PARTITION AND LOCAL METRIC DIMENSION OF AN EXTENDED ANNIHILATING-IDEAL GRAPH

S. Nithya and G. Elavarasi
Communicated by Shailesh Kumar Srivastava
MSC 2010 Classifications: Primary 05C12, 05C25, Secondary 13A15, 13M05
Keywords and phrases: Extended annihilating-ideal graph, Partition dimension, Local Metric dimension

The authors state their thankfulness to the referee for careful reading of the manuscript and giving useful suggestions.

Abstract

In this paper, we compute the partition dimension and local metric dimension of the extended annihilating-ideal graph $\mathbb{E} \mathbb{G}(R)$ associated to a commutative ring R which is denoted by $\operatorname{dim}_{P}(\mathbb{E A}(R))$ and $\operatorname{dim}_{l}(\mathbb{E A}(R))$ respectively. In addition, we characterize $\operatorname{dim}_{l}(\mathbb{E A G}(R))$ for direct product of rings and the ring of integers \mathbb{Z}_{n}.

1 Introduction

All over this paper R denotes a commutative ring with identity $1 \neq 0$ and $\mathbb{I}(R)$ is the collection of all ideals of R. An ideal I is called an annihilating-ideal of R if $I J=(0)$ for some ideal $J \neq(0)$ of R and $\mathbb{A}(R)$ is the collection of all annihilating-ideals of R. Typically, $\mathbb{Z}, \mathbb{Z}_{n}, \mathbb{Z}^{+}$ and \mathbb{R} denote the integers, integers modulo n, positive integers and the real numbers respectively. For ring theoretic definitions, refer to [3].

In [9], Nithya and Elavarasi initiated and examined the extended annihilating-ideal graph $\mathbb{E A} \mathbb{G}(R)$ related to R, whose vertices are $\mathbb{A}(R)^{*}=\mathbb{A}(R) \backslash\{(0)\}$ and for distinct vertices I and J are adjacent if and only if $I^{n} J^{m}=(0)$ with $I^{n} \neq(0)$ and $J^{m} \neq(0)$, for some $n, m \in \mathbb{Z}^{+}$. The authors discussed in detail the diameter and girth of $\mathbb{E A} \mathbb{G}(R)$ and investigated the coincidence of $\mathbb{E} \mathbb{A}(R)$ and $\mathbb{A} \mathbb{G}(R)$. They noted that $\mathbb{E} \mathbb{A}(R)$ is a null graph if and only if R is an integral domain. Also in [10], the authors studied the metric dimension, upper dimension and the resolving number of $\mathbb{E A G}(R)$ denoted by $\operatorname{dim}_{M}(\mathbb{E} \mathbb{A}(R))$, $\operatorname{dim}^{+}(\mathbb{E} \mathbb{A}(R))$ and res $(\mathbb{E} \mathbb{A}(R))$ respectively and illustrated these parameters with examples. One can refer [2] and [8], for studying various graphs from ring theoretic structures and the metric dimension of the annihilating-ideal graph of a finite commutative ring respectively.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Recall that $S \subseteq V(G)$, the induced subgraph $\langle S\rangle$ is the graph with vertex set S and two vertices are adjacent if and only if they are adjacent in G. The distance between two vertices x and y of $G, d(x, y)$ is the length of the shortest path from x to y. A complete graph is a graph where every pair of distinct vertices are adjacent and K_{n} denotes the complete graph on n vertices. If $V(G)$ can be split into two disjoint sets V_{1} and V_{2} such that every edge joins a vertex in V_{1} to one in V_{2}, then G is a bipartite graph. A complete bipartite graph is a bipartite graph in which every vertex of one set is adjacent to every vertex of the other set and $K_{m, n}$ is the complete bipartite graph on m and n vertices and $K_{1, n}$ is a star graph. The order of the largest complete subgraph (clique) in G is known as the clique number $\omega(G)$ of G. The set of all vertices of G adjacent to the vertex v is known as the neighborhood $N(v)$ of v and $N[v]=N(v) \cup\{v\}$. For $|V(G)| \geq 2$, if $d(u, x)=d(v, x)$, for all $x \in V(G) \backslash\{u, v\}$ and $u \neq v$, then u and v are twins. If $u v \notin E(G)$ and $N(u)=N(v)$, then they are referred to as false twins. If $u v \in E(G)$ and $N[u]=N[v]$, then they are known as true twins. It can be verified that the twins produce an equivalence relation on $V(G)$ and two distinct vertices u and v are twins if they are either false twin vertices or true twin vertices. See [7], for terminology and notations in graph theory not described here .

In Sections 2 and 3, we discuss the partition dimension and local metric dimension of $\mathbb{E} \mathbb{A}(R)$ respectively.

2 Partition dimension of $\mathbb{E A} \mathbb{G}(\boldsymbol{R})$

The concept of partition dimension of a connected graph was studied in [5, 6]. For $S \subseteq V(G)$ and a vertex $v \in G$, the distance between v and S is defined as $d(v, S)=\min \{d(v, x) \mid x \in S\}$. For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ and a vertex $v \in G$, the representation of v with respect to Π is defined as the k-vector $D(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$. If the k-vectors $D(v \mid \Pi), v \in V(G)$, are distinct, then Π is called a resolving partition. The minimum k for which there is a resolving k-partition of $V(G)$ is the partition dimension $\operatorname{dim}_{P}(G)$ of G. In this Section, we ascertain the exact value of partition dimension of $\mathbb{E} \mathbb{G}(R)$. The following theorem shows the comparison between the metric dimension and the partition dimension of G as seen in [5].

Theorem 2.1. [5, Theorem 1.1] If G is a nontrivial connected graph, then $\operatorname{dim}_{P}(G) \leq \operatorname{dim}_{M}(G)+$ 1.

Note that if G is a connected graph of order $n \geq 4$ that is neither a path nor a complete graph, then $3 \leq \operatorname{dim}_{P}(G) \leq n-1$.

Theorem 2.2. If $R \cong R_{1} \times R_{2} \times \ldots \times R_{n}$ where R_{i}^{\prime} s are fields for every $i=1$ to n, then
(i) $\operatorname{dim}_{p}(\mathbb{E} \mathbb{A}(R))=n$ for $n=2,3,4$.
(ii) $\operatorname{dim}_{p}(\mathbb{E} \mathbb{A}(R)) \leq n+1$ for $n \geq 5$.

Proof. (i) For $n=2$, clearly $\mathbb{E} \mathbb{G}(R) \cong K_{2}$ so that $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=2$. For $n=3$, as said in the above note and Theorem $2.1,3 \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq \operatorname{dim}_{M}(\mathbb{E} \mathbb{A} \mathbb{G}(R))+1$. Theorem 2.5 (i) in [10] shows that $\operatorname{dim}_{M}(\mathbb{E} \mathbb{A}(R))=2$ and hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$.

Figure 2.1
For $n=4$, again Theorem $2.5(i)$ in [10] implies that $\operatorname{dim}_{M}(\mathbb{E} \mathbb{G}(R))=3$ and so $3 \leq$ $\operatorname{dim}_{p}(\mathbb{E} \mathbb{G}(R)) \leq 4$. Let $I_{1}=R_{1} \times(0) \times(0) \times(0), I_{2}=(0) \times R_{2} \times(0) \times(0), I_{3}=$ $(0) \times(0) \times R_{3} \times(0), I_{4}=(0) \times(0) \times(0) \times R_{4}, I_{5}=R_{1} \times R_{2} \times(0) \times(0), I_{6}=R_{1} \times(0) \times$ $R_{3} \times(0), I_{7}=R_{1} \times(0) \times(0) \times R_{4}, I_{8}=(0) \times R_{2} \times R_{3} \times(0), I_{9}=(0) \times R_{2} \times(0) \times R_{4}, I_{10}=$ $(0) \times(0) \times R_{3} \times R_{4}, I_{11}=R_{1} \times R_{2} \times R_{3} \times(0), I_{12}=R_{1} \times R_{2} \times(0) \times R_{4}, I_{13}=R_{1} \times(0) \times R_{3} \times R_{4}$ and $I_{14}=(0) \times R_{2} \times R_{3} \times R_{4}$. Consider 3-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=\left\{I_{1}, I_{2}, I_{5}, I_{8}, I_{13}\right\}, S_{2}=\left\{I_{3}, I_{6}, I_{9}, I_{12}, I_{14}\right\}$ and $S_{3}=\left\{I_{4}, I_{7}, I_{10}, I_{11},\right\}$. Then $D\left(I_{1} \mid \Pi\right)=$ $D\left(I_{2} \mid \Pi\right)=D\left(I_{5} \mid \Pi\right)$ implies Π is not a resolving 3-partition. From Figure 2.1, one can verify that resolving 3-partition does not exist in $\mathbb{E} \mathbb{G}(R)$ for other cases. Hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=4$. (ii) Follows from Theorem 2.1 and Theorem $2.5(i i)$ and (iii) in [10].

Recall that R is called a principal ideal ring (PIR), if every ideal is a principal ideal in R. An integral domain in which every ideal is principal is called a principal ideal domain (PID). A local artinian PIR is called a special principal ring (SPR) and it has only finitely many ideals, each of which is a power of the maximal ideal.

Theorem 2.3. If R is a $S P R$, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}(R)^{*}\right|$.

Proof. By Theorem 2.4 in [9] and Proposition 2.3 in [5], the result holds.
The following theorem computes $\operatorname{dim}_{p}(\mathbb{E A} \mathbb{G}(R))$ for direct product of certain rings.
Theorem 2.4. If $R \cong R_{1} \times R_{2}$, then the following cases occur.
(i) If R_{1} is a field and R_{2} is a ring with unique nonzero proper ideal, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$.
(ii) If R_{1} and R_{2} are rings with unique nonzero proper ideal, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=4$.
(iii) If R_{1} is a field and R_{2} is a $S P R$ with more than one nonzero proper ideals, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A}(R))$ $=\left|\mathbb{I}\left(R_{2}\right)\right|$.

Proof. (i) As $\mathbb{E} \mathbb{A} \mathbb{G}(R) \cong K_{2,2}$, then by Theorem 2.4 in [5], $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$.
(ii) Assume that R_{1} and R_{2} are rings with unique nonzero proper ideal, say I_{1} and I_{2} respectively. Then the above note and Theorem 2.1 show that $3 \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{G}(R)) \leq \operatorname{dim}_{M}(\mathbb{E} \mathbb{A}(R))+1$. As noted in the proof of the Theorem 2.6 in [10], $\operatorname{dim}_{M}(\mathbb{E} \mathbb{A}(R))=3$ implies that $3 \leq$ $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq 4$. Clearly $d\left(R_{1} \times(0), J\right)=d\left(R_{1} \times I_{2}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{R_{1} \times\right.$ $\left.(0), R_{1} \times I_{2}\right\}$ and $d\left((0) \times R_{2}, J\right)=d\left(I_{1} \times R_{2}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{(0) \times R_{2}, I_{1} \times R_{2}\right\}$. Suppose that 3-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ of $\mathbb{A}(R)^{*}$. Then by Lemma 2.2 in [5], $R_{1} \times(0)$ and $R_{1} \times I_{2}$ contained in distinct elements of Π. Similarly, $(0) \times R_{2}$ and $I_{1} \times R_{2}$ contained in distinct elements of Π. Let $S_{1}=\left\{(0) \times R_{2}, R_{1} \times(0)\right\}, S_{2}=\left\{I_{1} \times R_{2}, R_{1} \times I_{2}\right\}$ and the remaining vertices $J_{1}=I_{1} \times(0), J_{2}=(0) \times I_{2}, J_{3}=I_{1} \times I_{2}$ contained in anyone of the elements of Π. Consider $S_{3}=\left\{J_{1}, J_{2}, J_{3}\right\}$. Then $D\left(J_{1} \mid \Pi\right)=D\left(J_{2} \mid \Pi\right)$ implies Π is not a resolving 3-partition. From Figure 2.2, one can view that Π is not a resolving 3-partition for other cases. Hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{G}(R))=4$.

Figure 2.2
(iii) Let M_{2} be the maximal ideal in R_{2} such that $M_{2}{ }^{m}=(0)$. The nonzero annihilating-ideals of R are $R_{1} \times(0),(0) \times R_{2}, V_{1}=\left\{(0) \times M_{2}{ }^{j}\right\}$ and $V_{2}=\left\{R_{1} \times M_{2}{ }^{j}\right\}$, for $1 \leq j<m$. The induced subgraphs $\left\langle V_{1}\right\rangle$ is complete and $\left\langle V_{2}\right\rangle$ is totally disconnected. Also any one edge ends at V_{i} means that edge adjacent to all the vertices in V_{i}.

Figure 2.3
From Figure 2.3, $d\left((0) \times M_{2}, J\right)=d\left((0) \times M_{2}^{2}, J\right)=\ldots=d\left((0) \times M_{2}{ }^{m-1}, J\right)$, for all $J \in$ $\mathbb{A}(R)^{*} \backslash V_{1}$ and $d\left(R_{1} \times(0), J\right)=d\left(R_{1} \times M_{2}, J\right)=d\left(R_{1} \times M_{2}^{2}, J\right)=\ldots=d\left(R_{1} \times M_{2}{ }^{m-1}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left(\left\{R_{1} \times(0)\right\} \cup V_{2}\right)$. Now let $m+1$-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{m+1}\right\}$ of $\mathbb{A}(R)^{*}$. Then again by Lemma 2.2 in [5], consider $S_{1}=\left\{(0) \times M_{2}, R_{1} \times M_{2}\right\}, S_{2}=\left\{(0) \times M_{2}{ }^{2}, R_{1} \times\right.$ $\left.M_{2}^{2}\right\}, \ldots, S_{m-1}=\left\{(0) \times M_{2}{ }^{m-1}, R_{1} \times M_{2}{ }^{m-1}\right\}, S_{m}=\left\{R_{1} \times(0)\right\}, S_{m+1}=\left\{(0) \times R_{2}\right\}$. Clearly, Π is a resolving $(m+1)$-partition and so $\left|\mathbb{I}\left(R_{2}\right)^{*}\right|=m \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{A}(R)) \leq m+1=\left|\mathbb{I}\left(R_{2}\right)\right|$.

Suppose that m-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}, S_{2}, \ldots, S_{m}$ are constructed as above and the remaining vertex $(0) \times R_{2}$ contained in any one of the elements of Π. If $(0) \times R_{2} \in S_{i}$, then $D\left((0) \times R_{2} \mid \Pi\right)=D\left((0) \times M_{2}{ }^{i} \mid \Pi\right)$, for $i=1$ to $m-1$. If $(0) \times R_{2} \in S_{m}$, then vertices in each S_{i} have same partition metric representations about Π, for every $i=1$ to m. Thus Π is not a resolving m-partition. Finally, resolving m-partition does not exist for all cases. Thus $\operatorname{dim}_{p}(\mathbb{E} \mathbb{G}(R))=m+1=\left|\mathbb{I}\left(R_{2}\right)\right|$.

The following examples point up the previous theorem.

Example 2.5. (a) If $R \cong \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}+X+1\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)}$ where $\frac{\mathbb{Z}_{2}[X]}{\left(X^{2}+X+1\right)}$ is a field and (X) is a unique nonzero proper ideal in $\frac{\mathbb{R}[X]}{\left(X^{2}\right)}$, then clearly $\mathbb{E} \mathbb{A}(R) \cong K_{2,2}$. Consider 3-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=\left\{(0) \times(X), \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}+X+1\right)} \times(0)\right\}, S_{2}=\left\{(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)}\right\}$ and $S_{3}=\left\{\frac{\mathbb{Z}_{2}[X]}{\left(X^{2}+X+1\right)} \times(X)\right\}$. From this, Π is a resolving 3-partition and hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{G}(R))=3$.
(b) Let $R \cong \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{Z}[i]}{(1+i)^{2}}$. In this case, (X) and $(1+i)$ are the unique nonzero proper ideal in $\frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)}$ and $\frac{\mathbb{Z}[i]}{(1+i)^{2}}$ respectively. Consider 4-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=$ $\left\{\frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)} \times(0),(0) \times(1+i)\right\}, S_{2}=\left\{\frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)} \times(1+i),(X) \times(1+i)\right\}, S_{3}=\left\{(0) \times \frac{\mathbb{Z}[i]}{(1+i)^{2}},(X) \times(0)\right\}$ and $S_{4}=\left\{(X) \times \frac{\mathbb{Z}[i]}{(1+i)^{2}}\right\}$. This forms a resolving 4-partition and so $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=4$.
(c) Let $R \cong \mathbb{Z}_{2} \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}$ where $\frac{\mathbb{R}[X]}{\left(X^{3}\right)}$ is a SPR with the maximal ideal (X) such that $\left(X^{3}\right)=(0)$ and $\mathbb{A}(R)^{*}=\left\{\mathbb{Z}_{2} \times(0),(0) \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}\right\} \cup V_{1} \cup V_{2}$ where $V_{1}=\left\{(0) \times(X),(0) \times\left(X^{2}\right)\right\}$ and $V_{2}=\left\{\mathbb{Z}_{2} \times(X), \mathbb{Z}_{2} \times\left(X^{2}\right)\right\}$. Consider 4-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=\left\{(0) \times(X), \mathbb{Z}_{2} \times(X)\right\}, S_{2}=\left\{(0) \times\left(X^{2}\right), \mathbb{Z}_{2} \times\left(X^{2}\right)\right\}, S_{3}=\left\{(0) \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}\right\}$ and $S_{4}=\left\{\mathbb{Z}_{2} \times(0)\right\}$. This implies Π is a resolving 4-partition and hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=4$.

Theorem 2.6. If $R \cong R_{1} \times R_{2} \times R_{3}$, then the following holds.
(i) If R_{1}, R_{2} are fields and R_{3} is a SPR and not a field, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{3}\right)\right|+2$.
(ii) If R_{1} is a field, R_{2} and R_{3} are rings with unique nonzero proper ideal, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))$ $=6$.
(iii) If R_{1}, R_{2} and R_{3} are rings with unique nonzero proper ideal, then $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=7$.

Proof. (i) Let M_{3} be the maximal ideal in R_{3} such that $M_{3}{ }^{r}=(0)$. Consider $V_{1}=\{(0) \times(0) \times$ $\left.M_{3}{ }^{k}\right\}, V_{2}=\left\{(0) \times R_{2} \times M_{3}{ }^{k}\right\}, V_{3}=\left\{R_{1} \times(0) \times M_{3}{ }^{k}\right\}$ and $V_{4}=\left\{R_{1} \times R_{2} \times M_{3}{ }^{k}\right\}$, for $1 \leq k<r$. In Figure 2.4, the induced subgraphs $\left\langle V_{1}\right\rangle$ is complete and $\left\langle V_{2}\right\rangle,\left\langle V_{3}\right\rangle$ and $\left\langle V_{4}\right\rangle$ are totally disconnected. Also $d\left((0) \times(0) \times M_{3}{ }^{k_{1}}, J\right)=d\left((0) \times(0) \times M_{3}{ }^{k_{2}}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash V_{1}$, $d\left((0) \times R_{2} \times M_{3}^{k_{1}}, J\right)=d\left((0) \times R_{2} \times M_{3}^{k_{2}}, J\right)=d\left((0) \times R_{2} \times(0), J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left(V_{2} \cup\right.$ $\left.\left\{(0) \times R_{2} \times(0)\right\}\right), d\left(R_{1} \times(0) \times M_{3}^{k_{1}}, J\right)=d\left(R_{1} \times(0) \times M_{3}{ }^{k_{2}}, J\right)=d\left(R_{1} \times(0) \times(0), J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left(V_{3} \cup\left\{R_{1} \times(0) \times(0)\right\}\right)$ and $d\left(R_{1} \times R_{2} \times M_{3}^{k_{1}}, J\right)=d\left(R_{1} \times R_{2} \times M_{3}^{k_{2}}, J\right)=$ $d\left(R_{1} \times R_{2} \times(0), J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left(V_{4} \cup\left\{R_{1} \times R_{2} \times(0)\right\}\right)$ and $1 \leq k_{1}<k_{2}<r$. Let Π be a partition of $\mathbb{A}(R)^{*}$. Then by Lemma 2.2 in [5], $\left|\mathbb{A}\left(R_{3}\right)\right|=r \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))$. Choose r-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}=\left\{(0) \times(0) \times M_{3},(0) \times R_{2} \times M_{3}, R_{1} \times\right.$ $\left.(0) \times M_{3}, R_{1} \times R_{2} \times M_{3}\right\}, S_{2}=\left\{(0) \times(0) \times M_{3}^{2},(0) \times R_{2} \times M_{3}^{2}, R_{1} \times(0) \times M_{3}^{2}, R_{1} \times\right.$ $\left.R_{2} \times M_{3}^{2}\right\}, \ldots, S_{r-1}=\left\{(0) \times(0) \times M_{3}^{r-1},(0) \times R_{2} \times M_{3}^{r-1}, R_{1} \times(0) \times M_{3}^{r-1}, R_{1} \times R_{2} \times\right.$ $\left.M_{3}^{r-1}\right\}, S_{r}=\left\{(0) \times R_{2} \times(0), R_{1} \times R_{2} \times(0), R_{1} \times(0) \times(0)\right\}$ and the remaining vertices $J_{1}=$ $(0) \times R_{2} \times R_{3}, J_{2}=R_{1} \times(0) \times R_{3}$ and $J_{3}=(0) \times(0) \times R_{3}$ contained in any one of S_{i}, for $i=1$ to r. Then $D\left((0) \times(0) \times M_{3} \mid \Pi\right)=D\left((0) \times R_{2} \times M_{3} \mid \Pi\right)=D\left(R_{1} \times(0) \times M_{3} \mid \Pi\right)=(0,1,1, \ldots, 1)$ and so Π is not a resolving r-partition. From Figure 2.4, resolving r-partition does not exist for all cases. Hence $\left|\mathbb{A}\left(R_{3}\right)\right|+1=r+1 \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))$.

Figure 2.4
Consider $r+$ 1-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{r+1}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}, S_{2}, \ldots, S_{r}$ are constructed as above. Consider either $S_{r+1}=\left\{J_{1}, J_{2}, J_{3}\right\}$ or any two vertices of J_{1}, J_{2}, J_{3} contained in S_{r+1}. Then $D\left((0) \times R_{2} \times M_{3}{ }^{k} \mid \Pi\right)=D\left(R_{1} \times(0) \times M_{3}{ }^{k} \mid \Pi\right)$, for $1 \leq k<r$ implies Π is not a resolving $(r+1)$-partition. Suppose that any one vertex of J_{1}, J_{2}, J_{3} contained in S_{r+1} and remaining two vertices in any one of S_{i}, for all $i=1$ to r. Consider $J_{1} \in S_{r+1}$, then $D\left((0) \times(0) \times M_{3} \mid \Pi\right)=D\left((0) \times R_{2} \times M_{3} \mid \Pi\right)=(0,1,1, \ldots, 1,2)$. Suppose $J_{2} \in S_{r+1}$, then $D\left((0) \times(0) \times M_{3} \mid \Pi\right)=D\left(R_{1} \times(0) \times M_{3} \mid \Pi\right)=(0,1,1, \ldots, 1,2)$. If $J_{3} \in S_{r+1}$, then $D\left((0) \times R_{2} \times\right.$ $\left.M_{3} \mid \Pi\right)=D\left(R_{1} \times(0) \times M_{3} \mid \Pi\right)=(0,1,1, . .1,1)$. This shows that Π is not a resolving $(r+1)-$ partition. Hence in all cases, resolving $(r+1)$-partition does not exist and so $\operatorname{dim}_{p}(\mathbb{E} \mathbb{G}(R)) \geq$ $r+2=\left|\mathbb{A}\left(R_{3}\right)\right|+2$.
Consider $r+2$-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{r+2}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}, S_{2}, \ldots, S_{r-1}$ are constructed as above and $S_{r}=\left\{(0) \times R_{2} \times(0), R_{1} \times R_{2} \times(0), R_{1} \times(0) \times(0), J_{3}\right\}, S_{r+1}=\left\{J_{2}\right\}, S_{r+2}=\left\{J_{1}\right\}$. It is clear that the vertices in $\mathbb{A}(R)^{*}$ have different partition metric representations about Π and so Π is a resolving $(r+2)$-partition. Hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=r+2=\left|\mathbb{A}\left(R_{3}\right)\right|+2$.
(ii) Let I_{2} and I_{3} be unique nonzero proper ideal in R_{2} and R_{3} respectively. Clearly $d\left(R_{1} \times(0) \times\right.$ (0), $J)=d\left(R_{1} \times(0) \times I_{3}, J\right)=d\left(R_{1} \times I_{2} \times(0), J\right)=d\left(R_{1} \times I_{2} \times I_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{R_{1} \times\right.$ $\left.(0) \times(0), R_{1} \times(0) \times I_{3}, R_{1} \times I_{2} \times(0), R_{1} \times I_{2} \times I_{3}\right\}, d\left(R_{1} \times(0) \times R_{3}, J\right)=d\left(R_{1} \times I_{2} \times R_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{R_{1} \times(0) \times R_{3}, R_{1} \times I_{2} \times R_{3}\right\}, d\left(R_{1} \times R_{2} \times(0), J\right)=d\left(R_{1} \times R_{2} \times I_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{R_{1} \times R_{2} \times(0), R_{1} \times R_{2} \times I_{3}\right\}, d\left((0) \times(0) \times R_{3}, J\right)=d\left((0) \times I_{2} \times R_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{(0) \times(0) \times R_{3},(0) \times I_{2} \times R_{3}\right\}, d\left((0) \times R_{2} \times(0), J\right)=d\left((0) \times R_{2} \times I_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{(0) \times R_{2} \times(0),(0) \times R_{2} \times I_{3}\right\}$. Consider 6-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right\}$ of $\mathbb{A}(R)^{*}$. By Lemma 2.2 in [5], $S_{1}=\left\{R_{1} \times(0) \times(0), R_{1} \times(0) \times R_{3},(0) \times(0) \times R_{3}, R_{1} \times R_{2} \times\right.$ $\left.(0),(0) \times R_{2} \times(0)\right\}, S_{2}=\left\{R_{1} \times(0) \times I_{3}, R_{1} \times I_{2} \times R_{3},(0) \times I_{2} \times R_{3}, R_{1} \times R_{2} \times I_{3},(0) \times R_{2} \times\right.$ $\left.I_{3}\right\}, S_{3}=\left\{R_{1} \times I_{2} \times(0),(0) \times R_{2} \times R_{3},(0) \times(0) \times I_{3}\right\}, S_{4}=\left\{R_{1} \times I_{2} \times I_{3}\right\}, S_{5}=\left\{(0) \times I_{2} \times I_{3}\right\}$ and $S_{6}=\left\{(0) \times I_{2} \times(0)\right\}$. Then Π is a resolving 6-partition and so $4 \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq 6$. Suppose that 4-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}=\left\{R_{1} \times(0) \times(0), R_{1} \times(0) \times\right.$ $\left.R_{3},(0) \times(0) \times R_{3}, R_{1} \times R_{2} \times(0),(0) \times R_{2} \times(0)\right\}, S_{2}=\left\{R_{1} \times(0) \times I_{3}, R_{1} \times I_{2} \times R_{3},(0) \times I_{2} \times\right.$ $\left.R_{3}, R_{1} \times R_{2} \times I_{3},(0) \times R_{2} \times I_{3}\right\}, S_{3}=\left\{R_{1} \times I_{2} \times(0)\right\}, S_{4}=\left\{R_{1} \times I_{2} \times I_{3}\right\}$ and the remaining vertices $J_{1}=(0) \times R_{2} \times R_{3}, J_{2}=(0) \times(0) \times I_{3}, J_{3}=(0) \times I_{2} \times I_{3}, J_{4}=(0) \times I_{2} \times(0)$ contained in any set of $S_{i}{ }^{\prime} s$, for all $i=1$ to 4 , implies that $D\left((0) \times(0) \times R_{3} \mid \Pi\right)=D\left((0) \times R_{2} \times(0) \mid \Pi\right)=$ $(0,1,1,1)$ and so Π is not a resolving 4-partition. Similarly in all cases, $\operatorname{dim}_{P}(\mathbb{E A} \mathbb{G}(R)) \geq 5$. Consider 5-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}, S_{2}, S_{3}, S_{4}$ are constructed as above. Consider any set of k vertices of $J_{1}, J_{2}, J_{3}, J_{4}$ contained in S_{5}, for $k=2$ to 4, then $D\left(J_{t} \mid \Pi\right)=D\left(J_{m} \mid \Pi\right)=(1,1,1,1,0)$ where $J_{t}, J_{m} \in S_{5}, t, m=1$ to 4 and $t \neq m$. Hence Π is not a resolving 5-partition. Suppose that any one vertex of $J_{1}, J_{2}, J_{3}, J_{4}$ contained in S_{5} and remaining three vertices in any one of S_{i}, for all $i=1$ to 4 . Consider $J_{1} \in S_{5}$, then $D\left((0) \times(0) \times R_{3} \mid \Pi\right)=D\left((0) \times R_{2} \times(0) \mid \Pi\right)=(0,1,1,1,2)$. Thus Π is not a resolving 5partition. Similarly, resolving 5-partition does not exist for all cases so that $\operatorname{dim}_{p}(\mathbb{E} \mathbb{A}(R))=6$. (iii) Let I_{1}, I_{2} and I_{3} be unique nonzero proper ideal in R_{1}, R_{2} and R_{3} respectively. It is clear that $d\left(R_{1} \times(0) \times(0), J\right)=d\left(R_{1} \times(0) \times I_{3}, J\right)=d\left(R_{1} \times I_{2} \times(0), J\right)=d\left(R_{1} \times I_{2} \times I_{3}, J\right)$, for all $J \in A(R)^{*} \backslash\left\{R_{1} \times(0) \times(0), R_{1} \times(0) \times I_{3}, R_{1} \times I_{2} \times(0), R_{1} \times I_{2} \times I_{3}\right\}, d\left((0) \times(0) \times R_{3}, J\right)=d((0) \times$
$\left.I_{2} \times R_{3}, J\right)=d\left(I_{1} \times I_{2} \times R_{3}, J\right)=d\left(I_{1} \times(0) \times R_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{(0) \times(0) \times R_{3},(0) \times I_{2} \times\right.$ $\left.R_{3}, I_{1} \times I_{2} \times R_{3}, I_{1} \times(0) \times R_{3}\right\}, d\left((0) \times R_{2} \times(0), J\right)=d\left((0) \times R_{2} \times I_{3}, J\right)=d\left(I_{1} \times R_{2} \times(0), J\right)=$ $d\left(I_{1} \times R_{2} \times I_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{(0) \times R_{2} \times(0),(0) \times R_{2} \times I_{3}, I_{1} \times R_{2} \times(0), I_{1} \times R_{2} \times I_{3}\right\}$, $d\left((0) \times R_{2} \times R_{3}, J\right)=d\left(I_{1} \times R_{2} \times R_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{(0) \times R_{2} \times R_{3}, I_{1} \times R_{2} \times R_{3}\right\}$, $d\left(R_{1} \times R_{2} \times(0), J\right)=d\left(R_{1} \times R_{2} \times I_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{R_{1} \times R_{2} \times(0), R_{1} \times R_{2} \times I_{3}\right\}$, $d\left(R_{1} \times(0) \times R_{3}, J\right)=d\left(R_{1} \times I_{2} \times R_{3}, J\right)$, for all $J \in \mathbb{A}(R)^{*} \backslash\left\{R_{1} \times(0) \times R_{3}, R_{1} \times I_{2} \times R_{3}\right\}$. Suppose that 7-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\}$ of $\mathbb{A}(R)^{*}$. Then again by Lemma 2.2 in [5], consider $S_{1}=\left\{R_{1} \times(0) \times(0),(0) \times(0) \times R_{3},(0) \times R_{2} \times(0), R_{1} \times R_{2} \times(0), R_{1} \times(0) \times\right.$ $\left.R_{3},(0) \times R_{2} \times R_{3},(0) \times I_{2} \times I_{3}\right\}, S_{2}=\left\{R_{1} \times(0) \times I_{3},(0) \times I_{2} \times R_{3},(0) \times R_{2} \times I_{3}, R_{1} \times R_{2} \times\right.$ $\left.I_{3}, R_{1} \times I_{2} \times R_{3}, I_{1} \times R_{2} \times R_{3}\right\}, S_{3}=\left\{R_{1} \times I_{2} \times(0), I_{1} \times I_{2} \times R_{3}, I_{1} \times R_{2} \times(0), I_{1} \times(0) \times I_{3}\right\}$, $S_{4}=\left\{R_{1} \times I_{2} \times I_{3}, I_{1} \times(0) \times R_{3}, I_{1} \times R_{2} \times I_{3}, I_{1} \times I_{2} \times(0)\right\}, S_{5}=\left\{I_{1} \times(0) \times(0), I_{1} \times I_{2} \times I_{3}\right\}$, $S_{6}=\left\{(0) \times I_{2} \times(0)\right\}$ and $S_{7}=\left\{(0) \times(0) \times I_{3}\right\}$. Then the vertex in every S_{i}, for all $i=1$ to 7 has distinct partition metric representations about Π. Consequently, Π is a resolving 7-partition and so $4 \leq \operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq 7$. Suppose that 4-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}=\left\{R_{1} \times(0) \times(0),(0) \times(0) \times R_{3},(0) \times R_{2} \times(0), R_{1} \times R_{2} \times(0), R_{1} \times(0) \times R_{3},(0) \times R_{2} \times R_{3}\right\}$, $S_{2}=\left\{R_{1} \times(0) \times I_{3},(0) \times I_{2} \times R_{3},(0) \times R_{2} \times I_{3}, R_{1} \times R_{2} \times I_{3}, R_{1} \times I_{2} \times R_{3}, I_{1} \times R_{2} \times R_{3}\right\}$, $S_{3}=\left\{R_{1} \times I_{2} \times(0), I_{1} \times I_{2} \times R_{3}, I_{1} \times R_{2} \times(0)\right\}, S_{4}=\left\{R_{1} \times I_{2} \times I_{3}, I_{1} \times(0) \times R_{3}, I_{1} \times R_{2} \times I_{3}\right\}$ and the remaining vertices $J_{1}=(0) \times I_{2} \times I_{3}, J_{2}=I_{1} \times(0) \times I_{3}, J_{3}=I_{1} \times I_{2} \times(0), J_{4}=$ $I_{1} \times(0) \times(0), J_{5}=I_{1} \times I_{2} \times I_{3}, J_{6}=(0) \times I_{2} \times(0)$ and $J_{7}=(0) \times(0) \times I_{3}$ contained in any one of S_{i}, for $i=1$ to 4 . This implies $D\left((0) \times(0) \times R_{3} \mid \Pi\right)=D\left((0) \times R_{2} \times(0) \mid \Pi\right)=$ $D\left((0) \times R_{2} \times R_{3} \mid \Pi\right)=(0,1,1,1)$ and so Π is not a resolving 4-partition. As similar argument for all other cases, $\operatorname{dim}_{P}(\mathbb{E} \mathbb{G}(R)) \geq 5$.
Consider 5-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}, S_{2}, S_{3}, S_{4}$ are constructed as above. Any set of k vertices of $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}, J_{7}$ contained in S_{5}, for $k=1$ to 7 does not form a resolving 5-partition about Π. Since $D(I \mid \Pi)=\left(0,1,1,1, d\left(I, S_{5}\right)\right)$, for all $I \in$ $S_{1} \backslash\left\{J_{5}\right\}$ and $d\left(I, S_{5}\right)=1$ or 2 implies that any two vertices in S_{1} have same partition metric representations about Π. Argument is similar if the vertices of S_{i} are replaced, for $i=1$ to 5 . Hence $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A}(R)) \geq 6$.
Suppose that 6-partition $\bar{\Pi}=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right\}$ of $\mathbb{A}(R)^{*}$ and $S_{1}, S_{2}, S_{3}, S_{4}$ are constructed as above and if $J_{1} \in S_{1}, J_{2} \in S_{3}, J_{3} \in S_{4}, S_{5}=\left\{J_{4}, J_{5}\right\}$ and $S_{6}=\left\{J_{6}, J_{7}\right\}$, then $D((0) \times(0) \times$ $\left.R_{3} \mid \Pi\right)=D\left((0) \times R_{2} \times(0) \mid \Pi\right)=D\left(J_{1} \mid \Pi\right)$. Hence Π is not a resolving 6 -partition. Similarly, placing J_{t} in any S_{i}, for all $t=1$ to 7 and $i=1$ to 6 implies that Π is not a resolving 6-partition. Also in all cases, $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A}(R)) \geq 7$, so that $\left.\operatorname{dim}_{P}(\mathbb{E} \mathbb{G}(R))\right)=7$.

We conclude this section by providing certain examples which demonstrates the previous theorem.
Example 2.7. (a) Let $R \cong \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}$. Here (X) is the maximal ideal in $\frac{\mathbb{R}[X]}{\left(X^{3}\right)}$. Consider 5-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=\{(0) \times(0) \times(X),(0) \times$ $\left.\frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(X), \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(0) \times(X), \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(X)\right\}, S_{2}=\left\{(0) \times(0) \times\left(X^{2}\right),(0) \times\right.$
 $\left.(0) \times(0), \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(0),(0) \times(0) \times \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)}\right\}, S_{4}=\left\{\frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(0) \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}\right\}$ and $S_{5}=$ $\left\{(0) \times \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}\right\}$. This forms a resolving 5-partition so that $\operatorname{dim}_{P}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=5$.
(b) Let $R \cong \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9}$. In this, (2) and (3) are the unique nonzero proper ideal in \mathbb{Z}_{4} and \mathbb{Z}_{9} respectively. Consider 6-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=\left\{\frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(0) \times(0), \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(0) \times \mathbb{Z}_{9},(0) \times(0) \times \mathbb{Z}_{9}, \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \mathbb{Z}_{4} \times(0),(0) \times \mathbb{Z}_{4} \times(0)\right\}$, $S_{2}=\left\{\frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(0) \times(3), \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(2) \times \mathbb{Z}_{9},(0) \times(2) \times \mathbb{Z}_{9}, \frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times \mathbb{Z}_{4} \times(3),(0) \times \mathbb{Z}_{4} \times(3)\right\}$, $S_{3}=\left\{\frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(2) \times(0),(0) \times \mathbb{Z}_{4} \times \mathbb{Z}_{9},(0) \times(0) \times(3)\right\}, S_{4}=\left\{\frac{\mathbb{Z}_{5}[X]}{\left(X^{2}+2\right)} \times(2) \times(3)\right\}, S_{5}=$ $\{(0) \times(2) \times(3)\}$ and $S_{6}=\{(0) \times(2) \times(0)\}$. From this, Π is a resolving 6-partition and so $\operatorname{dim}_{p}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=6$.
(c) Let $R \cong \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)}$. Here (X) is a unique nonzero proper ideal in $\frac{\mathbb{R}[X]}{\left(X^{2}\right)}$. Suppose that 7-partition $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\}$ of $\mathbb{A}(R)^{*}$, where $S_{1}=\left\{\frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0) \times(0),(0) \times(0) \times\right.$ $\left.\frac{\mathbb{R}[X]}{\left(X^{2}\right)},(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0), \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0), \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)},(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)},(0) \times(X) \times(X)\right\}$,
$S_{2}=\left\{\frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0) \times(X),(0) \times(X) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)},(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(X), \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(X), \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(X) \times\right.$ $\left.\frac{\mathbb{R}[X]}{\left(X^{2}\right)},(X) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{X^{2}}\right)}\right\}, S_{3}=\left\{\frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(X) \times(0),(X) \times(X) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)},(X) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0),(X) \times\right.$ $(0) \times(X)\}, S_{4}=\left\{\frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(X) \times(X),(X) \times(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)},(X) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(X),(X) \times(X) \times(0)\right\}$, $S_{5}=\{(X) \times(0) \times(0),(X) \times(X) \times(X)\}, S_{6}=\{(0) \times(X) \times(0)\}$ and $S_{7}=\{(0) \times(0) \times(X)\}$. This forms a resolving 7-partition. Hence $\operatorname{dim}_{p}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=7$.

3 Local metric dimension of $\mathbb{E A G}(\boldsymbol{R})$

The local metric dimension of a graph was introduced by Okamoto et al. [11]. For an ordered subset $W=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of $V(G)$ and a vertex $v \in G$, the representation of v with respect to W is defined as the k-vector $D(v \mid W)=\left(d\left(v, v_{1}\right), d\left(v, v_{2}\right), \ldots, d\left(v, v_{k}\right)\right)$. If $D(u \mid W) \neq D(v \mid W)$ for every pair u, v of adjacent vertices of G, then the set W is a local metric set of G. The minimum cardinality of a local metric set W is the local metric basis for G and the number of elements in the local metric basis is the local metric dimension of G and it is denoted by $\operatorname{dim}_{l}(G)$. Note that if G is a nontrivial connected graph of order n, then $1 \leq \operatorname{dim}_{l}(G) \leq \operatorname{dim}_{M}(G) \leq n-1$. In this Section, we explore the local metric dimension of $\mathbb{E} \mathbb{A}(R)$. The following theorem computes $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))$ for direct product of fields.

Theorem 3.1. If $R \cong R_{1} \times R_{2} \times \ldots \times R_{n}$ where R_{i}^{\prime} s are fields for every $i=1$ to n and $n \geq 2$, then
(i) $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))=n-1$ where $2 \leq n \leq 5$.
(ii) $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R)) \leq n$ where $n \geq 6$.

Proof. (i) For $n=2$. Then clearly $\operatorname{dim}_{l}(\mathbb{E A G}(R))=1$. Let $n=3$. As $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \leq$ $\operatorname{dim}_{M}(\mathbb{E} \mathbb{A} \mathbb{G}(R))$, then by Theorem $2.5(i)$ in $[10], \operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \leq 2$. Since $\omega(\mathbb{E} \mathbb{A} \mathbb{G}(R))=$ 3, then by Theorem 3.1 in [11]., $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \geq\left\lceil\log _{2} 3\right\rceil$. As $\left\lceil\log _{2} 3\right\rceil=2, \operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \geq$ 2. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$. For $n=4$, by Theorem $2.5(i)$ in $[10], \operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq 3$. From Figure 2.1, $\omega(\mathbb{E} \mathbb{A} \mathbb{G}(R))=4$. Then again by Theorem 3.1 in $[11], \operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \geq$ $\left\lceil\log _{2} 4\right\rceil=2$. Obviously, any collection of two vertices in $\mathbb{E A} \mathbb{G}(R)$ does not form a local metric set so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \geq 3$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$.
For $n=5$, the nonzero annihilating-ideals of R are $V_{1}=\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}\right\}, V_{2}=\left\{J_{1}, J_{2}, J_{3}, J_{4}\right.$, $\left.J_{5}, J_{6}, J_{7}, J_{8}, J_{9}, J_{10}\right\}, V_{3}=\left\{N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}, N_{7}, N_{8}, N_{9}, N_{10}\right\}$ and $V_{4}=\left\{L_{1}, L_{2}, L_{3}, L_{4}\right.$, $\left.L_{5}\right\}$, where $I_{1}=R_{1} \times(0) \times(0) \times(0) \times(0), I_{2}=(0) \times R_{2} \times(0) \times(0) \times(0), I_{3}=(0) \times(0) \times$ $R_{3} \times(0) \times(0), I_{4}=(0) \times(0) \times(0) \times R_{4} \times(0), I_{5}=(0) \times(0) \times(0) \times(0) \times R_{5}, J_{1}=$ $R_{1} \times R_{2} \times(0) \times(0) \times(0), J_{2}=R_{1} \times(0) \times R_{3} \times(0) \times(0), J_{3}=R_{1} \times(0) \times(0) \times R_{4} \times(0), J_{4}=$ $R_{1} \times(0) \times(0) \times(0) \times R_{5}, J_{5}=(0) \times R_{2} \times R_{3} \times(0) \times(0), J_{6}=(0) \times R_{2} \times(0) \times R_{4} \times(0), J_{7}=$ $(0) \times R_{2} \times(0) \times(0) \times R_{5}, J_{8}=(0) \times(0) \times R_{3} \times R_{4} \times(0), J_{9}=(0) \times(0) \times R_{3} \times(0) \times R_{5}, J_{10}=$ $(0) \times(0) \times(0) \times R_{4} \times R_{5}, N_{1}=R_{1} \times R_{2} \times R_{3} \times(0) \times(0), N_{2}=R_{1} \times R_{2} \times(0) \times R_{4} \times(0), N_{3}=$ $R_{1} \times R_{2} \times(0) \times(0) \times R_{5}, N_{4}=R_{1} \times(0) \times R_{3} \times R_{4} \times(0), N_{5}=R_{1} \times(0) \times R_{3} \times(0) \times R_{5}, N_{6}=$ $R_{1} \times(0) \times(0) \times R_{4} \times R_{5}, N_{7}=(0) \times R_{2} \times R_{3} \times R_{4} \times(0), N_{8}=(0) \times R_{2} \times R_{3} \times(0) \times R_{5}, N_{9}=$ $(0) \times R_{2} \times(0) \times R_{4} \times R_{5}, N_{10}=(0) \times(0) \times R_{3} \times R_{4} \times R_{5}, L_{1}=R_{1} \times R_{2} \times R_{3} \times R_{4} \times(0), L_{2}=$ $R_{1} \times R_{2} \times R_{3} \times(0) \times R_{5}, L_{3}=R_{1} \times R_{2} \times(0) \times R_{4} \times R_{5}, L_{4}=R_{1} \times(0) \times R_{3} \times R_{4} \times R_{5}$ and $L_{5}=(0) \times R_{2} \times R_{3} \times R_{4} \times R_{5}$. Clearly, $\left\langle V_{1}\right\rangle$ forms a complete graph K_{5}. Also $\omega(\mathbb{E} \mathbb{A} \mathbb{G}(R))=5$ then again Theorem 3.1 in [11] implies that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \geq 3$. If W is a collection of any three vertices of V_{k}, for $k=1,2$, then any two adjacent vertices of $V_{k} \backslash W$ have same local metric representations about W. Let W be a collection of any three vertices of V_{3}. Then any two adjacent vertices of V_{2} have same local metric representations about W. Let W be any three vertices of V_{4}. Then any two vertices of V_{1} have same local metric representations about W. Let W be any three vertices of the form either $\left\{I_{i}, J_{j}, N_{s}\right\}$ or $\left\{I_{i}, J_{j}, L_{t}\right\}$ or $\left\{I_{i}, N_{s}, L_{t}\right\}$ or $\left\{J_{j}, N_{s}, L_{t}\right\}$, for all $i, t=1$ to $5, j, s=1$ to 10 . Then any two adjacent vertices of $V_{1} \backslash W$ or $V_{2} \backslash W$ have same local metric representations about W. Hence for all cases, every collection of three vertices of $\mathbb{E} \mathbb{A}(R)$ does not form a local metric set so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \geq 4$. If $W=\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$, then every pair of adjacent vertices in $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ have different local metric representations about W. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=4$.
(ii) The result follows from $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \leq \operatorname{dim}_{M}(\mathbb{E} \mathbb{A} \mathbb{G}(R))$ and by Theorem 2.5 (iii) in [10].

Theorem 3.2. If R is a $S P R$, then $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}(R)^{*}\right|-1$.
Proof. By Theorem 2.4 in [9], $\left|\mathbb{A}(R)^{*}\right|-1$ vertices of $\mathbb{E} \mathbb{A}(R)$ form a local metric basis so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}(R)^{*}\right|-1$.

Consider two vertices being true twins produce an equivalence relation on $V(G)$. If the resulting true twin equivalence classes are $U_{1}, U_{2}, \ldots, U_{l}$, then every local metric set of G must contain at least $\left|U_{i}\right|-1$ vertices from U_{i}, for all $1 \leq i \leq l$.
The subsequent theorem characterizes the local metric dimension of $\mathbb{E} \mathbb{A}(R)$ for direct product of rings.

Theorem 3.3. If R is a PIR and $R \cong R_{1} \times R_{2}$, then
(i) R_{1} is an integral domain and R_{2} is either an integral domain or a ring with unique nonzero proper ideal if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))=1$.
(ii) R_{1} and R_{2} are rings with unique nonzero proper ideal if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=2$.
(iii) R_{1} is an integral domain and R_{2} is a ring with more than one nonzero proper ideals if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{2}\right)^{*}\right|$.
(iv) R_{1} is not an integral domain and R_{2} is a ring with more than one nonzero proper ideals if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|-2$.

Proof. As R is a PIR, then $R \cong \prod_{i=1}^{n} R_{i}$ where $R_{i}^{\prime} s$ are either PIDs or SPRs.
(i) Assume that R_{1} and R_{2} are integral domains and not fields. Then $P \cap Q=(0)$, for some nonzero prime ideals $P=R_{1} \times(0)$ and $Q=(0) \times R_{2}$ and they are not minimal ideals. Since R_{1} and R_{2} are reduced, then by Theorems 2.3 in [9] and 2.4 in [1], $\mathbb{E} \mathbb{G}(R)$ is a complete bipartite graph. Thus by Lemma 2.8 in [11], $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=1$. Now consider R_{1} is a field and R_{2} is an integral domain. Since R_{1} and R_{2} are reduced, so by Theorem 2.3 in [9] and Corollary 2.3 in [4], $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ is a star graph so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=1$. Consider R_{1} is an integral domain and R_{2} is a ring with unique nonzero proper ideal. Then Theorem 2.5 in [9] and Lemma 2.8 in [11] show that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=1$.
Conversely, assume that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=1$. Suppose that R_{1} is an integral domain and R_{2} is a ring with more than one nonzero proper ideals. Consider I is a nonzero proper ideal in R_{1} and M_{2} is the maximal ideal in R_{2} such that $M_{2}{ }^{m}=(0)$. Then $\mathbb{A}(R)^{*}=\left\{R_{1} \times(0)\right\} \cup\left\{(0) \times R_{2}\right\} \cup$ $V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$ where $V_{1}=\left\{(0) \times M_{2}{ }^{j}\right\}, V_{2}=\left\{R_{1} \times M_{2}{ }^{j}\right\}, V_{3}=\left\{I \times(0): I \in R_{1}\right\}$ and $V_{4}=\left\{I \times M_{2}{ }^{j}: I \in R_{1}\right\}$, for $1 \leq j<m$. Here the induced subgraphs $\left\langle V_{1}\right\rangle$ is complete and $\left\langle V_{2}\right\rangle,\left\langle V_{3}\right\rangle$ and $\left\langle V_{4}\right\rangle$ are totally disconnected.

Figure 3.1
From Figure 3.1, $\mathbb{E} \mathbb{A}(R)$ has only one true twin equivalence class, say $U_{1}=V_{1}$. Then every local metric set of $\mathbb{E} \mathbb{A}(R)$ must contain at least $\left|U_{1}\right|-1=m-2$ vertices from U_{1}. Then $m-2 \leq$ $\operatorname{dim}_{l}\left(\mathbb{E A} \mathbb{G}(R)\right.$. Consider $W \subseteq V_{1}$ and $|W|=m-2$, then the adjacent vertices in $\mathbb{A}(R)^{*} \backslash W$ have same local metric representations with respect to W. Therefore $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \neq m-2$. Consider $W=V_{1}$ and $|W|=m-1$, then the adjacent vertices in $\mathbb{E} \mathbb{A}(R)$ have different local metric representations about W. Then by definition, $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=m-1=\left|\mathbb{A}\left(R_{2}\right)^{*}\right|$.
Suppose that R_{1} and R_{2} are not integral domains. Consider R_{1} and R_{2} have unique nonzero
proper ideal say, M_{1} and M_{2} respectively. As $\omega(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$, then by Theorem 3.1 in [11], $\operatorname{dim}_{l}(\mathbb{E A} \mathbb{G}(R)) \geq\left\lceil\log _{2} 3\right\rceil=2$. It is clear that $W=\left\{M_{1} \times R_{2}, M_{1} \times M_{2}\right\}$ is a local metric basis for $\mathbb{E} \mathbb{A}(R)$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.
Now consider R_{2} has more than one nonzero proper ideals. Let M_{1} and M_{2} be the maximal ideals in R_{1} and R_{2} respectively such that $M_{1}{ }^{n}=(0)$ and $M_{2}{ }^{m}=(0)$. Then the nonzero annihilatingideals of R are $R_{1} \times(0),(0) \times R_{2}, V_{1}=\left\{M_{1}{ }^{i} \times(0)\right\}, V_{21}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j}:\left(M_{1}{ }^{i}\right)^{l} \neq(0)\right.$ and $\left(M_{2}{ }^{j}\right)^{l}=(0)$, for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{22}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j}:\left(M_{1}{ }^{i}\right)^{l}=\left(M_{2}{ }^{j}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}$, $V_{23}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j}:\left(M_{1}{ }^{i}\right)^{l}=(0)\right.$ and $\left(M_{2}{ }^{j}\right)^{l} \neq(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{3}=\left\{(0) \times M_{2}{ }^{j}\right\}$, $V_{4}=\left\{M_{1}{ }^{i} \times R_{2}\right\}$ and $V_{5}=\left\{R_{1} \times M_{2}{ }^{j}\right\}$, for $1 \leq i<n, 1 \leq j<m$.

Figure 3.2

In Figure 3.2, the induced subgraphs $\left\langle V_{1}\right\rangle,\left\langle V_{21}\right\rangle,\left\langle V_{22}\right\rangle,\left\langle V_{23}\right\rangle,\left\langle V_{3}\right\rangle$ are complete graphs and $\left\langle V_{4}\right\rangle,\left\langle V_{5}\right\rangle$ are totally disconnected. Here the true twin equivalence classes in $\mathbb{E} \mathbb{A}(R)$ are $U_{1}=$ $V_{1} \cup V_{21}, U_{2}=V_{22}$ and $U_{3}=V_{3} \cup V_{23}$. Then at least $\left|U_{i}\right|-1$ vertices from U_{i}, for all $i=1,2,3$ must contained in the local metric set of $\mathbb{E} \mathbb{A} \mathbb{G}(R)$. Let $W=\bigcup_{i=1}^{3}\left(U_{i} \backslash\left\{J_{i}\right\}\right) \cup\left\{R_{1} \times(0),(0) \times R_{2}\right\}$ where $J_{i} \in U_{i}$ and so $|W|=\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|-2$. Then all the adjacent vertices in $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ have different local metric representations about W. Hence W is a local metric set for $\mathbb{E} \mathbb{A}(R)$ and so $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|-2$. Suppose that $W=\bigcup_{i=1}^{3}\left(U_{i} \backslash\left\{J_{i}\right\}\right) \cup\left\{R_{1} \times(0)\right\}, J_{i} \in U_{i}$ and so the cardinality is $\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|-3$. Then W is not a local metric set for $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ since $D\left(J_{1} \mid W\right)=D\left(J_{2} \mid W\right)$, for the adjacent vertices J_{1} and J_{2} of $\mathbb{E} \mathbb{A}(R)$. Similarly for all cases, $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \neq\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|-3$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|$-2. From all cases, R_{1} is an integral domain and R_{2} is either an integral domain or a ring with unique nonzero proper ideal.
(ii), (iii) and (iv) follow from the proof of (i).

Next we provide certain examples for the previous theorem.
Example 3.4. (a) If $R \cong \mathbb{Z} \times \mathbb{Z}_{2}$, then clearly $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ is a star graph so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=$ 1.
(b) Let $R \cong \mathbb{Z} \times \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)}$. Obviously, $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ forms a complete bipartite graph so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))$ $=1$.
(c) Let $R \cong \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)}$. In this, (X) is a unique nonzero proper ideal in $\frac{\mathbb{R}[X]}{\left(X^{2}\right)}$. Then the local metric basis for $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ is $W=\left\{(X) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)},(X) \times(X)\right\}$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=2$.
(d) Let $R \cong \mathbb{Z}[i] \times \frac{\mathbb{R}[X]}{\left(X^{3}\right)}$. Here (X) is the maximal ideal in $\frac{\mathbb{R}[X]}{\left(X^{3}\right)}$ such that $\left(X^{3}\right)=(0)$. Then $W=\left\{(0) \times(X),(0) \times\left(X^{2}\right)\right\}$ is a local metric basis for $\mathbb{E} \mathbb{G}(R)$. This shows that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.
(e) Let $R \cong \frac{\mathbb{Z}[i]}{(1+i)^{3}} \times \frac{\mathbb{Z}[i]}{(1+i)^{3}}$. Here $(1+i)$ is the maximal ideal in $\frac{\mathbb{Z}[i]}{(1+i)^{3}}$ such that $(1+i)^{3}=(0)$.

Then the local metric basis for $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ is $W=\{(0) \times(1+i),(1+i) \times(0),(1+i) \times(1+$ $\left.i),(1+i) \times(1+i)^{2},(1+i)^{2} \times(1+i),(0) \times \frac{\mathbb{Z}[i]}{(1+i)^{3}}, \frac{\mathbb{Z}[i]}{(1+i)^{3}} \times(0)\right\}$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=7$.

Theorem 3.5. If R is a PIR and $R \cong R_{1} \times R_{2} \times R_{3}$, then
(i) Either R_{1}, R_{2} and R_{3} are integral domains or R_{1} is an integral domain, R_{2} and R_{3} are rings with unique nonzero proper ideal if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=2$.
(ii) R_{1}, R_{2} are integral domains and R_{3} is not an integral domain if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=$ $\left|\mathbb{A}\left(R_{3}\right)\right|$.
(iii) R_{1} is an integral domain, R_{2} is not an integral domain and R_{3} is a ring with more than one nonzero proper ideals if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-2$.
(iv) R_{1}, R_{2} and R_{3} are rings with unique nonzero proper ideal if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=$ 3.
(v) R_{1}, R_{2} are not integral domains and R_{3} is a ring with more than one nonzero proper ideals if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-5$.

Proof. As R is a PIR, then $R \cong \prod_{i=1}^{n} R_{i}$ where $R_{i}^{\prime} s$ are either PIDs or SPRs.
(i) Assume that R_{1}, R_{2} and R_{3} are integral domains. Let I_{1}, I_{2} and I_{3} be nonzero proper ideals in R_{1}, R_{2} and R_{3} respectively. Consider $V_{1}=\left\{R_{1} \times(0) \times I_{3}: I_{3} \in R_{3}\right\}, V_{2}=\left\{R_{1} \times I_{2} \times(0):\right.$ $\left.I_{2} \in R_{2}\right\}, V_{3}=\left\{I_{1} \times(0) \times(0): I_{1} \in R_{1}\right\}, V_{4}=\left\{I_{1} \times(0) \times R_{3}: I_{1} \in R_{1}\right\}, V_{5}=\left\{I_{1} \times(0) \times I_{3}:\right.$ $\left.I_{1} \in R_{1}, I_{3} \in R_{3}\right\}, V_{6}=\left\{I_{1} \times I_{2} \times(0): I_{1} \in R_{1}, I_{2} \in R_{2}\right\}, V_{7}=\left\{I_{1} \times R_{2} \times(0): I_{1} \in R_{1}\right\}$, $V_{8}=\left\{(0) \times(0) \times I_{3}: I_{3} \in R_{3}\right\}, V_{9}=\left\{(0) \times I_{2} \times(0): I_{2} \in R_{2}\right\}, V_{10}=\left\{(0) \times I_{2} \times I_{3}:\right.$ $\left.I_{2} \in R_{2}, I_{3} \in R_{3}\right\}, V_{11}=\left\{(0) \times I_{2} \times R_{3}: I_{2} \in R_{2}\right\}$ and $V_{12}=\left\{(0) \times R_{2} \times I_{3}: I_{3} \in R_{3}\right\}$. Here the induced subgraphs $\left\langle V_{1}\right\rangle,\left\langle V_{2}\right\rangle,\left\langle V_{3}\right\rangle,\left\langle V_{4}\right\rangle,\left\langle V_{5}\right\rangle,\left\langle V_{6}\right\rangle,\left\langle V_{7}\right\rangle,\left\langle V_{8}\right\rangle,\left\langle V_{9}\right\rangle,\left\langle V_{10}\right\rangle,\left\langle V_{11}\right\rangle$ and $\left\langle V_{12}\right\rangle$ are totally disconnected. From Figure 3.3, the twin equivalence classes in $\mathbb{E} \mathbb{A}(R)$ are $U_{1}=\left\{R_{1} \times(0) \times(0)\right\} \cup V_{3}, U_{2}=\left\{R_{1} \times(0) \times R_{3}\right\} \cup V_{1} \cup V_{4} \cup V_{5}, U_{3}=\left\{R_{1} \times R_{2} \times(0)\right\} \cup V_{2} \cup V_{6} \cup V_{7}$, $U_{4}=\left\{(0) \times(0) \times R_{3}\right\} \cup V_{8}, U_{5}=\left\{(0) \times R_{2} \times(0)\right\} \cup V_{9}$ and $U_{6}=\left\{(0) \times R_{2} \times R_{3}\right\} \cup V_{10} \cup$ $V_{11} \cup V_{12}$. Let $W=\left\{R_{1} \times(0) \times R_{3}, R_{1} \times(0) \times(0)\right\}$. Then the adjacent vertices in $\mathbb{E} \mathbb{G}(R)$ have different local metric representations about W. Thus $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq 2$. From Figure 3.3, one can check that any set of one vertex of $\mathbb{A}(R)^{*}$ does not form a local metric set and hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.

Figure 3.3
Assume that R_{1} is an integral domain, R_{2} and R_{3} are rings with unique nonzero proper ideal. Suppose that I_{1} is a nonzero proper ideal in R_{1} and M_{2}, M_{3} are unique nonzero proper ideal in R_{2} and R_{3} respectively. Consider $V_{1}=\left\{I_{1} \times(0) \times M_{3}{ }^{j}: I_{1} \in R_{1}\right\}, V_{2}=\left\{I_{1} \times M_{2} \times M_{3}{ }^{j}: I_{1} \in R_{1}\right\}$, $V_{3}=\left\{I_{1} \times M_{2}{ }^{j} \times R_{3}: I_{1} \in R_{1}\right\}$ and $V_{4}=\left\{I_{1} \times R_{2} \times M_{3}{ }^{j}: I_{1} \in R_{1}\right\}$, for $j=1,2$. Here the induced subgraphs $\left\langle V_{1}\right\rangle,\left\langle V_{2}\right\rangle,\left\langle V_{3}\right\rangle$ and $\left\langle V_{4}\right\rangle$ are totally disconnected. From Figure 3.4, the twin equivalence classes in $\mathbb{E A} \mathbb{G}(R)$ are $U_{1}=\left\{R_{1} \times(0) \times M_{3}{ }^{j}, R_{1} \times M_{2} \times M_{3}{ }^{j}\right\} \cup V_{1} \cup V_{2}$, $U_{2}=\left\{R_{1} \times M_{2}{ }^{j} \times R_{3}\right\} \cup V_{3}, U_{3}=\left\{R_{1} \times R_{2} \times M_{3}{ }^{j}\right\} \cup V_{4}, U_{4}=\left\{(0) \times(0) \times M_{3}\right\}, U_{5}=$ $\left\{(0) \times R_{2} \times R_{3}\right\}, U_{6}=\left\{(0) \times R_{2} \times M_{3}{ }^{j}\right\}, U_{7}=\left\{(0) \times M_{2}{ }^{j} \times R_{3}\right\}, U_{8}=\left\{(0) \times M_{2} \times(0)\right\}$ and $U_{9}=\left\{(0) \times M_{2} \times M_{3}\right\}$, for $j=1,2$. Let $W=\left\{(0) \times(0) \times R_{3},(0) \times R_{2} \times(0)\right\}$ with cardinality 2. Then the adjacent vertices in $\mathbb{E} \mathbb{A}(R)$ have different local metric representations about W. Thus $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq 2$. Suppose that $W=\left\{(0) \times(0) \times R_{3}\right\}$. Then $D\left(U_{1} \mid W\right)=D\left(U_{8} \mid W\right)$, $D\left(U_{1} \mid W\right)=D\left(U_{6} \mid W\right)$ and $D\left(U_{4} \mid W\right)=D\left(U_{9} \mid W\right)$, so that W is not a local metric set of
$\mathbb{E} \mathbb{A}(R)$. Similarly, Figure 3.4 explicitly shows that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \neq 1$ for all cases. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.

Figure 3.4

Conversely, assume that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$. Suppose that R_{1}, R_{2} are integral domains and R_{3} is not an integral domain. Here I_{1}, I_{2} are nonzero proper ideals in R_{1}, R_{2} respectively and M_{3} is the maximal ideal in R_{3} such that $M_{3}^{r}=(0)$. Consider $V_{1}=\left\{(0) \times(0) \times M_{3}^{k}\right\}, V_{2}=$ $\left\{(0) \times I_{2} \times M_{3}^{k}: I_{2} \in R_{2}\right\}, V_{3}=\left\{(0) \times I_{2} \times R_{3}: I_{2} \in R_{2}\right\}, V_{4}=\left\{(0) \times I_{2} \times(0): I_{2} \in R_{2}\right\}$, $V_{5}=\left\{(0) \times R_{2} \times M_{3}^{k}\right\}, V_{6}=\left\{I_{1} \times(0) \times(0): I_{1} \in R_{1}\right\}, V_{7}=\left\{I_{1} \times(0) \times R_{3}: I_{1} \in R_{1}\right\}$, $V_{8}=\left\{I_{1} \times(0) \times M_{3}^{k}: I_{1} \in R_{1}\right\}, V_{9}=\left\{I_{1} \times I_{2} \times(0): I_{1} \in R_{1}, I_{2} \in R_{2}\right\}, V_{10}=\left\{I_{1} \times I_{2} \times M_{3}^{k}:\right.$ $\left.I_{1} \in R_{1}, I_{2} \in R_{2}\right\}, V_{11}=\left\{I_{1} \times R_{2} \times(0): I_{1} \in R_{1}\right\}, V_{12}=\left\{I_{1} \times R_{2} \times M_{3}^{k}: I_{1} \in R_{1}\right\}$, $V_{13}=\left\{R_{1} \times(0) \times M_{3}^{k}\right\}, V_{14}=\left\{R_{1} \times I_{2} \times(0): I_{2} \in R_{2}\right\}, V_{15}=\left\{R_{1} \times I_{2} \times M_{3}^{k}: I_{2} \in R_{2}\right\}$, $V_{16}=\left\{R_{1} \times R_{2} \times M_{3}^{k}\right\}$, for $1 \leq k<r$.

Figure 3.5
Here the induced subgraphs $\left\langle V_{1}\right\rangle$ is complete and $\left\langle V_{2}\right\rangle,\left\langle V_{3}\right\rangle,\left\langle V_{4}\right\rangle,\left\langle V_{5}\right\rangle,\left\langle V_{6}\right\rangle,\left\langle V_{7}\right\rangle,\left\langle V_{8}\right\rangle,\left\langle V_{9}\right\rangle$, $\left\langle V_{10}\right\rangle,\left\langle V_{11}\right\rangle,\left\langle V_{12}\right\rangle,\left\langle V_{13}\right\rangle,\left\langle V_{14}\right\rangle,\left\langle V_{15}\right\rangle$ and $\left\langle V_{16}\right\rangle$ are totally disconnected. From Figure 3.5, the twin equivalence classes in $\mathbb{E} \mathbb{A}(R)$ are $U_{1}=V_{1}, U_{2}=\left\{(0) \times R_{2} \times(0)\right\} \cup V_{2} \cup V_{4} \cup V_{5}$, $U_{3}=\left\{R_{1} \times(0) \times(0)\right\} \cup V_{6} \cup V_{8} \cup V_{13}, U_{4}=\left\{(0) \times R_{2} \times R_{3}\right\} \cup V_{3}, U_{5}=\left\{R_{1} \times(0) \times R_{3}\right\} \cup V_{7}$, $U_{6}=\left\{R_{1} \times R_{2} \times(0)\right\} \cup V_{9} \cup V_{10} \cup V_{11} \cup V_{12} \cup V_{14} \cup V_{15} \cup V_{16}, U_{7}=\left\{(0) \times(0) \times R_{3}\right\}$ and the true twin equivalence class in $\mathbb{E} \mathbb{A}(R)$ is U_{1} so that at least $\left|U_{1}\right|-1$ vertices from U_{1} must contained in the local metric set. Let $W=U_{1} \cup\left\{(0) \times R_{2} \times(0)\right\}$ and so $|W|=\left|\mathbb{A}\left(R_{3}\right)\right|$. Then the adjacent vertices in $\mathbb{E} \mathbb{A}(R)$ have different local metric representations about W. So $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq\left|\mathbb{A}\left(R_{3}\right)\right|$. Suppose that $W=U_{1}$ and $|W|=\left|\mathbb{A}\left(R_{3}\right)\right|-1$. Then $D\left(U_{2} \mid W\right)=D\left(U_{3} \mid W\right)$ so that W is not a local metric set for $\mathbb{E} \mathbb{A}(R)$. Similarly for all cases, $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \neq\left|\mathbb{A}\left(R_{3}\right)\right|-1$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=\left|\mathbb{A}\left(R_{3}\right)\right|$.
Suppose that R_{1} is an integral domain, R_{2} is not an integral domain and R_{3} is a ring with more than one nonzero proper ideals. In this, I_{1} is a nonzero proper ideal in R_{1} and M_{2}, M_{3} are the maximal ideals in R_{2}, R_{3} respectively such that $M_{2}{ }^{m}=(0)$ and $M_{3}{ }^{r}=(0)$. Consider $V_{1}=$ $\left\{(0) \times(0) \times M_{3}{ }^{k}\right\}, V_{2}=\left\{(0) \times M_{2}{ }^{j} \times(0)\right\}, V_{3 a}=\left\{(0) \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{2}{ }^{j}\right)^{l}=(0),\left(M_{3}{ }^{k}\right)^{l} \neq\right.$
(0) for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{3 b}=\left\{(0) \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{2}{ }^{j}\right)^{l}=\left(M_{3}{ }^{k}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}$, $V_{3 c}=\left\{(0) \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{2}{ }^{j}\right)^{l} \neq(0),\left(M_{3}{ }^{k}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4}=\left\{(0) \times M_{2}{ }^{j} \times R_{3}\right\}$, $V_{5}=\left\{(0) \times R_{2} \times M_{3}{ }^{k}\right\}, V_{6}=\left\{I_{1} \times(0) \times M_{3}{ }^{k}: I_{1} \in R_{1}\right\}, V_{7}=\left\{I_{1} \times M_{2}^{j} \times(0): I_{1} \in R_{1}\right\}$, $V_{8}=\left\{I_{1} \times M_{2}{ }^{j} \times M_{3}{ }^{k}: I_{1} \in R_{1}\right\}, V_{9}=\left\{I_{1} \times M_{2}{ }^{j} \times R_{3}: I_{1} \in R_{1}\right\}, V_{10}=\left\{I_{1} \times R_{2} \times M_{3}{ }^{k}:\right.$ $\left.I_{1} \in R_{1}\right\}, V_{11}=\left\{R_{1} \times(0) \times M_{3}{ }^{k}\right\}, V_{12}=\left\{R_{1} \times M_{2}{ }^{j} \times(0)\right\}, V_{13}=\left\{R_{1} \times M_{2}{ }^{j} \times M_{3}{ }^{k}\right\}$, $V_{14}=\left\{R_{1} \times M_{2}{ }^{j} \times R_{3}\right\}, V_{15}=\left\{R_{1} \times R_{2} \times M_{3}{ }^{k}\right\}, V_{16}=\left\{I_{1} \times(0) \times(0): I_{1} \in R_{1}\right\}$, $V_{17}=\left\{I_{1} \times(0) \times R_{3}: I_{1} \in R_{1}\right\}$ and $V_{18}=\left\{I_{1} \times R_{2} \times(0): I_{1} \in R_{1}\right\}$, for $1 \leq j<m, 1 \leq k<r$. Here the induced subgraphs $\left\langle V_{1}\right\rangle,\left\langle V_{2}\right\rangle,\left\langle V_{3 a}\right\rangle,\left\langle V_{3 b}\right\rangle,\left\langle V_{3 c}\right\rangle$ are complete and $\left\langle V_{4}\right\rangle,\left\langle V_{5}\right\rangle,\left\langle V_{6}\right\rangle,\left\langle V_{7}\right\rangle$, $\left\langle V_{8}\right\rangle,\left\langle V_{9}\right\rangle,\left\langle V_{10}\right\rangle,\left\langle V_{11}\right\rangle,\left\langle V_{12}\right\rangle,\left\langle V_{13}\right\rangle,\left\langle V_{14}\right\rangle,\left\langle V_{15}\right\rangle,\left\langle V_{16}\right\rangle,\left\langle V_{17}\right\rangle$ and $\left\langle V_{18}\right\rangle$ are totally disconnected. Figure 3.6 shows that the twin equivalence classes in $\mathbb{E} \mathbb{G}(R)$ are $U_{1}=V_{1} \cup V_{3 a}, U_{2}=V_{2} \cup V_{3 c}$, $U_{3}=V_{3 b}, U_{4}=\left\{(0) \times(0) \times R_{3}\right\} \cup V_{4}, U_{5}=\left\{(0) \times R_{2} \times(0)\right\} \cup V_{5}, U_{6}=\left\{(0) \times R_{2} \times R_{3}\right\}$, $U_{7}=\left\{R_{1} \times(0) \times(0)\right\} \cup V_{6} \cup V_{7} \cup V_{8} \cup V_{11} \cup V_{12} \cup V_{13} \cup V_{16}, U_{8}=\left\{R_{1} \times(0) \times R_{3}\right\} \cup V_{9} \cup V_{14} \cup V_{17}$ and $U_{9}=\left\{R_{1} \times R_{2} \times(0)\right\} \cup V_{10} \cup V_{15} \cup V_{18}$ and the true twin equivalence classes in $\mathbb{E} \mathbb{A}(R)$ are U_{1}, U_{2} and U_{3} so that at least $\left|U_{i}\right|-1$ vertices from U_{i} must contained in the local metric set of $\mathbb{E} \mathbb{G}(R)$, for every $i=1,2,3$.

Figure 3.6
Let $W=\left(\bigcup_{i=1}^{3} U_{i} \backslash\left\{J_{i}\right\}\right) \cup\left\{(0) \times(0) \times R_{3},(0) \times R_{2} \times(0)\right\}$ where $J_{i} \in U_{i}$ so that $|W|=$ $\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-2$. Then the adjacent vertices in $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ have different local metric representations about W. Thus W is a local metric set so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-2$. Suppose that $W=\left(\bigcup_{i=1}^{3} U_{i} \backslash\left\{J_{i}\right\}\right) \cup\left\{(0) \times(0) \times R_{3}\right\}$ where $J_{i} \in U_{i}$ and the cardinality is $\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-3$. Then $D\left(U_{7} \mid W\right)=D\left(J_{2} \mid W\right)$ and $D\left(J_{1} \mid W\right)=D\left(J_{3} \mid W\right)$ so that W is not a local metric set for $\mathbb{E} \mathbb{G}(R)$. From Figure 3.6, one can check that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \neq$ $\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-3$ for all cases. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-2$.
Suppose that R_{1}, R_{2} and R_{3} are not integral domains. Consider R_{1}, R_{2} and R_{3} have unique nonzero proper ideal say, M_{1}, M_{2} and M_{3} respectively. Here the twin equivalence classes in $\mathbb{E} \mathbb{A}(R)$ are $U_{1}=\left\{R_{1} \times(0) \times M_{3}{ }^{j}, R_{1} \times M_{2} \times M_{3}{ }^{j}\right\}, U_{2}=\left\{(0) \times M_{2}{ }^{j} \times R_{3}, M_{1} \times M_{2}{ }^{j} \times R_{3}\right\}$, $U_{3}=\left\{(0) \times R_{2} \times M_{3}{ }^{j}, M_{1} \times R_{2} \times M_{3}{ }^{j}\right\}, U_{4}=\left\{M_{1}{ }^{j} \times R_{2} \times R_{3}\right\}, U_{5}=\left\{R_{1} \times R_{2} \times M_{3}{ }^{j}\right\}$, $U_{6}=\left\{R_{1} \times M_{2}^{j} \times R_{3}\right\}, U_{7}=\left\{(0) \times(0) \times M_{3}\right\}, U_{8}=\left\{(0) \times M_{2} \times(0)\right\}, U_{9}=\left\{M_{1} \times(0) \times(0)\right\}$, $U_{10}=\left\{M_{1} \times(0) \times M_{3}\right\}, U_{11}=\left\{M_{1} \times M_{2} \times(0)\right\}, U_{12}=\left\{(0) \times M_{2} \times M_{3}\right\}$ and $U_{13}=$ $\left\{M_{1} \times M_{2} \times M_{3}\right\}$, for $j=1,2$. Let $W=\left\{R_{1} \times(0) \times(0),(0) \times R_{2} \times(0),(0) \times(0) \times R_{3}\right\}$ with cardinality 3. Then the adjacent vertices in $\mathbb{E A} \mathbb{G}(R)$ have distinct local metric representations about W. Consequently, W is a local metric set of $\mathbb{E} \mathbb{G}(R)$ so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \leq 3$. Suppose that $W=\left\{R_{1} \times(0) \times(0),(0) \times R_{2} \times(0)\right\}$ with cardinality 2 . Then $D\left(U_{9} \mid W\right)=D\left(U_{10} \mid W\right)$, $D\left(U_{8} \mid W\right)=D\left(U_{12} \mid W\right), D\left(U_{11} \mid W\right)=D\left(U_{13} \mid W\right)$ and so W is not a local metric set of $\mathbb{E} \mathbb{A}(R)$. Similarly, $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R)) \neq 2$ for all cases. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))=3$.
Finally consider R_{3} to be a ring with more than one nonzero proper ideals. Here M_{1}, M_{2} and M_{3} are the maximal ideals in R_{1}, R_{2} and R_{3} respectively such that $M_{1}{ }^{n}=(0), M_{2}{ }^{m}=(0)$ and $M_{3}{ }^{r}=(0)$. Consider $V_{1 a}=\left\{M_{1}{ }^{i} \times(0) \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l}=(0),\left(M_{3}{ }^{k}\right)^{l} \neq(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}$, $V_{1 b}=\left\{M_{1}{ }^{i} \times(0) \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l}=\left(M_{3}{ }^{k}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{1 c}=\left\{M_{1}{ }^{i} \times(0) \times M_{3}{ }^{k}\right.$:
$\left(M_{1}{ }^{i}\right)^{l} \neq(0),\left(M_{3}{ }^{k}\right)^{l}=(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{2 a}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times(0):\left(M_{1}{ }^{i}\right)^{l}=\right.$ (0), $\left(M_{2}{ }^{j}\right)^{l} \neq(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{2 b}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times(0):\left(M_{1}{ }^{i}\right)^{l}=\left(M_{2}{ }^{j}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{2 c}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times(0):\left(M_{1}{ }^{i}\right)^{l} \neq(0),\left(M_{2}{ }^{j}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{3 a}=$ $\left\{(0) \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{2}{ }^{j}\right)^{l}=(0),\left(M_{3}{ }^{k}\right)^{l} \neq(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{3 b}=\left\{(0) \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\right.$ $\left(M_{2}{ }^{j}\right)^{l}=\left(M_{3}{ }^{k}\right)^{l}=(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{3 c}=\left\{(0) \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{2}{ }^{j}\right)^{l} \neq(0),\left(M_{3}{ }^{k}\right)^{l}=\right.$ (0) for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 a}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l}=\left(M_{2}{ }^{j}\right)^{l}=(0),\left(M_{3}{ }^{k}\right)^{l} \neq(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 b}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l}=\left(M_{3}{ }^{k}\right)^{l}=(0),\left(M_{2}{ }^{j}\right)^{l} \neq(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 c}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l} \neq(0),\left(M_{2}{ }^{j}\right)^{l}=\left(M_{3}{ }^{k}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 d}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l}=\left(M_{2}{ }^{j}\right)^{l}=\left(M_{3}{ }^{k}\right)^{l}=(0)\right.$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 e}=$ $\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l}=\left(M_{2}{ }^{j}\right)^{l+1}=\left(M_{3}{ }^{k}\right)^{l+1}=(0),\left(M_{2}{ }^{j}\right)^{l} \neq(0)\right.$ and $\left(M_{3}{ }^{k}\right)^{l} \neq(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 f}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l} \neq(0),\left(M_{3}{ }^{k}\right)^{l} \neq(0),\left(M_{2}{ }^{j}\right)^{l}=\left(M_{1}{ }^{i}\right)^{l+1}=\right.$ $\left(M_{3}{ }^{k}\right)^{l+1}=(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{4 g}=\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times M_{3}{ }^{k}:\left(M_{1}{ }^{i}\right)^{l} \neq(0),\left(M_{2}{ }^{j}\right)^{l} \neq(0)\right.$ and $\left(M_{3}{ }^{k}\right)^{l}=\left(M_{1}{ }^{i}\right)^{l+1}=\left(M_{2}{ }^{j}\right)^{l+1}=(0)$ for some $\left.l \in \mathbb{Z}^{+}\right\}, V_{5}=\left\{(0) \times(0) \times M_{3}{ }^{k}\right\}$, $V_{6}=\left\{(0) \times M_{2}{ }^{j} \times(0)\right\}, V_{7}=\left\{M_{1}{ }^{i} \times(0) \times(0)\right\}, V_{8}=\left\{M_{1}{ }^{i} \times R_{2} \times(0)\right\}, V_{9}=\left\{(0) \times R_{2} \times M_{3}{ }^{k}\right\}$, $V_{10}=\left\{M_{1}{ }^{i} \times R_{2} \times M_{3}{ }^{k}\right\}, V_{11}=\left\{R_{1} \times R_{2} \times M_{3}{ }^{k}\right\}, V_{12}=\left\{(0) \times M_{2}^{j} \times R_{3}\right\}, V_{13}=$ $\left\{M_{1}{ }^{i} \times M_{2}{ }^{j} \times R_{3}\right\}, V_{14}=\left\{M_{1}{ }^{i} \times(0) \times R_{3}\right\}, V_{15}=\left\{R_{1} \times M_{2}{ }^{j} \times R_{3}\right\}, V_{16}=\left\{R_{1} \times(0) \times M_{3}{ }^{k}\right\}$, $V_{17}=\left\{R_{1} \times M_{2}{ }^{j} \times M_{3}{ }^{k}\right\}, V_{18}=\left\{R_{1} \times M_{2}{ }^{j} \times(0)\right\}$ and $V_{19}=\left\{M_{1}{ }^{i} \times R_{2} \times R_{3}\right\}$, for every $1 \leq i<n, 1 \leq j<m$ and $1 \leq k<r$. The induced subgraphs $\left\langle V_{1 a}\right\rangle,\left\langle V_{1 b}\right\rangle,\left\langle V_{1 c}\right\rangle,\left\langle V_{2 a}\right\rangle,\left\langle V_{2 b}\right\rangle$, $\left\langle V_{2 c}\right\rangle,\left\langle V_{3 a}\right\rangle,\left\langle V_{3 b}\right\rangle,\left\langle V_{3 c}\right\rangle,\left\langle V_{4 a}\right\rangle,\left\langle V_{4 b}\right\rangle,\left\langle V_{4 c}\right\rangle,\left\langle V_{4 d}\right\rangle,\left\langle V_{4 e}\right\rangle,\left\langle V_{4 f}\right\rangle,\left\langle V_{4 g}\right\rangle,\left\langle V_{5}\right\rangle,\left\langle V_{6}\right\rangle$ and $\left\langle V_{7}\right\rangle$ are complete graphs and $\left\langle V_{8}\right\rangle,\left\langle V_{9}\right\rangle,\left\langle V_{10}\right\rangle,\left\langle V_{11}\right\rangle,\left\langle V_{12}\right\rangle,\left\langle V_{13}\right\rangle,\left\langle V_{14}\right\rangle,\left\langle V_{15}\right\rangle,\left\langle V_{16}\right\rangle,\left\langle V_{17}\right\rangle,\left\langle V_{18}\right\rangle$ and $\left\langle V_{19}\right\rangle$ are totally disconnected.

Figure 3.7
In view of Figure 3.7, the twin equivalence classes in $\mathbb{E} \mathbb{A}(R)$ are $U_{1}=\left\{R_{1} \times(0) \times(0)\right\} \cup V_{16} \cup$ $V_{17} \cup V_{18}, U_{2}=\left\{(0) \times(0) \times R_{3}\right\} \cup V_{12} \cup V_{13} \cup V_{14}, U_{3}=\left\{(0) \times R_{2} \times(0)\right\} \cup V_{8} \cup V_{9} \cup V_{10}, U_{4}=\{(0) \times$ $\left.R_{2} \times R_{3}\right\} \cup V_{19}, U_{5}=\left\{R_{1} \times R_{2} \times(0)\right\} \cup V_{11}, U_{6}=\left\{R_{1} \times(0) \times R_{3}\right\} \cup V_{15}, U_{7}=V_{1 a} \cup V_{3 a} \cup V_{4 a} \cup V_{5}$, $U_{8}=V_{2 a} \cup V_{3 c} \cup V_{4 b} \cup V_{6}, U_{9}=V_{1 c} \cup V_{2 c} \cup V_{4 c} \cup V_{7}, U_{10}=V_{1 b} \cup V_{4 f}, U_{11}=V_{2 b} \cup V_{4 g}, U_{12}=V_{3 b} \cup V_{4 e}$ and $U_{13}=V_{4 d}$ and the true twin equivalence classes are $U_{7}, U_{8}, U_{9}, U_{10}, U_{11}, U_{12}$ and U_{13} so that at least $\left|U_{i}\right|-1$ vertices from U_{i} must contained in the local metric set for $\mathbb{E} \mathbb{G}(R)$ for all $i=7$ to 13. Let $W=\left(\bigcup_{i=7}^{13} U_{i} \backslash\left\{J_{i}\right\}\right) \cup\left\{R_{1} \times(0) \times(0),(0) \times R_{2} \times(0),(0) \times(0) \times R_{3}\right\}$ where $J_{i} \in U_{i}$ and so $|W|=\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-5$. Then the adjacent vertices in $\mathbb{E} \mathbb{A} \mathbb{G}(R)$ have distinct local metric representations about W. Hence W is a local metric set of $\mathbb{E} \mathbb{A}(R)$ and $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \leq\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-5$. Suppose that $W=\left(\bigcup_{i=7}^{13} U_{i} \backslash\left\{J_{i}\right\}\right) \cup\{(0) \times$ $\left.R_{2} \times(0),(0) \times(0) \times R_{3}\right\}$ where $J_{i} \in U_{i}$ so that the cardinality is $\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-6$. Then $D\left(J_{7} \mid W\right)=D\left(J_{10} \mid W\right), D\left(J_{8} \mid W\right)=D\left(J_{11} \mid W\right)$ and $D\left(J_{12} \mid W\right)=D\left(J_{13} \mid W\right)$. Hence W is not a local metric set of $\mathbb{E} \mathbb{A} \mathbb{G}(R)$. Similarly, $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R)) \neq\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-6$
for all cases. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\left|\mathbb{A}\left(R_{1}\right)\right|\left|\mathbb{A}\left(R_{2}\right)\right|\left|\mathbb{A}\left(R_{3}\right)\right|-5$. From all cases, R_{1}, R_{2} and R_{3} are integral domains or R_{1} is an integral domain, R_{2} and R_{3} are rings with unique nonzero proper ideal.
$(i i),(i i i),(i v)$ and (v) follow from the proof of (i).
The following is an instance of the previous theorem.
Example 3.6. (a) If $R \cong \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, then $W=\{\mathbb{Z} \times(0) \times \mathbb{Z}, \mathbb{Z} \times(0) \times(0)\}$ is a local metric basis so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.
(b) Let $R \cong \mathbb{Z}[i] \times \mathbb{Z}[i] \times \mathbb{Z}_{8}$. Here (2) is the maximal ideal in \mathbb{Z}_{8} and $W=\{(0) \times(0) \times(2),(0) \times$ $\left.\mathbb{Z}[i] \times(0),(0) \times(0) \times \mathbb{Z}_{8}\right\}$ is a local metric basis for $\mathbb{E} \mathbb{A}(R)$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$.
(c) Let $R \cong \mathbb{Z} \times \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)}$. In this example, (X) is a unique nonzero proper ideal in $\frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)}$ and the local metric basis is $W=\left\{(0) \times \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)} \times(0),(0) \times(0) \times \frac{\mathbb{Z}_{2}[X]}{\left(X^{2}\right)}\right\}$. Then $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=2$. (d) Let $R \cong \mathbb{Z} \times \mathbb{Z}_{8} \times \mathbb{Z}_{8}$. Then $W=\left\{(0) \times(0) \times(2),(0) \times(2) \times(0),(0) \times(0) \times \mathbb{Z}_{8},(0) \times\right.$ $\left.\mathbb{Z}_{8} \times(0),(0) \times(2) \times(2),(0) \times(2) \times(4),(0) \times(4) \times(2)\right\}$ is a local metric basis for $\mathbb{E} \mathbb{G}(R)$ so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=7$.
(e) Let $R \cong \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)}$. Here (X) is a unique nonzero proper ideal in $\frac{\mathbb{R}[X]}{\left(X^{2}\right)}$ and the local metric basis for $\mathbb{E} \mathbb{A}(R)$ is $W=\left\{\frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0) \times(0),(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)} \times(0),(0) \times(0) \times \frac{\mathbb{R}[X]}{\left(X^{2}\right)}\right\}$. Hence $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=3$.
(f) Let $R \cong \frac{\mathbb{Z}[i]}{(1+i)^{3}} \times \frac{\mathbb{Z}[i]}{(1+i)^{3}} \times \frac{\mathbb{Z}[i]}{(1+i)^{3}}$. In this, $(1+i)$ is the maximal ideal in $\frac{\mathbb{Z}[i]}{(1+i)^{3}}$ such that $(1+i)^{3}=(0)$ and $W=\left\{\frac{\mathbb{Z}[i]}{(1+i)^{3}} \times(0) \times(0),(0) \times \frac{\mathbb{Z}[i]}{(1+i)^{3}} \times(0),(0) \times(0) \times \frac{\mathbb{Z}[i]}{(1+i)^{3}},(0) \times(0) \times\right.$ $(1+i),(0) \times(1+i) \times(0),(1+i) \times(0) \times(0),(1+i) \times(0) \times(1+i),(1+i) \times(0) \times(1+$ $i)^{2},(1+i)^{2} \times(0) \times(1+i),(1+i) \times(1+i) \times(0),(1+i) \times(1+i)^{2} \times(0),(1+i)^{2} \times(1+$ i) $\times(0),(0) \times(1+i) \times(1+i),(0) \times(1+i) \times(1+i)^{2},(0) \times(1+i)^{2} \times(1+i),(1+i) \times(1+$ i) $\times(1+i),(1+i) \times(1+i) \times(1+i)^{2},(1+i) \times(1+i)^{2} \times(1+i),(1+i)^{2} \times(1+i) \times(1+$ $\left.i),(1+i) \times(1+i)^{2} \times(1+i)^{2},(1+i)^{2} \times(1+i) \times(1+i)^{2},(1+i)^{2} \times(1+i)^{2} \times(1+i)\right\}$ is a local metric basis for $\mathbb{E} \mathbb{A}(R)$ so that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=22$.

Finally, we give an excel characterization of \mathbb{Z}_{n} in the following corollary.
Corollary 3.7. If $R \cong \mathbb{Z}_{n}$ and p, q, r be three distinct primes, then the following occurs.
(i) If $n=p^{\alpha}, \alpha \geq 1$, then
(a) $\alpha \geq 2$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\alpha-2$.
(b) $\alpha=1$ if and only if $\operatorname{dim}_{l}(\mathbb{E A} \mathbb{G}(R))$ is undefined.
(ii) If $n=p^{\alpha} q^{\beta}, \alpha, \beta \geq 1$, then
(a) Either $\alpha=\beta=1$ or $\alpha=1, \beta=2$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=1$.
(b) $\alpha=1, \beta \geq 3$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=\beta-1$.
(c) $\alpha=\beta=2$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.
(d) $\alpha \geq 2, \beta \geq 3$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=\alpha \beta-2$.
(iii) If $n=p^{\alpha} q^{\beta} r^{\gamma}, \alpha, \beta, \gamma \geq 1$, then
(a) Either $\alpha=\beta=\gamma=1$ or $\alpha=1, \beta=\gamma=2$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=2$.
(b) $\alpha=\beta=1, \gamma \geq 2$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=\gamma$.
(c) $\alpha=1, \beta \geq 2, \gamma \geq 3$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))=\beta \gamma-2$.
(d) $\alpha=\beta=\gamma=2$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A}(R))=3$.
(e) $\alpha, \beta \geq 2, \gamma \geq 3$ if and only if $\operatorname{dim}_{l}(\mathbb{E} \mathbb{A} \mathbb{G}(R))=\alpha \beta \gamma-5$.

Proof. As R is an artinian PIR, then $R \cong \prod_{i=1}^{n} R_{i}$ where $R_{i}^{\prime} s$ are SPRs.
(i) (a) Assume that $n=p^{\alpha}$ and $\alpha \geq 2$. As R is a SPR, then by Theorem 3.2, the result holds. Conversely, assume that $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))=\alpha-2$. Let $\alpha=1$. Since $\mathbb{E} \mathbb{A}(R)$ is an empty graph, $\operatorname{dim}_{l}(\mathbb{E} \mathbb{G}(R))$ is undefined. Hence $\alpha \geq 2$.
(b) Follows from (a).
(ii) Here $\mathbb{A}(R)^{*}=\left\{\left(p^{i}\right)\right\} \cup\left\{\left(q^{j}\right)\right\} \cup\left(\left\{\left(p^{i} q^{j}\right)\right\} \backslash\left\{\left(p^{\alpha} q^{\beta}\right)\right\}\right)$, for $1 \leq i \leq \alpha, 1 \leq j \leq \beta$. The result follows from Theorem 3.3.
(iii) In this case, $\mathbb{A}(R)^{*}=\left\{\left(p^{i}\right)\right\} \cup\left\{\left(q^{j}\right)\right\} \cup\left\{\left(r^{k}\right)\right\} \cup\left\{\left(p^{i} q^{j}\right)\right\} \cup\left\{\left(p^{i} r^{k}\right)\right\} \cup\left\{\left(q^{j} r^{k}\right)\right\} \cup$ $\left(\left\{\left(p^{i} q^{j} r^{k}\right)\right\} \backslash\left\{\left(p^{\alpha} q^{\beta} r^{\gamma}\right)\right\}\right)$, for $1 \leq i \leq \alpha, 1 \leq j \leq \beta, 1 \leq r \leq \gamma$. The proof follows from Theorem 3.5.

References

[1] M. Ahrari, Sh. A. Safari Sabet and B. Amini, On the girth of the annihilating-ideal graph of a commutative ring, J. Linear and Topological Algebra 4, 209-216 (2015).
[2] D. F. Anderson, T. Asir, A. Badawi and T. Tamizh Chelvam, Graphs from rings, Springer publication, (2021).
[3] M.F. Atiyah, I.G. MacDonald, Introduction to Commutative algebra, Addison-Wesley Publishing Company, London, (1969).
[4] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10, 727-739 (2011).
[5] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math. 59, 45-54 (2000).
[6] G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph, Congr. Numer. 131, 55-66 (1998).
[7] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw Hill Education (India) Private Ltd., (2006).
[8] D. Dolzan, The metric dimension of the annihilating-ideal graph of a finite commutative ring, Bull. Aust. Math. Soc. 103 (2021), 362-368.
[9] S. Nithya and G. Elavarasi, Extended annihilating-ideal graph of a commutative ring, Discuss. Math. Gen. Algebra Appl., to appear.
[10] S. Nithya and G. Elavarasi, Metric and upper dimension of extended annihilating-ideal graphs, Algebra Colloq., to appear.
[11] F. Okamoto, B. Phinezy and P. Zhang, The local metric dimension of a graph, Math. Bohem. 135, 239-255 (2010).

Author information

S. Nithya, Assistant Professor, Department of Mathematics, St.Xavier's College (Autonomous), Palayamkottai - 627 002, TamilNadu, INDIA.

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, TamilNadu, INDIA. E-mail: nithyasxc@gmail.com
G. Elavarasi, Reg. No. 18111282092014, PG and Research Department of Mathematics, St.Xavier's College (Autonomous), Palayamkottai - 627 002,TamilNadu, INDIA.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, TamilNadu, INDIA. E-mail: gelavarasi94@gmail.com

