
dlog24e = 2. Obviously, any collection of two vertices in EAG(R) does not form a local metric
set so that diml(EAG(R)) ≥ 3. Hence diml(EAG(R)) = 3.
For n = 5, the nonzero annihilating-ideals of R are V1 = {I1, I2, I3, I4, I5}, V2 = {J1, J2, J3, J4,
J5, J6, J7, J8, J9, J10}, V3 = {N1, N2, N3, N4, N5, N6,N7,N8, N9, N10} and V4 = {L1, L2, L3, L4,
L5}, where I1 = R1 × (0)× (0)× (0)× (0), I2 = (0)×R2 × (0)× (0)× (0), I3 = (0)× (0)×
R3 × (0) × (0), I4 = (0) × (0) × (0) × R4 × (0), I5 = (0) × (0) × (0) × (0) × R5, J1 =
R1×R2× (0)× (0)× (0), J2 = R1× (0)×R3× (0)× (0), J3 = R1× (0)× (0)×R4× (0), J4 =
R1× (0)× (0)× (0)×R5, J5 = (0)×R2×R3× (0)× (0), J6 = (0)×R2× (0)×R4× (0), J7 =
(0)×R2× (0)× (0)×R5, J8 = (0)× (0)×R3×R4× (0), J9 = (0)× (0)×R3× (0)×R5, J10 =
(0)× (0)× (0)×R4×R5, N1 = R1×R2×R3× (0)× (0), N2 = R1×R2× (0)×R4× (0), N3 =
R1×R2× (0)× (0)×R5, N4 = R1× (0)×R3×R4× (0), N5 = R1× (0)×R3× (0)×R5, N6 =
R1× (0)× (0)×R4×R5, N7 = (0)×R2×R3×R4× (0), N8 = (0)×R2×R3× (0)×R5, N9 =
(0)×R2× (0)×R4×R5, N10 = (0)× (0)×R3×R4×R5, L1 = R1×R2×R3×R4× (0), L2 =
R1 ×R2 ×R3 × (0)×R5, L3 = R1 ×R2 × (0)×R4 ×R5, L4 = R1 × (0)×R3 ×R4 ×R5 and
L5 = (0)×R2×R3×R4×R5. Clearly, 〈V1〉 forms a complete graph K5. Also ω(EAG(R)) = 5
then again Theorem 3.1 in [11] implies that diml(EAG(R)) ≥ 3. If W is a collection of any
three vertices of Vk, for k = 1, 2, then any two adjacent vertices of Vk\W have same local metric
representations about W . Let W be a collection of any three vertices of V3. Then any two adja-
cent vertices of V2 have same local metric representations about W . Let W be any three vertices
of V4. Then any two vertices of V1 have same local metric representations about W . Let W be
any three vertices of the form either {Ii, Jj , Ns} or {Ii, Jj , Lt} or {Ii, Ns, Lt} or {Jj , Ns, Lt},
for all i, t = 1 to 5, j, s = 1 to 10. Then any two adjacent vertices of V1\W or V2\W have same
local metric representations about W . Hence for all cases, every collection of three vertices of
EAG(R) does not form a local metric set so that diml(EAG(R)) ≥ 4. If W = {I1, I2, I3, I4},
then every pair of adjacent vertices in EAG(R) have different local metric representations about
W . Hence diml(EAG(R)) = 4.
(ii) The result follows from diml(EAG(R)) ≤ dimM (EAG(R)) and by Theorem 2.5 (iii) in
[10].
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Theorem 3.2. If R is a SPR, then diml(EAG(R)) = |A(R)∗| − 1.

Proof. By Theorem 2.4 in [9], |A(R)∗|−1 vertices of EAG(R) form a local metric basis so that
diml(EAG(R)) = |A(R)∗| − 1.

Consider two vertices being true twins produce an equivalence relation on V (G). If the
resulting true twin equivalence classes are U1, U2, ..., Ul, then every local metric set of G must
contain at least |Ui| − 1 vertices from Ui, for all 1 ≤ i ≤ l.
The subsequent theorem characterizes the local metric dimension of EAG(R) for direct product
of rings.

Theorem 3.3. If R is a PIR and R ∼= R1 ×R2, then

(i) R1 is an integral domain and R2 is either an integral domain or a ring with unique nonzero
proper ideal if and only if diml(EAG(R)) = 1.

(ii) R1 and R2 are rings with unique nonzero proper ideal if and only if diml(EAG(R)) = 2.

(iii) R1 is an integral domain and R2 is a ring with more than one nonzero proper ideals if and
only if diml(EAG(R)) = |A(R2)∗|.

(iv) R1 is not an integral domain and R2 is a ring with more than one nonzero proper ideals if
and only if diml(EAG(R)) = |A(R1)| |A(R2)| − 2.

Proof. As R is a PIR, then R ∼=
∏n
i=1 Ri where R′is are either PIDs or SPRs.

(i) Assume that R1 and R2 are integral domains and not fields. Then P ∩ Q = (0), for some
nonzero prime ideals P = R1× (0) and Q = (0)×R2 and they are not minimal ideals. Since R1
and R2 are reduced, then by Theorems 2.3 in [9] and 2.4 in [1], EAG(R) is a complete bipartite
graph. Thus by Lemma 2.8 in [11], diml(EAG(R)) = 1. Now consider R1 is a field and R2 is
an integral domain. Since R1 and R2 are reduced, so by Theorem 2.3 in [9] and Corollary 2.3 in
[4], EAG(R) is a star graph so that diml(EAG(R)) = 1. Consider R1 is an integral domain and
R2 is a ring with unique nonzero proper ideal. Then Theorem 2.5 in [9] and Lemma 2.8 in [11]
show that diml(EAG(R)) = 1.
Conversely, assume that diml(EAG(R)) = 1. Suppose that R1 is an integral domain and R2 is
a ring with more than one nonzero proper ideals. Consider I is a nonzero proper ideal in R1 and
M2 is the maximal ideal in R2 such that M2

m = (0). Then A(R)∗ = {R1 × (0)} ∪ {(0)×R2} ∪
V1 ∪ V2 ∪ V3 ∪ V4 where V1 = {(0) ×M2

j}, V2 = {R1 ×M2
j}, V3 = {I × (0) : I ∈ R1} and

V4 = {I ×M2
j : I ∈ R1}, for 1 ≤ j < m. Here the induced subgraphs 〈V1〉 is complete and

〈V2〉, 〈V3〉 and 〈V4〉 are totally disconnected.

(0)×R2

V3 V4

R1 × (0)

V1

V2

Figure 3.1

From Figure 3.1, EAG(R) has only one true twin equivalence class, say U1 = V1. Then every
local metric set of EAG(R) must contain at least |U1|−1 = m−2 vertices fromU1. Thenm−2 ≤
diml(EAG(R). Consider W ⊆ V1 and |W | = m − 2, then the adjacent vertices in A(R)∗\W
have same local metric representations with respect to W . Therefore diml(EAG(R)) 6= m− 2.
Consider W = V1 and |W | = m− 1, then the adjacent vertices in EAG(R) have different local
metric representations about W . Then by definition, diml(EAG(R)) = m− 1 = |A(R2)∗|.
Suppose that R1 and R2 are not integral domains. Consider R1 and R2 have unique nonzero
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proper ideal say, M1 and M2 respectively. As ω(EAG(R)) = 3, then by Theorem 3.1 in [11],
diml(EAG(R)) ≥ dlog23e = 2. It is clear that W = {M1×R2,M1×M2} is a local metric basis
for EAG(R). Hence diml(EAG(R)) = 2.
Now considerR2 has more than one nonzero proper ideals. LetM1 andM2 be the maximal ideals
in R1 and R2 respectively such that M1

n = (0) and M2
m = (0). Then the nonzero annihilating-

ideals of R are R1 × (0), (0) × R2, V1 = {M1
i × (0)}, V21 = {M1

i ×M2
j : (M1

i)l 6= (0) and
(M2

j)l = (0), for some l ∈ Z+}, V22 = {M1
i×M2

j : (M1
i)l = (M2

j)l = (0) for some l ∈ Z+},
V23 = {M1

i ×M2
j : (M1

i)l = (0) and (M2
j)l 6= (0) for some l ∈ Z+}, V3 = {(0) ×M2

j},
V4 = {M1

i ×R2} and V5 = {R1 ×M2
j}, for 1 ≤ i < n, 1 ≤ j < m.

(0)×R2
V3 V4

V22

V21

V23

R1 × (0)
V5 V1

Figure 3.2

In Figure 3.2, the induced subgraphs 〈V1〉 , 〈V21〉 , 〈V22〉 , 〈V23〉 , 〈V3〉 are complete graphs and
〈V4〉, 〈V5〉 are totally disconnected. Here the true twin equivalence classes in EAG(R) are U1 =
V1 ∪ V21, U2 = V22 and U3 = V3 ∪ V23. Then at least |Ui| − 1 vertices from Ui, for all i = 1, 2, 3
must contained in the local metric set of EAG(R). LetW =

⋃3
i=1(Ui\{Ji})∪{R1×(0), (0)×R2}

where Ji ∈ Ui and so |W | = |A(R1)| |A(R2)|−2. Then all the adjacent vertices in EAG(R) have
different local metric representations aboutW . HenceW is a local metric set for EAG(R) and so
diml(EAG(R)) ≤ |A(R1)| |A(R2)|−2. Suppose thatW =

⋃3
i=1(Ui\{Ji})∪{R1×(0)}, Ji ∈ Ui

and so the cardinality is |A(R1)| |A(R2)|−3. Then W is not a local metric set for EAG(R) since
D(J1|W ) = D(J2|W ), for the adjacent vertices J1 and J2 of EAG(R). Similarly for all cases,
diml(EAG(R)) 6= |A(R1)| |A(R2)| − 3. Hence diml(EAG(R)) = |A(R1)| |A(R2)| −2. From
all cases, R1 is an integral domain and R2 is either an integral domain or a ring with unique
nonzero proper ideal.
(ii), (iii) and (iv) follow from the proof of (i).

Next we provide certain examples for the previous theorem.

Example 3.4. (a) If R ∼= Z×Z2, then clearly EAG(R) is a star graph so that diml(EAG(R)) =
1.
(b) LetR ∼= Z×Z2[X]

(X2)
. Obviously, EAG(R) forms a complete bipartite graph so that diml(EAG(R))

= 1.
(c) Let R ∼= R[X]

(X2)
× R[X]

(X2)
. In this, (X) is a unique nonzero proper ideal in R[X]

(X2)
. Then the local

metric basis for EAG(R) is W = {(X)× R[X]
(X2)

, (X)× (X)}. Hence diml(EAG(R)) = 2.

(d) Let R ∼= Z[i] × R[X]
(X3)

. Here (X) is the maximal ideal in R[X]
(X3)

such that (X3) = (0).
Then W = {(0) × (X), (0) × (X2)} is a local metric basis for EAG(R). This shows that
diml(EAG(R)) = 2.
(e) Let R ∼= Z[i]

(1+i)3 × Z[i]
(1+i)3 . Here (1 + i) is the maximal ideal in Z[i]

(1+i)3 such that (1 + i)3 = (0).
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Then the local metric basis for EAG(R) is W = {(0) × (1 + i), (1 + i) × (0), (1 + i) × (1 +

i), (1 + i)× (1 + i)2, (1 + i)2 × (1 + i), (0)× Z[i]
(1+i)3 ,

Z[i]
(1+i)3 × (0)}. Hence diml(EAG(R)) = 7.

Theorem 3.5. If R is a PIR and R ∼= R1 ×R2 ×R3, then

(i) Either R1, R2 and R3 are integral domains or R1 is an integral domain, R2 and R3 are
rings with unique nonzero proper ideal if and only if diml(EAG(R)) = 2.

(ii) R1, R2 are integral domains andR3 is not an integral domain if and only if diml(EAG(R)) =
|A(R3)|.

(iii) R1 is an integral domain, R2 is not an integral domain and R3 is a ring with more than one
nonzero proper ideals if and only if diml(EAG(R)) = |A(R2)| |A(R3)| − 2.

(iv) R1, R2 and R3 are rings with unique nonzero proper ideal if and only if diml(EAG(R)) =
3.

(v) R1, R2 are not integral domains and R3 is a ring with more than one nonzero proper ideals
if and only if diml(EAG(R)) = |A(R1)| |A(R2)| |A(R3)| − 5.

Proof. As R is a PIR, then R ∼=
∏n
i=1 Ri where R′is are either PIDs or SPRs.

(i) Assume that R1, R2 and R3 are integral domains. Let I1, I2 and I3 be nonzero proper ideals
in R1, R2 and R3 respectively. Consider V1 = {R1 × (0)× I3 : I3 ∈ R3}, V2 = {R1 × I2 × (0) :
I2 ∈ R2}, V3 = {I1× (0)× (0) : I1 ∈ R1}, V4 = {I1× (0)×R3 : I1 ∈ R1}, V5 = {I1× (0)× I3 :
I1 ∈ R1, I3 ∈ R3}, V6 = {I1 × I2 × (0) : I1 ∈ R1, I2 ∈ R2}, V7 = {I1 × R2 × (0) : I1 ∈ R1},
V8 = {(0) × (0) × I3 : I3 ∈ R3}, V9 = {(0) × I2 × (0) : I2 ∈ R2}, V10 = {(0) × I2 × I3 :
I2 ∈ R2, I3 ∈ R3}, V11 = {(0) × I2 × R3 : I2 ∈ R2} and V12 = {(0) × R2 × I3 : I3 ∈ R3}.
Here the induced subgraphs 〈V1〉 , 〈V2〉 , 〈V3〉 , 〈V4〉 , 〈V5〉 , 〈V6〉 , 〈V7〉 , 〈V8〉 , 〈V9〉 , 〈V10〉 , 〈V11〉 and
〈V12〉 are totally disconnected. From Figure 3.3, the twin equivalence classes in EAG(R) are
U1 = {R1×(0)×(0)}∪V3, U2 = {R1×(0)×R3}∪V1∪V4∪V5, U3 = {R1×R2×(0)}∪V2∪V6∪V7,
U4 = {(0) × (0) × R3} ∪ V8, U5 = {(0) × R2 × (0)} ∪ V9 and U6 = {(0) × R2 × R3} ∪ V10 ∪
V11 ∪ V12. Let W = {R1 × (0) × R3, R1 × (0) × (0)}. Then the adjacent vertices in EAG(R)
have different local metric representations about W . Thus diml(EAG(R)) ≤ 2. From Figure
3.3, one can check that any set of one vertex of A(R)∗ does not form a local metric set and hence
diml(EAG(R)) = 2.

U2

U4 U5

U3

U6

U1

Figure 3.3

Assume that R1 is an integral domain, R2 and R3 are rings with unique nonzero proper ideal.
Suppose that I1 is a nonzero proper ideal inR1 andM2,M3 are unique nonzero proper ideal inR2
andR3 respectively. Consider V1 = {I1×(0)×M3

j : I1 ∈ R1}, V2 = {I1×M2×M3
j : I1 ∈ R1},

V3 = {I1 ×M2
j × R3 : I1 ∈ R1} and V4 = {I1 × R2 ×M3

j : I1 ∈ R1}, for j = 1, 2. Here
the induced subgraphs 〈V1〉, 〈V2〉, 〈V3〉 and 〈V4〉 are totally disconnected. From Figure 3.4, the
twin equivalence classes in EAG(R) are U1 = {R1 × (0) ×M3

j , R1 ×M2 ×M3
j} ∪ V1 ∪ V2,

U2 = {R1 ×M2
j × R3} ∪ V3, U3 = {R1 × R2 ×M3

j} ∪ V4, U4 = {(0) × (0) ×M3}, U5 =
{(0)×R2×R3}, U6 = {(0)×R2×M3

j}, U7 = {(0)×M2
j ×R3}, U8 = {(0)×M2× (0)} and

U9 = {(0)×M2×M3}, for j = 1, 2. Let W = {(0)× (0)×R3, (0)×R2× (0)} with cardinality
2. Then the adjacent vertices in EAG(R) have different local metric representations about W .
Thus diml(EAG(R)) ≤ 2. Suppose that W = {(0)× (0)× R3}. Then D(U1|W ) = D(U8|W ),
D(U1|W ) = D(U6|W ) and D(U4|W ) = D(U9|W ), so that W is not a local metric set of
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EAG(R). Similarly, Figure 3.4 explicitly shows that diml(EAG(R)) 6= 1 for all cases. Hence
diml(EAG(R)) = 2.

U1
U2 U3

U4U5

U6

U7

U8

U9

Figure 3.4

Conversely, assume that diml(EAG(R)) = 2. Suppose that R1, R2 are integral domains and
R3 is not an integral domain. Here I1, I2 are nonzero proper ideals in R1, R2 respectively and
M3 is the maximal ideal in R3 such that Mr

3 = (0). Consider V1 = {(0) × (0) ×Mk
3 }, V2 =

{(0)× I2 ×Mk
3 : I2 ∈ R2}, V3 = {(0)× I2 × R3 : I2 ∈ R2}, V4 = {(0)× I2 × (0) : I2 ∈ R2},

V5 = {(0) × R2 ×Mk
3 }, V6 = {I1 × (0) × (0) : I1 ∈ R1}, V7 = {I1 × (0) × R3 : I1 ∈ R1},

V8 = {I1× (0)×Mk
3 : I1 ∈ R1}, V9 = {I1× I2× (0) : I1 ∈ R1, I2 ∈ R2}, V10 = {I1× I2×Mk

3 :
I1 ∈ R1, I2 ∈ R2}, V11 = {I1 × R2 × (0) : I1 ∈ R1}, V12 = {I1 × R2 × Mk

3 : I1 ∈ R1},
V13 = {R1 × (0) ×Mk

3 }, V14 = {R1 × I2 × (0) : I2 ∈ R2}, V15 = {R1 × I2 ×Mk
3 : I2 ∈ R2},

V16 = {R1 ×R2 ×Mk
3 }, for 1 ≤ k < r.

U1

U2

U3

U4

U5 U6

U7

Figure 3.5

Here the induced subgraphs 〈V1〉 is complete and 〈V2〉, 〈V3〉, 〈V4〉, 〈V5〉, 〈V6〉, 〈V7〉, 〈V8〉, 〈V9〉,
〈V10〉, 〈V11〉, 〈V12〉, 〈V13〉, 〈V14〉, 〈V15〉 and 〈V16〉 are totally disconnected. From Figure 3.5, the
twin equivalence classes in EAG(R) are U1 = V1, U2 = {(0) × R2 × (0)} ∪ V2 ∪ V4 ∪ V5,
U3 = {R1× (0)× (0)}∪V6 ∪V8 ∪V13, U4 = {(0)×R2×R3}∪V3, U5 = {R1× (0)×R3}∪V7,
U6 = {R1×R2×(0)}∪V9∪V10∪V11∪V12∪V14∪V15∪V16, U7 = {(0)×(0)×R3} and the true twin
equivalence class in EAG(R) is U1 so that at least |U1|−1 vertices from U1 must contained in the
local metric set. LetW = U1∪{(0)×R2×(0)} and so |W | = |A(R3)|. Then the adjacent vertices
in EAG(R) have different local metric representations about W . So diml(EAG(R)) ≤ |A(R3)|.
Suppose that W = U1 and |W | = |A(R3)| − 1. Then D(U2|W ) = D(U3|W ) so that W is not
a local metric set for EAG(R). Similarly for all cases, diml(EAG(R)) 6= |A(R3)| − 1. Hence
diml(EAG(R)) = |A(R3)|.
Suppose that R1 is an integral domain, R2 is not an integral domain and R3 is a ring with more
than one nonzero proper ideals. In this, I1 is a nonzero proper ideal in R1 and M2,M3 are the
maximal ideals in R2, R3 respectively such that M2

m = (0) and M3
r = (0). Consider V1 =

{(0)× (0)×M3
k}, V2 = {(0)×M2

j× (0)}, V3a = {(0)×M2
j×M3

k : (M2
j)l = (0), (M3

k)l 6=
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(0) for some l ∈ Z+}, V3b = {(0) ×M2
j ×M3

k : (M2
j)l = (M3

k)l = (0) for some l ∈ Z+},
V3c = {(0)×M2

j×M3
k : (M2

j)l 6= (0), (M3
k)l = (0) for some l ∈ Z+}, V4 = {(0)×M2

j×R3},
V5 = {(0)× R2 ×M3

k}, V6 = {I1 × (0)×M3
k : I1 ∈ R1}, V7 = {I1 ×M2

j × (0) : I1 ∈ R1},
V8 = {I1 ×M2

j ×M3
k : I1 ∈ R1}, V9 = {I1 ×M2

j × R3 : I1 ∈ R1}, V10 = {I1 × R2 ×M3
k :

I1 ∈ R1}, V11 = {R1 × (0) ×M3
k}, V12 = {R1 ×M2

j × (0)}, V13 = {R1 ×M2
j ×M3

k},
V14 = {R1 × M2

j × R3}, V15 = {R1 × R2 × M3
k}, V16 = {I1 × (0) × (0) : I1 ∈ R1},

V17 = {I1× (0)×R3 : I1 ∈ R1} and V18 = {I1×R2× (0) : I1 ∈ R1}, for 1 ≤ j < m, 1 ≤ k < r.
Here the induced subgraphs 〈V1〉, 〈V2〉, 〈V3a〉, 〈V3b〉, 〈V3c〉 are complete and 〈V4〉, 〈V5〉, 〈V6〉, 〈V7〉,
〈V8〉, 〈V9〉, 〈V10〉, 〈V11〉, 〈V12〉, 〈V13〉, 〈V14〉, 〈V15〉, 〈V16〉, 〈V17〉 and 〈V18〉 are totally disconnected.
Figure 3.6 shows that the twin equivalence classes in EAG(R) are U1 = V1∪V3a, U2 = V2∪V3c,
U3 = V3b, U4 = {(0) × (0) × R3} ∪ V4, U5 = {(0) × R2 × (0)} ∪ V5, U6 = {(0) × R2 × R3},
U7 = {R1×(0)×(0)}∪V6∪V7∪V8∪V11∪V12∪V13∪V16, U8 = {R1×(0)×R3}∪V9∪V14∪V17
and U9 = {R1 × R2 × (0)} ∪ V10 ∪ V15 ∪ V18 and the true twin equivalence classes in EAG(R)
are U1, U2 and U3 so that at least |Ui| − 1 vertices from Ui must contained in the local metric set
of EAG(R), for every i = 1, 2, 3.

U1

U2

U3

U4

U5

U6

U7

U8

U9

Figure 3.6

Let W = (
⋃3
i=1 Ui\{Ji}) ∪ {(0) × (0) × R3, (0) × R2 × (0)} where Ji ∈ Ui so that |W | =

|A(R2)| |A(R3)| − 2. Then the adjacent vertices in EAG(R) have different local metric repre-
sentations about W . Thus W is a local metric set so that diml(EAG(R)) ≤ |A(R2)| |A(R3)|−2.
Suppose that W = (

⋃3
i=1 Ui\{Ji}) ∪ {(0) × (0) × R3} where Ji ∈ Ui and the cardinality is

|A(R2)| |A(R3)| − 3. Then D(U7|W ) = D(J2|W ) and D(J1|W ) = D(J3|W ) so that W is
not a local metric set for EAG(R). From Figure 3.6, one can check that diml(EAG(R)) 6=
|A(R2)| |A(R3)| − 3 for all cases. Hence diml(EAG(R)) = |A(R2)| |A(R3)| − 2.
Suppose that R1, R2 and R3 are not integral domains. Consider R1, R2 and R3 have unique
nonzero proper ideal say, M1,M2 and M3 respectively. Here the twin equivalence classes in
EAG(R) are U1 = {R1× (0)×M3

j , R1×M2×M3
j}, U2 = {(0)×M2

j×R3,M1×M2
j×R3},

U3 = {(0) × R2 ×M3
j ,M1 × R2 ×M3

j}, U4 = {M1
j × R2 × R3}, U5 = {R1 × R2 ×M3

j},
U6 = {R1×M2

j×R3}, U7 = {(0)×(0)×M3}, U8 = {(0)×M2×(0)}, U9 = {M1×(0)×(0)},
U10 = {M1 × (0) × M3}, U11 = {M1 × M2 × (0)}, U12 = {(0) × M2 × M3} and U13 =
{M1 ×M2 ×M3}, for j = 1, 2. Let W = {R1 × (0)× (0), (0)×R2 × (0), (0)× (0)×R3} with
cardinality 3. Then the adjacent vertices in EAG(R) have distinct local metric representations
about W . Consequently, W is a local metric set of EAG(R) so that diml(EAG(R)) ≤ 3. Sup-
pose thatW = {R1×(0)×(0), (0)×R2×(0)}with cardinality 2. ThenD(U9|W ) = D(U10|W ),
D(U8|W ) = D(U12|W ),D(U11|W ) = D(U13|W ) and soW is not a local metric set of EAG(R).
Similarly, diml(EAG(R)) 6= 2 for all cases. Hence diml(EAG(R)) = 3.
Finally consider R3 to be a ring with more than one nonzero proper ideals. Here M1,M2 and
M3 are the maximal ideals in R1, R2 and R3 respectively such that M1

n = (0), M2
m = (0) and

M3
r = (0). Consider V1a = {M1

i× (0)×M3
k : (M1

i)l = (0), (M3
k)l 6= (0) for some l ∈ Z+},

V1b = {M1
i× (0)×M3

k : (M1
i)l = (M3

k)l = (0) for some l ∈ Z+}, V1c = {M1
i× (0)×M3

k :
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(M1
i)l 6= (0), (M3

k)l = (0) for some l ∈ Z+}, V2a = {M1
i × M2

j × (0) : (M1
i)l =

(0), (M2
j)l 6= (0) for some l ∈ Z+}, V2b = {M1

i ×M2
j × (0) : (M1

i)l = (M2
j)l = (0) for

some l ∈ Z+}, V2c = {M1
i ×M2

j × (0) : (M1
i)l 6= (0), (M2

j)l = (0) for some l ∈ Z+}, V3a =
{(0)×M2

j ×M3
k : (M2

j)l = (0), (M3
k)l 6= (0) for some l ∈ Z+}, V3b = {(0)×M2

j ×M3
k :

(M2
j)l = (M3

k)l = (0) for some l ∈ Z+}, V3c = {(0)×M2
j ×M3

k : (M2
j)l 6= (0), (M3

k)l =
(0) for some l ∈ Z+}, V4a = {M1

i ×M2
j ×M3

k : (M1
i)l = (M2

j)l = (0), (M3
k)l 6= (0)

for some l ∈ Z+}, V4b = {M1
i ×M2

j ×M3
k : (M1

i)l = (M3
k)l = (0), (M2

j)l 6= (0) for
some l ∈ Z+}, V4c = {M1

i ×M2
j ×M3

k : (M1
i)l 6= (0), (M2

j)l = (M3
k)l = (0) for some

l ∈ Z+}, V4d = {M1
i×M2

j×M3
k : (M1

i)l = (M2
j)l = (M3

k)l = (0) for some l ∈ Z+}, V4e =
{M1

i×M2
j×M3

k : (M1
i)l = (M2

j)l+1 = (M3
k)l+1 = (0), (M2

j)l 6= (0) and (M3
k)l 6= (0) for

some l ∈ Z+}, V4f = {M1
i ×M2

j ×M3
k : (M1

i)l 6= (0), (M3
k)l 6= (0), (M2

j)l = (M1
i)l+1 =

(M3
k)l+1 = (0) for some l ∈ Z+}, V4g = {M1

i ×M2
j ×M3

k : (M1
i)l 6= (0), (M2

j)l 6= (0)
and (M3

k)l = (M1
i)l+1 = (M2

j)l+1 = (0) for some l ∈ Z+}, V5 = {(0) × (0) × M3
k},

V6 = {(0)×M2
j×(0)}, V7 = {M1

i×(0)×(0)}, V8 = {M1
i×R2×(0)}, V9 = {(0)×R2×M3

k},
V10 = {M1

i × R2 × M3
k}, V11 = {R1 × R2 × M3

k}, V12 = {(0) × M2
j × R3}, V13 =

{M1
i×M2

j×R3}, V14 = {M1
i× (0)×R3}, V15 = {R1×M2

j×R3}, V16 = {R1× (0)×M3
k},

V17 = {R1 ×M2
j ×M3

k}, V18 = {R1 ×M2
j × (0)} and V19 = {M1

i × R2 × R3}, for every
1 ≤ i < n, 1 ≤ j < m and 1 ≤ k < r. The induced subgraphs 〈V1a〉, 〈V1b〉, 〈V1c〉, 〈V2a〉, 〈V2b〉,
〈V2c〉, 〈V3a〉, 〈V3b〉, 〈V3c〉, 〈V4a〉, 〈V4b〉, 〈V4c〉, 〈V4d〉, 〈V4e〉, 〈V4f 〉, 〈V4g〉, 〈V5〉, 〈V6〉 and 〈V7〉 are
complete graphs and 〈V8〉, 〈V9〉, 〈V10〉, 〈V11〉, 〈V12〉, 〈V13〉, 〈V14〉, 〈V15〉, 〈V16〉, 〈V17〉, 〈V18〉 and
〈V19〉 are totally disconnected.

U10 U7 U2 U6

U1

U9

U5U3U8U11

U13

U12

U4

Figure 3.7

In view of Figure 3.7, the twin equivalence classes in EAG(R) are U1 = {R1×(0)×(0)}∪V16∪
V17∪V18, U2 = {(0)×(0)×R3}∪V12∪V13∪V14, U3 = {(0)×R2×(0)}∪V8∪V9∪V10, U4 = {(0)×
R2×R3}∪V19, U5 = {R1×R2×(0)}∪V11, U6 = {R1×(0)×R3}∪V15, U7 = V1a∪V3a∪V4a∪V5,
U8 = V2a∪V3c∪V4b∪V6, U9 = V1c∪V2c∪V4c∪V7, U10 = V1b∪V4f , U11 = V2b∪V4g, U12 = V3b∪V4e
and U13 = V4d and the true twin equivalence classes are U7, U8, U9, U10, U11, U12 and U13 so that
at least |Ui| − 1 vertices from Ui must contained in the local metric set for EAG(R) for all i = 7
to 13. Let W = (

⋃13
i=7 Ui\{Ji}) ∪ {R1 × (0) × (0), (0) × R2 × (0), (0) × (0) × R3} where

Ji ∈ Ui and so |W | = |A(R1)| |A(R2)| |A(R3)| − 5. Then the adjacent vertices in EAG(R) have
distinct local metric representations about W . Hence W is a local metric set of EAG(R) and
diml(EAG(R)) ≤ |A(R1)| |A(R2)| |A(R3)| − 5. Suppose that W = (

⋃13
i=7 Ui\{Ji}) ∪ {(0) ×

R2 × (0), (0)× (0)×R3} where Ji ∈ Ui so that the cardinality is |A(R1)| |A(R2)| |A(R3)| − 6.
Then D(J7|W ) = D(J10|W ), D(J8|W ) = D(J11|W ) and D(J12|W ) = D(J13|W ). Hence W
is not a local metric set of EAG(R). Similarly, diml(EAG(R)) 6= |A(R1)| |A(R2)| |A(R3)| − 6
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for all cases. Hence diml(EAG(R)) = |A(R1)| |A(R2)| |A(R3)|−5. From all cases, R1, R2 and
R3 are integral domains or R1 is an integral domain, R2 and R3 are rings with unique nonzero
proper ideal.
(ii), (iii), (iv) and (v) follow from the proof of (i).

The following is an instance of the previous theorem.

Example 3.6. (a) If R ∼= Z× Z× Z, then W = {Z× (0)× Z,Z× (0)× (0)} is a local metric
basis so that diml(EAG(R)) = 2.
(b) LetR ∼= Z[i]×Z[i]×Z8. Here (2) is the maximal ideal in Z8 andW = {(0)×(0)×(2), (0)×
Z[i]× (0), (0)× (0)× Z8} is a local metric basis for EAG(R). Hence diml(EAG(R)) = 3.
(c) LetR ∼= Z× Z2[X]

(X2)
× Z2[X]

(X2)
. In this example, (X) is a unique nonzero proper ideal in Z2[X]

(X2)
and

the local metric basis is W = {(0)× Z2[X]
(X2)

× (0), (0)× (0)× Z2[X]
(X2)
}. Then diml(EAG(R)) = 2.

(d) Let R ∼= Z × Z8 × Z8. Then W = {(0) × (0) × (2), (0) × (2) × (0), (0) × (0) × Z8, (0) ×
Z8 × (0), (0) × (2) × (2), (0) × (2) × (4), (0) × (4) × (2)} is a local metric basis for EAG(R)
so that diml(EAG(R)) = 7.
(e) Let R ∼= R[X]

(X2)
× R[X]

(X2)
× R[X]

(X2)
. Here (X) is a unique nonzero proper ideal in R[X]

(X2)
and the local

metric basis for EAG(R) is W = {R[X]
(X2)
× (0)× (0), (0)× R[X]

(X2)
× (0), (0)× (0)× R[X]

(X2)
}. Hence

diml(EAG(R)) = 3.
(f) Let R ∼= Z[i]

(1+i)3 × Z[i]
(1+i)3 × Z[i]

(1+i)3 . In this, (1 + i) is the maximal ideal in Z[i]
(1+i)3 such that

(1 + i)3 = (0) and W = { Z[i]
(1+i)3 × (0)× (0), (0)× Z[i]

(1+i)3 × (0), (0)× (0)× Z[i]
(1+i)3 , (0)× (0)×

(1 + i), (0) × (1 + i) × (0), (1 + i) × (0) × (0), (1 + i) × (0) × (1 + i), (1 + i) × (0) × (1 +
i)2, (1 + i)2 × (0) × (1 + i), (1 + i) × (1 + i) × (0), (1 + i) × (1 + i)2 × (0), (1 + i)2 × (1 +
i)× (0), (0)× (1+ i)× (1+ i), (0)× (1+ i)× (1+ i)2, (0)× (1+ i)2 × (1+ i), (1+ i)× (1+
i)× (1 + i), (1 + i)× (1 + i)× (1 + i)2, (1 + i)× (1 + i)2 × (1 + i), (1 + i)2 × (1 + i)× (1 +
i), (1 + i)× (1 + i)2 × (1 + i)2, (1 + i)2 × (1 + i)× (1 + i)2, (1 + i)2 × (1 + i)2 × (1 + i)} is a
local metric basis for EAG(R) so that diml(EAG(R)) = 22.

Finally, we give an excel characterization of Zn in the following corollary.

Corollary 3.7. If R ∼= Zn and p, q, r be three distinct primes, then the following occurs.

(i) If n = pα, α ≥ 1, then

(a) α ≥ 2 if and only if diml(EAG(R)) = α− 2.

(b) α = 1 if and only if diml(EAG(R)) is undefined.

(ii) If n = pαqβ , α, β ≥ 1, then

(a) Either α = β = 1 or α = 1, β = 2 if and only if diml(EAG(R)) = 1.

(b) α = 1, β ≥ 3 if and only if diml(EAG(R)) = β − 1.

(c) α = β = 2 if and only if diml(EAG(R)) = 2.

(d) α ≥ 2, β ≥ 3 if and only if diml(EAG(R)) = αβ − 2.

(iii) If n = pαqβrγ , α, β, γ ≥ 1, then

(a) Either α = β = γ = 1 or α = 1, β = γ = 2 if and only if diml(EAG(R)) = 2.

(b) α = β = 1, γ ≥ 2 if and only if diml(EAG(R)) = γ.

(c) α = 1, β ≥ 2, γ ≥ 3 if and only if diml(EAG(R)) = βγ − 2.

(d) α = β = γ = 2 if and only if diml(EAG(R)) = 3.

(e) α, β ≥ 2, γ ≥ 3 if and only if diml(EAG(R)) = αβγ − 5.

Proof. As R is an artinian PIR, then R ∼=
∏n
i=1 Ri where R′is are SPRs.

(i) (a) Assume that n = pα and α ≥ 2. As R is a SPR, then by Theorem 3.2, the result holds.
Conversely, assume that diml(EAG(R)) = α−2. Let α = 1. Since EAG(R) is an empty graph,
diml(EAG(R)) is undefined. Hence α ≥ 2.
(b) Follows from (a).
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(ii) Here A(R)∗ = {(pi)}∪{(qj)}∪ ({(piqj)}\{(pαqβ)}), for 1 ≤ i ≤ α, 1 ≤ j ≤ β. The result
follows from Theorem 3.3.
(iii) In this case, A(R)∗ = {(pi)} ∪ {(qj)} ∪ {(rk)} ∪ {(piqj)} ∪ {(pirk)} ∪ {(qjrk)} ∪
({(piqjrk)}\{(pαqβrγ)}), for 1 ≤ i ≤ α, 1 ≤ j ≤ β, 1 ≤ r ≤ γ. The proof follows from
Theorem 3.5.
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