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Abstract The average degree square sum matrix AD of a graph G is equal to order of G

whose elements are defined as d2
i+d2

j

2 if vi ∼ vj and otherwise zero. In this paper, we introduce
a new energy of graph under the name of average degree square sum energy. We also obtain
characteristic polynomial of the average degree square sum of standard graphs and bounds. In
addition, we apply graph operators to standard graphs ascertained the characteristic polynomials.
Finally, we characterize the average degree square sum hyperenergetic, border-energetic and
equi-energetic of some graphs.

1 Introduction

The concept of energy in a graph arose from Huckel theory in which the π-electron energy
of a conjugated carbon molecule is computed which coincides with the energy of a graph. In
discrete structures, there are several graph polynomials based on matrices such as adjacency
matrix, Laplacian matrix, signless Laplacian matrix, distance matrix, degree sum matrix and
degree exponent matrix are present. Motivated from these, we introduce and study the average
degree square sum matrix of a graph G. Some of the new results to energies and directed graph
[[11],[12]].

Let A = (aij) be an adjacency matrix of order n of a graph G. The characteristic polynomial
of a graph G is denoted by Ch(G,λ) = (λI−G), where λ is an eigenvalue of a graph G. Hence,
by [9], the energy of G is defined as E(G) =

∑n
i=1 | λi | .

Let V (G) be the vertex set andE(G) be an edge set ofG. The degree of a vertexG is denoted
by du(G). The average degree square sum matrix of a graph G is denoted by AD(G) = (sij)
and whose elements are defined as

sij =


d2
i + d2

j

2
if vi ∼ vj

0 if otherwise
.

Here, the considered graphs are the simple, finite and undirected. Basic terminologies and
notations can be found in [8].

2 Basic properties of largest average degree square sum eigenvalue

Here, we initiated to study few properties which are useful to further development.
Let us define the number p as

p =
∑
i<j

(
d2
i + d2

j

2

)2

Proposition 2.1. The first three coefficient of the polynomial Ch(AD(G,λ)) are as follows:

(i) a0 = 1,

(ii) a1 = 0,
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(iii) a2 = −p.

Proof. (i) By the definition of characteristic poynomial, trivially, a0 = 1.

(ii) We know that all principal diagonal entries of average degree square matrix are zero, so,

a1 = tr(AD(G)) = 0.

(iii) We have ,
(−1)2a2 =

∑
1≤i<j≤n

(aiiajj − ajiaij)

= −p.

Proposition 2.2. If λ1, λ2 ,..., λn are the average degree square sum eigenvalues of AD(G), then

n∑
i=1

λ2
i = 2p.

Proof.
n∑

i=1

λ2
i = tr([AD(G)]2) =

n∑
i=1

n∑
j=1

dijdji

= 2
∑
i<j

(dij)
2 +

n∑
i=1

(dij)
2

=
∑
i<j

(d2
i + d2

j)
2

= 2p.

Theorem 2.3 ([13]). Let ai and bi are nonnegative real numbers, then

n∑
i=1

a2
i

n∑
i=1

b2
i − (

n∑
i=1

a2
i b

2
i )

2 ≤ n2

4
(M1M2 −m1m2)

2,

where M1 = max(ai) , M2 = max(bi) and m1 = min(ai) , m2 = min(bi) where i = 1, 2, ..., n.

Theorem 2.4 ([1]). Let ai and bi are non-negative real numbers. Then∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n)(A− a)(B − b),
where a, b, A and B are real constants such that a ≤ ai ≤ A and b ≤ bi ≤ B for each i,
1 ≤ i ≤ n. Further, α(n) = nbn2 c(1−

1
nb

n
2 c).

Theorem 2.5 ([6]). Let ai and bi are non-negative real numbers. Then

n∑
i=1

b2
i + C1C2

n∑
i=1

a2
i ≤ (C1 + C2)

n∑
i=1

aibi,

where C1 and C2 are real constants such that C1ai ≤ bi ≤ C2ai for each i, 1 ≤ i ≤ n.

Theorem 2.6. Let G be a r-regular graph of order n. Then G has only one positive average
degree square sum eigenvalue λ = r2(n− 1).
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Proof. Let G be a connected r-regular graph of order n and {v1, v2, ...., vn} be the vertex set of
G. Let di = r be the degree of vi, i = 1, 2, ...n. Then the characteristic polynomial of AD(G) is

Ch[AD(G), λ] = (λ− r2(n− 1))(λ+ r2)n−1. (2.1)

Therefore, the eigenvalues are r2(n− 1) and −r2 which repeats (n− 1) times.

Theorem 2.7. Let G be any graph of order n and let λ1 be the largest average degree square
sum eigenvalue. Then

λ1 ≤
√

2p(n− 1)
n

.

Proof. By the Cauchy-Schwartz inequality [[?]], we have(
n∑

i=1

a2
i b

2
i

)2

≤
n∑

i=1

a2
i

n∑
i=1

b2
i ,

where ai and bi are non-negative real numbers. Now, substituting ai = 1 and bi = λi , we have(
n∑

i=2

λ2
i

)2

≤ (n− 1)
n∑

i=2

b2
i .

By using Propositions 2.1 and 2.2 in above inequality,

(−λ1)
2 ≤ (n− 1)(2p− λ2

1).

Hence,

λ1 ≤
√

2p(n− 1)
n

.

Remark 2.8. If G be a regular graph, then

λ1 =

√
2p(n− 1)

n
.

Remark 2.9. Let G be a r-regular graph of order n. Then AD(G) = r2J − r2I , where J is the
the matrix of order n whose all entries are equal to one and I is an identity matrix of order n.
The characteristic polynomial is given by

Ch[AD(G), λ] = (λ− r2(n− 1))(λ+ r2)n−1.

Hence
E [AD(G)] = 2r2(n− 1).

Remark 2.10. If G is a r-regular graph and its complement G is (n− 1− r) regular graph, then

Ch[AD(G), λ] = (λ− (n− 1)(n− 1− r)2)(λ+ (n− 1− r)2)n−1
.

Thus,
E [AD(G)] = 2(n− 1− r)2(n− 1).

Theorem 2.11. Let G be a graph of order n and size m. Then

E [AD(G)] ≥
√

2np− n2

4
(| λ1 | − | λ2 |)2.
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Proof. Let λ1, λ2, ..., λn are the average degree square sum eigenvalues of G. Substituting
ai = 1 and bi =| λi | in the theorem 2.3 we get

n∑
i=1

12
n∑

i=1

| λi |2 −

(
n∑

i=1

| λi |2
)2

≤ n2

4
(| λ1 | − | λn |)2

2pn− (E [AD(G)])2 ≤ n2

4
(| λ1 | − | λn |)2

E [AD(G)] ≥
√

2np− n2

4
(| λ1 | − | λn |)2

Theorem 2.12. Let G be a graph of order n. Then√
2p ≤ E [AD(G)] ≤

√
2np.

Proof. By the Cauchy-Schwartz inequality [[?]], we have(
n∑

i=1

aibi

)2

≤
n∑

i=1

a2
i

n∑
i=1

b2
i

where ai and bi are non-negative real numbers. Now, substituting ai = 1 and bi = λi we have(
n∑

i=1

| λi |

)2

≤
n∑

i=1

12
n∑

i=1

| λi |2

(E [AD(G)])2 ≤ 2pn.

Thus,
E [AD(G)] ≤

√
2pn

and
n∑

i=1

| λi |2≤

(
n∑

i=1

| λi |

)2

2p ≤ (E [AD(G)])2

which implies
E [AD(G)] ≥

√
2p.

Theorem 2.13. Let G be a graph of order n and ∆ be the absolute value of the determinant of
AD(G). Then √

2p+ n(n− 1)∆ 2
n ≤ E [AD(G)] ≤

√
2np.

Proof. We know that

(E [AD(G)])2 =

(
n∑

i=1

| λi |

)2

.

=
n∑

i=1

λ2
i + 2

∑
i<j

| λi || λj |

= 2p+ 2
∑
i<j

| λi || λj |

(E [AD(G)])2 = 2p+
∑
i6=j

| λi || λj | (2.2)
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Since we know for non-negative numbers, the arithmetic mean is always greater than or equal to
the geometric mean.

1
n(n− 1)

∑
i6=j

| λi || λj |≥

∏
i6=j

| λi || λj |

 1
n(n−1)

=

(∏
i=1

| λi |2(n−1)

) 1
n(n−1)

=
∏
i6=j

| λi |
2
n

= ∆
2
n

Therefore, ∑
i6=j

| λi || λj |≥ n(n− 1)∆
2
n .

from equation (2) we have,

E [AD(G)] ≥
√

2p+ n(n− 1)∆ 2
n .

Consider a non-negative quantity Y such that,

n∑
i=1

n∑
j=1

(| λi | − | λj |)2 =
n∑

i=1

n∑
j=1

(| λi |2 + | λj |2 −2 | λi || λj |)

Let

Y = n

n∑
i=1

| λi |2 +n
n∑

j=1

| λj |2 −2
n∑

i=1

| λi |
n∑

j=1

| λj |

Y = 4np− 2(E [AD(G)])2.

Since,
Y ≥ 0

4np− 2(E [AD(G)])2 ≥ 0

E [AD(G)] ≤
√

2np

Corollary 2.14. If G is a r-regular graph of order n, then

E [AD(G)] ≤ 2nr2
√
n− 1.

Theorem 2.15. Let G be a graph of order n and size m. Let λ1 ≥ λ2 ≥ ... ≥ λn be a non-
increasing arrangement of average degree square sum eigenvalues. Then

E [AD(G)] ≥
√

2np− α(n)(| λ1 | − | λn |)2

where α(n) = nbn2 c(1−
1
nb

n
2 c).

Proof. Let λ1, λ2, ..., λn are the average degree square sum eigenvalues of G. Substituting
ai =| λi |= bi and a =| λn |= b, A =| λ1 |= B in the theorem 2.4∣∣∣∣∣∣n

n∑
i=1

| λi |2 −

(
n∑

i=1

| λi |

)2
∣∣∣∣∣∣ ≤ α(n)(| λ1 | − | λn |)2

Since E [AD(G)] =
∑n

i=1 | λi | and
∑n

i=1 | λi |2= 2p we get the required result.
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Theorem 2.16. Let G be a graph of order n and size m. Let λ1 ≥ λ2 ≥ ... ≥ λn be a non-
increasing arrangement of average degree square sum eigenvalues. Then

E[AD(G)] ≥ | λ1 || λn | n+ 2p
| λ1 | + | λn |

Proof. Let λ1, λ2, ..., λn be the average degree square sum eigenvalues ofG. Substituting ai = 1
and bi =| λi |, C1 =| λn |, C2 =| λ1 | in Theorem 2.5,

n∑
i=1

| λi |2 + | λ1 || λn |
n∑

i=1

12 ≤ (| λ1 | + | λn |)

(
n∑

i=1

| λi |

)

Since E [AD(G)] =
∑n

i=1 | λi | and
∑n

i=1 | λi |2= 2p we get the required result.

Definition 2.17. [8] The line graph L(G) of a graph G is a graph with vertex set as the edge set
of G and two vertices of L(G) are adjacent whenever the corresponding edges in G are adjacent.

The kth iterated line graph [2, 3, 8] of G is defined as Lk(G) = L(Lk−1(G)), k = 1, 2, 3..
where L0(G) ∼= G and L1(G) ∼= L(G).

Remark 2.18 ([2, 3]). The line graph L(G) of an r-regular graph of G of order n is an r1 =
(2r − 2)-regular graph of order n1 = nr

2 . Thus, Lk(G) is an rk-regular graph of order nk given
by

nk =
n

2k

k−1∏
i=1

(2ir − 2i+1 + 2) and rk = 2kr − 2k+1 + 2.

Theorem 2.19. Let G be a r-regular graph of order n and let Lk(G) be the rk-regular graph of
order nk then average degree square sum energy of Lk(G) is

E[ADD(Lk(G))] = 2r2
k(n− 1) where, rk = 2kr − 2k+1 + 2.

Proof. The average degree square sum characteristic polynomial of Lk(G) with vertex set nk
(Remarks 2.9 and 2.18) is given by

Ch[ADS(Lk(G)), λ] = [λ− (2kr − 2k+1 + 2)2(nk − 1)][λ+ (2kr − 2k+1 + 2)2]nk−1

Thus,
E[ADD(Lk(G))] = 2r2

k(n− 1) where, rk = 2kr − 2k+1 + 2.

Lemma 2.20 ([14]). If a, b, c and d are real numbers, then the determinant of the form∣∣∣∣∣(λ+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1 (λ+ b)In2 − bJn2

∣∣∣∣∣
= (λ+ a)n1−1(λ+ b)n2−1[(λ− (n1 − 1)a)(λ− (n2 − 1)b)− n1n2cd]

3 Operated AD(G) with illustrative graphs

This section instigate the operations of graphs.

Definition 3.1 ([8]). The subdivision graph S(G) of a graph G is a graph with the vertex set
V (G) ∪ E(G) and is obtained by inserting a new vertex of degree 2 into each edge of G.

Definition 3.2 ([15]). The semitotal line graph T1(G) of a graph G is a graph with the vertex set
V (G) ∪ E(G) where two vertices of T1(G) are adjacent if and only if they corresponds to two
adjacent edges of G or one is a vertex of G and another is an edge G incident with it in G.
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Definition 3.3 ([15]). The semitotal point graph T2(G) of a graph G is a graph with the vertex
set V (G) ∪ E(G) where two vertices of T2(G) are adjacent if and only if they corresponds to
two adjacent vertices of G or one is a vertex of G and another is an edge G incident with it in G.

Definition 3.4 ([8]). The total graph T (G) of a graph G is the graph whose the vertex set is
V (G) ∪ E(G) and two vertices of T (G) are adjacent if and only if the corresponding elements
of G are either adjacent or incident.

Definition 3.5 ([14]). The graph G+k is a graph obtained from the graph G by attaching k pen-
dant edges to each vertex of G. If G is a graph of order n and size m, then G+k is graph of order
n+ nk and size m+ nk.

Definition 3.6 ([8]). The union of the graphs G1 and G2 is a graph G1 ∪G2 whose the vertex set
is V (G1 ∪G2) = V (G1) ∪ V (G2) and the edge set E(G1 ∪G2) = E(G1) ∪ E(G2).

Definition 3.7 ([8]). The join G1 + G2 of two graphs G1 and G2 is the graph obtained from G1
and G2 by joining every vertex of G1 to all vertices of G2.

Definition 3.8 ([8]). The product G×H of two graphs G and H is defined as follows:
Consider any two points u = (u1, u2) and u = (v1, v2) in V = V1 × V2. Then u and v are

adjacent in G×H whenever [u1 = v1andu2adjv2]or[u2 = v2andu1adjv1].

Definition 3.9 ([8]). The composition graph G[H] of two graphs G and H is defined as follows:
Consider any two points u = (u1, u2) and v = (v1, v2) ) in V = V1 × V2. Then u and v are

adjacent in G[H] whenever [u1adjv1] or [u1 = v1andu2adjv2].

Definition 3.10 ([8]). The corona G ◦H of graphs G and H is a graph obtained from G and H
by taking one copy of G and | V (G) | copies of H and then joining by an edge each vertex of
the ith copy of H is named (H, i) with the ith vertex of G.

Definition 3.11 ([4]). The jump graph J(G) of a graph G is defined as a graph with the vertex
set as E(G) where the two vertices of J(G) are adjacent if and only if they correspond to two
nonadjacent edges of G.

Theorem 3.12. Let G be a r-regular graph of order n and size m. Then

Ch[AD(S(G))] = (λ+ r2)n−1(λ+ 4)
nr

2 −1[λ2 − (4(
nr

2
− 1) + r2(n− 1))λ

+
1
4
(16r2(n− 1)(

nr

2
− 1)− n2r

2
(r2 + 4)2)].

Proof. The subdivision graph of a r-regular graph has two types of vertices. The n vertices with
degree r and nr

2 vertices with degree 2. Hence,

AD[S(G)] =

r2(Jn − In) (r2+4)
2 Jn×nr

2

(r2+4)
2 Jnr

2 ×n 4(Jnr
2
− Inr

2
)

 .

Ch[AD(S(G))] =| λI −AD(S(G)) |

=

∣∣∣∣∣∣∣
(λ+ r2)In − r2Jn − (r2+4)

2 Jn×nr
2

− (r2+4)
2 Jnr

2 ×n (λ+ 4)Inr
2
− 4Jnr

2

∣∣∣∣∣∣∣ .
Now by using Lemma 2.20, we get the desired result.

Theorem 3.13. Let G be a r- regular graph of order n and size m. Then

Ch[AD(T2(G))] = (λ+ 4r2)n−1(λ+ 4)m−1[λ2 − 4((m− 1) + r2(n− 1))λ

+ 16r2((n− 1)(m− 1))− 4mn(r2 + 1)2)].

109
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Proof. The semitotal point graph of a r-regular graph has wo types of vertices. The n vertices
with degree 2r and m vertices with degree 2.

Hence,

AD(T2) =

 4r2(Jn − In) 2(r2 + 1)Jn×m

2(r2 + 1)Jm×n 4(Jm − Im)

 .
Ch[AD(T2)] =| λI −AD(T2(G)) |

=

∣∣∣∣∣∣∣
(λ+ 4r2)In − 4r2Jn −2(r2 + 1)Jn×m

−2(r2 + 1)Jm×n (λ+ 4)Im − 4Jm

∣∣∣∣∣∣∣
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.14. Let G be a r- regular graph of order n and size m. Then,

Ch[AD(T1)] = (λ+ r2)n−1(λ+ 4r2)m−1[λ2 − r2(4(m− 1) + (n− 1))λ

+
1
4
(16r4(n− 1)(m− 1)− 25mnr4].

Proof. The semitotal line graph of a r-regular graph has two types of vertices. The n vertices
with degree r and m vertices with degree 2r.

Hence,

AD(T1) =

r2(Jn − In) 5r2

2 Jn×m

5r2

2 Jm×n 4r2(Jm − Im)

 .
Ch[AD(S(G))] =| λI −AD(T1(G)) |

=

∣∣∣∣∣∣∣
(λ+ r2)In − r2Jn − 5r2

2 Jn×m

− 5r2

2 Jm×n (λ+ 4r2)Im − 4r2Jm

∣∣∣∣∣∣∣
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.15. Let G be a r-regular graph of order n and size m. Then

Ch[AD(T (G))] = (λ− 4r2(n+m− 1))(λ+ 4r2)n+m−1.

Proof. The total graph of a r-regular graph is a regular graph of degree 2r with n+m vertices.
Hence the result follows from Equation (1).

Theorem 3.16. Let G be a r- regular graph of order n and size m. Then

Ch[AD(G+k)] = (λ+ (r + k)2)n−1(λ+ 1)nk−1[λ2 − ((nk − 1) + (r + k)2(n− 1))λ

+
1
4
(4(r + k)2(n− 1)(nk − 1)− n2k(1 + (r + k)2)2)].

Proof. The graph G+k of a r-regular graph has two types of vertices. The n vertices with degree
r + k and nk vertices with degree 1.

Hence,

AD(G+k) =

(r + k)2(Jn − In) ((r+k)2+1)
2 Jn×m

((r+k)2+1)
2 Jm×n (Jm − Im)

 .
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Ch[AD(G+k))] =| λI −AD(G+k) |

=

∣∣∣∣∣∣∣
(λ+ (r + k)2)In − (r + k)2Jn − ((r+k)2+1)

2 Jn×m

− ((r+k)2+1)
2 Jm×n (λ+ 1)Im − Jm

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.17. If G is a r1-regular graph of order n1 and H is a r2-regular graph of order
n2,then

Ch[AD(G ∪H)] = Ch(AD(G))Ch(AD(H))− (λ+ r2
1)

n1−1(λ+ r2
2)

n2−1n1n2
(r2

1 + r2
2)

2

4
.

Proof. The graph G ∪H of order n1 + n2 has two types of vertices, the n1 vertices of degree r1
and the remaining n2 vertices are of degree r2.

Hence,

AD(G ∪H) =

∣∣∣∣∣∣∣
AD(G) (r2

1+r2
2)

2 Jn1×n2

(r2
1+r2

2)
2 Jn2×n1 AD(H)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
r2

1(Jn1 − In1)
(r2

1+r2
2)

2 Jn1×n2

(r2
1+r2

2)
2 Jn2×n1 r2

2(Jn2 − In2)

∣∣∣∣∣∣∣ .
Ch[AD(G ∪H)] =| λI −AD(G ∪H) |

=

∣∣∣∣∣∣∣
(λ+ r2

1)In1 − r2
1Jn1 − (r2

1+r2
2)

2 Jn1×n2

− (r2
1+r2)

2

2 Jn2×n1 (λ+ r2
2)Im − r2

2Jn2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get

Ch[AD(G ∪H)] = (λ+ r2
1)

n1−1(λ+ r2
2)

n2−1[(λ− (n1 − 1)r2
1)(λ− (n2 − 1)r2

2)

−
n1n2(r2

1 + r2
2)

2

4
].

AS G and H are regular graphs of order n1 and n2 and degree r1 and r2 respectively, by equation
(1) we have

Ch[AD(G)] = (λ− r2
1(n1 − 1))(λ+ r2

1)
n1−1

and
Ch[AD(H)] = (λ− r2

2(n2 − 1))(λ+ r2
2)

n2−1.

Hence the result follows.

Theorem 3.18. Let G be a r-regular graph of order n and size m. Then

Ch[AD(G+H)] = (λ+R2
1)

n1−1(λ+R2
2)

n2−1[λ2 − (R2
2(n2 − 1) +R2

1(n1 − 1))λ

+
1
4
(R2

1R
2
2(n1 − 1)(n2 − 1)− n1n2(R

2
1 +R2

2)
2).]

Proof. If G is a r1-regular graph of order n1 and H is a r2-regular graph of order n2, then G+H
has two types of vertices, the n1 vertices with degree R1 = r1 + n2 and n2 vertices with degree
R2 = r2 + n1. Hence

AD(G+H) =

∣∣∣∣∣∣∣
R2

1(Jn1 − In1)
(R2

1+R2
2)

2 Jn1×n2

(R2
1+R2

2)
2 Jn2×n1 R2

2(Jn2 − In2)

∣∣∣∣∣∣∣ .
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Ch[AD(G+H)] =| λI −AD(G+H) |

=

∣∣∣∣∣∣∣
(λ+R2

1)In1 −R2
1Jn1 − (R2

1+R2
2)

2 Jn1×n2

− (R2
1+R2

2)
2 Jn2×n1 (λ+R2

2)In2 −R2
2Jn2

∣∣∣∣∣∣∣ .
Now by using Lemma 2.20, we get the desired result.

Theorem 3.19. Let G be a r1- regular graph of order n1 and H be r2 regular graph of order n2.
Then

Ch[AD(G×H)] = (λ− (r1 + r2)
2(n1n2 − 1))(λ+ (r1 + r2)

2)n1n2−1.

Proof. If G be a r1-regular graph of order n1 and H be r2 regular graph of order n2, then G×H
is a (r1 + r2)-regular graph with n1n2 vertices. Hence the result follows from equation (1).

Theorem 3.20. Let G be a r1- regular graph of order n1 and H be a r2 regular graph of order
n2. Then

Ch[AD(G[H])] = (λ+ (n2r1 + r2)
2)n1n2−1(λ− (n2r1 + r2)

2(n1n2 − 1)).

Proof. If G be a r1- regular graph of order n1 and H be a r2 regular graph of order n2, then
G[H] is a (n2r1 + r2)-regular graph with n1n2 vertices. Hence the result follows from Equation
(1).

Theorem 3.21. If G is a r1-regular graph of order n1 and H is a r2-regular graph of order n2,
then

Ch[AD(G ◦H)] = (λ+R2
1)

n1−1(λ+R2
2)

n2−1[λ2 − (R2
2(n1n2 − 1) +R2

1(n1 − 1))λ

+
1
4
(R2

1R
2
2(n1 − 1)(n1n2 − 1)− n2

1n2(R
2
1 +R2

2)
2)].

Proof. If G is a r1-regular graph of order n1 and H is a r2-regular graph of order n2, then G ◦H
has two types of vertices, the n1 vertices with degree R1 = r1 + n2 and remaining n1n2 vertices
with degree R2 = r2 + 1.

Hence

AD(G ◦H) =

 R2
1(Jn1 − In1)

(R2
1+R2

2)
2 Jn1×n1n2

(R2
1+R2

2)
2 Jn1n2×n1 R2

2(Jn1n2 − In1n2)

 .
Ch[AD(G ◦H)] =| λI −AD(G ◦H) |

=

∣∣∣∣∣∣∣
(λ+R2

1)In1 −R2
1Jn1 − (R2

1+R2
2)

2 Jn1×n1n2

− (R2
1+R2

2)
2 Jn1n2×n1 (λ+R2

2)In1n2 −R2
2Jn1n2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.22. Let G be an r1-regular graph of order n1 and H be r2 regular graph of order n2.
Then

Ch[AD(G×H)] = (λ− (r1 + r2)
2(n1n2 − 1))(λ+ (r1 + r2)

2)n1n2−1

Proof. Let G be an r1-regular graph of order n1 and H be r2 regular graph of order n2. Then
G×H is an (r1 + r2)- regular graph with n1n2 vertices. Hence the result follows from Equation
(1).

Theorem 3.23. If Wn is a wheel graph, then

Ch[AD(Wn)] = (λ+ 9)n−2[λ2 − 9(n− 2)λ− (n− 1)(32 + (n− 1)2)2

4
]
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Proof. The graph Wn of order n has two types of verices, namely n− 1 vertices are of degree 3
and central vertex has degree n− 1.

Hence,

AD(Wn) =

 9(Jn−1 − In−1)
(32+(n−1)2)

2 J(n−1)×1

(32+(n−1)2)
2 J1×(n−1) (n− 1)2(J1 − I1)

 .
Ch[AD(Wn)] =| λI −AD(Wn) |

=

∣∣∣∣∣∣∣
(λ+ 9)In−1 − 9Jn−1 − (32+(n−1)2)

2 J(n−1)×1

− (32+(n−1)2)
2 J1×(n−1) (λ+ (n− 1)2)I1 − (n− 1)2J1

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.24. If F 3
t be a friendship graph, then

Ch[AD(F 3
t )] = (λ+ 4)2t−1[λ2 − 4(2t− 1)λ− 2t(4 + (2t)2)2

4
].

Proof. The graph F 3
t of order 2t+1 has two types of verices namely, 2t vertices of degree 2 and

1 vertex of degree 2t. Hence,

AD(F 3
t ) =

 4(J2t − I2t)
(4+(2t)2)

2 J2t×1

(4+(2t)2)
2 J1×2t (2t)2(J1 − I1)

 .

Ch[F 3
t ] =| λI −AD(F 3

t ) |

=

∣∣∣∣∣∣∣
(λ+ 4)I2t − 4J2t − (4+(2t)2)

2 J2t×1

− (4+(2t)2)
2 J1×2t (λ+ (2t)2)I1 − (2t)2J1

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.25. If Hn − c is a helm without central vertex, then

Ch[AD(Hn − c)] = (λ+ 9)n−2(λ+ 1)n−2[λ2 − 10(n− 2)λ+ 9(n− 2)2 − 25(n− 1)2.

Proof. The graph Hn − c of order 2(n− 1) has two types of vertices namely, n− 1 vertices are
of degree 3 and remaining (n− 1) vertices has degree 1. Hence,

AD(Hn − c) =

9(Jn−1 − In−1) 5J(n−1)×(n−1)

5J(n−1)×(n−1) (Jn−1 − In−1)

 .
Ch[AD(Hn − c)] =| λI −AD(Hn − c) |

=

∣∣∣∣∣∣∣
(λ+ 9)In−1 − 9Jn−1 −5J(n−1)×(n−1)

−5J(n−1)×(n−1) (λ+ 1)In−1 − Jn−1

∣∣∣∣∣∣∣ .
Now by using Lemma 2.20, we get the desired result.

Theorem 3.26. If H
′

n − c is a closed helm without central vertex, then

Ch[AD(H
′

n − c)] = (λ− 9(2n− 3))(λ+ 9)2n−3.
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Proof. The graph Hn − c of order 2(n− 1) has two types of vertices namely, n− 1 vertices are
of degree 3 and remaining (n− 1) vertices has degree 1. Hence,

AD(Hn − c) =

9(Jn−1 − In−1) 5J(n−1)×(n−1)

5J(n−1)×(n−1) (Jn−1 − In−1)

 .

Ch[AD(Hn − c)] =| λI −AD(Hn − c) |

=

∣∣∣∣∣∣∣
(λ+ 9)In−1 − 9Jn−1 −5J(n−1)×(n−1)

−5J(n−1)×(n−1) (λ+ 1)In−1 − Jn−1

∣∣∣∣∣∣∣ .
Now by using Lemma 2.20, we get the desired result.

Theorem 3.27. If H
′

n − c is a closed helm without central vertex, then

Ch[AD(H
′

n − c)] = (λ− 9(2n− 3))(λ+ 9)2n−3.

Proof. The closed helm without central vertex H
′

n − c is 3-regular graph with 2(n− 1) vertices.
Hence the result follows fron equation (1).

Theorem 3.28. If SFn − c is a sun flower graph without central vertex, then

Ch[AD(SFn − c)] = (λ+ 9)n−2(λ+ 4)n−2[λ2 − 13(n− 2)λ+ 36(n− 2)2

− 169(n− 1)2

4
].

Proof. The sun flower graph SFn − c without central vertex is a graph of order 2(n− 1), which
has two types of vertices. The n−1 vertices have degree 3 and the remaining n−1 vertices have
degree 2.

Hence,

AD(SFn − c) =

9(Jn−1 − In−1)
13
2 J(n−1)×(n−1)

13
2 J(n−1)×(n−1) 4(Jn−1 − In−1)

 .
Ch[AD(SFn − c)] =| λI −AD(SFn − c) |

=

∣∣∣∣∣∣∣
(λ+ 9)In−1 − 9Jn−1 − 13

2 J(n−1)×(n−1)

− 13
2 J(n−1)×(n−1) (λ+ 4)In−1 − 4Jn−1

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.29. If DCn is a double cone then,

Ch[AD(Cn)] = (λ+ 16)n−1(λ+ n2)[λ2 − (n2 + 16(n− 1))λ+ 16n2(n− 1)

− n(16 + n2)2

2
].

Proof. The double cone is a graph of of order n + 2 has two types of vertices. The n vertices
have degree 4 and the remaining 2 vertices have degree n. Hence

AD(DCn) =

16(Jn − In) (16+n2)
2 Jn×2

(16+n2)
2 J2×n n2(J2 − I2)

 .
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Ch[AD(DCn)] =| λI −AD(DCn) |

=

∣∣∣∣∣∣∣
(λ+ 16)In − 16Jn − (16+n2)

2 Jn×2

− (16+n2)
2 J2×n (λ+ n2)I2 − n2J2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.30. If Bb is a book graph, then

Ch[AD(Bb)] = (λ+ 4)2b−1(λ+ (b+ 1)2)[λ2 − ((b+ 1)2 + 4(2b− 1))λ+ 4(2b− 1)(b+ 1)2

− b(4 + (b+ 1)2)2].

Proof. The Book graph Bb of order 2b+2 has two types of vertices. The 2b vertices with degree
2 and 2 vertices are with degree b+ 1. Hence,

AD(Bb) =

 4(J2b − I2b)
4+(b+1)2

2 J2b×2

4+(b+1)2

2 J2×2b (b+ 1)2(J2 − I2)

 .

Ch[AD(Bb)] =| λI −AD(Bb) |

=

∣∣∣∣∣∣∣
(λ+ 4)I2b − 4J2b − 4+(b+1)2

2 J2b×2

− 4+(b+1)2

2 J2×2b (λ+ (b+ 1)2)I2 − (b+ 1)2J2

∣∣∣∣∣∣∣ .
Now by using Lemma 2.20, we get the desired result.

Theorem 3.31. If Bt is a book with triangular pages, then

Ch[AD(Bt)] = (λ+ 4)t−1(λ+ (t+ 1)2)[λ2 − ((t+ 1)2 + 4(t− 1))λ+ 4(t− 1)(t+ 1)2

− t(4 + (t+ 1)2)2

2
].

Proof. The book Bt with triangular pages of order t+ 2 has two types of vertices. The t vertices
have degree 2 and the remaining 2 vertices have degree t+ 1. Hence,

AD(Bt) =

 4(Jt − It) 4+(t+1)2

2 Jt×2

4+(t+1)2

2 J2×t (t+ 1)2(J2 − I2)

 .

Ch[AD(Bt)] =| λI −AD(Bt) |

=

∣∣∣∣∣∣∣
(λ+ 4)It − 4Jt − 4+(t+1)2

2 Jt×2

− 4+(b+1)2

2 J2×t (λ+ (t+ 1)2)I2 − (t+ 1)2J2

∣∣∣∣∣∣∣ .

Theorem 3.32. If Ln is a ladder graph, then

Ch[AD(Ln)] = (λ+ 9)2n−5(λ+ 4)3[λ2 +−(9(2n− 5) + 12)λ+ 108(2n− 5)

− 169(2n− 4).
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Proof. The ladder graph Ln is a graph of order 2n and has two types of vertices. The 4 vertices
have degree 2 and 2n-4 vertices have degree 3. Hence,

AD(Ln) =

9(J2n−4 − I2n−4)
13
2 J(2n−4)×4

13
2 J4×(2n−4) 4(J4 − I4)

 .
Ch[AD(Ln)] =| λI −AD(Ln) |

=

∣∣∣∣∣∣∣
(λ+ 9)I2n−4 − 9J2n−4 − 13

2 J(2n−4)×4

− 13
2 J4×(2n−4) (λ+ 4)I4 − 4J4

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.33. If Prn is a prism graph, then

Ch[AD(Prn)] = (λ+ 9)2n−1(λ− 9(2n− 1)).

Proof. The prism Prn is 3-regular graph with 2n vertices. Hence, the result follows from equa-
tion (1).

Theorem 3.34. If Tn is a triangular snake, then

Ch[AD(Tn)] = (λ+ 4)n(λ+ 16)n−3[λ2 − (16(n− 3) + 4n)λ+ 64n(n− 3)

− 25(n+ 1)(n− 2)].

Proof. The triangular snake Tn has two types of vertices. The n+ 1 vertices have degree 2 and
the remaining n− 2 vertices have degree 4. Hence,

AD(Tn) =

4(Jn+1 − In+1) 5J(n+1)×(n−2)

5J(n−2)×(n+1) 16(Jn−2 − In−2)

 .
Ch[AD(Tn)] =| λI −AD(Tn) |

=

∣∣∣∣∣∣∣
(λ+ 4)In+1 − 4Jn+1 −5J(n+1)×(n−2)

−5J(n−2)×(n+1) (λ+ 16)In−2 − 16Jn−2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.35. If Qn is a quadrilateral snake, then

Ch[AD(Qn)] = (λ+ 4)2n−1(λ+ 16)n−3[λ2 − (16(n− 3) + 4(2n− 1))λ

+ 64(2n− 1)(n− 3)− 50n(n− 2)].

Proof. The quadrilateral snake Qn of degree 3n − 2 has two types of vertices. The 2n vertices
have degree 2 and the remaining n− 2 vertices have degree 4. Hence,

AD(Qn) =

4(J2n − I2n) 5J(2n)×(n−2)

5J(n−2)×(2n) 16(Jn−2 − In−2)

 .
Ch[AD(Qn)] =| λI −AD(Qn) |

=

∣∣∣∣∣∣∣
(λ+ 4)I2n − 4J2n −5J(2n)×(n−2)

−5J(n−2)×(2n) (λ+ 16)In−2 − 16Jn−2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.
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Theorem 3.36. If G is an r-regular graph of order n, then

Ch[AD(J(G))] = (λ+ r2
1(
nr

2
− 1))(λ− r2

1)
(nr

2 −1) where, r1 =
(n− 4)r

2
+ 1.

Proof. The jump graph J(G) is r-regular graph is r1 = ( (n−4)r
2 + 1)-regular graph with nr

2
vertices. Hence, the result follows from Equation (1).

Theorem 3.37. If Sn is a star graph, then

Ch[AD(Sn)] = (λ+ 1)n−2[λ2 − (n− 2)λ− (n− 1)(1 + (n− 1)2)2

4
].

Proof. The graph Sn of order n has two types of verices namely, n − 1 vertices are of degree 1
and central vertex has degree n− 1. Hence,

AD(Sn) =

 (Jn−1 − In−1)
1+(n−1)2

2 J(n−1)×1

1+(n−1)2

2 J1×(n−1) (n− 1)2(J1 − I1)

 .
Ch[AD(Sn)] =| λI −AD(Sn) |

=

∣∣∣∣∣∣∣
(λ+ 1)In−1 − Jn−1 − 1+(n−1)2

2 J(n−1)×1

− 1+(n−1)2

2 J1×(n−1) (λ+ (n− 1)2)I1 − (n− 1)2J1

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.38. If Sn,n is a double star graph, then

Ch[AD(Sn,n)] = (λ+ 1)2n−3(λ+n2)[λ2− ((2n− 3)+n2)λ+(2n− 3)n2− (n− 1)(n2 + 1)2].

Proof. The graph Sn,n of order 2n has two types of verices namely, 2n−1 vertices are of degree
1 and remaining two of degree n. Hence,

AD(Sn,n) =

(J2n−2 − I2n−2)
n2+1

2 J(2n−2)×2

n2+1
2 J2×(2n−2) n2(J2 − I2)

 .
Ch[AD(Sn,n)] =| λI −AD(Sn,n) |

=

∣∣∣∣∣∣∣
(λ+ 1)I2n−2 − J2n−2 − (n2+1)

2 J(2n−2)×2

− (n2+1)
2 J2×(2n−2) (λ+ n2)I2 − n2J2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.39. If Km,n is a complete biparite graph, then

Ch[AD(Km,n)] = (λ+ n2)m−1(λ+m2)n−1[λ2 − (m2(n− 1) + n2(m− 1))λ

+ (m− 1)(n− 1)m2n2 − mn(m2 + n2)2

4
].

Proof. The graph Km,n of order m+n has two types of verices namely, m vertices are of degree
n and n of degree m. Hence,

AD(Km,n) =

n2(Jm − Im) m2+n2

2 Jm×n

m2+n2

2 Jn×m m2(Jn − In)

 .
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Ch[AD(Km,n)] =| λI −AD(Km,n) |

=

∣∣∣∣∣∣∣
(λ+ n2)Im − n2Jm − m2+n2

2 Jm×n

−m2+n2

2 Jm×n (λ+m2)In −m2Jn

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

Theorem 3.40. If Pn is a path graph, then

Ch[AD(Pn)] = (λ+ 4)n−3(λ+ 1)[λ2 − (4(n− 3) + 1)λ+ 4(n− 3)− 25(n− 2)
2

].

Proof. The graph Pn of order n has two types of verices namely, n − 2 vertices are of degree 2
and remaining two end vertices of degree 1. Hence,

AD(Pn) =

4(Jn−2 − In−2)
5
2J(n−2)×2

5
2J2×(n−2) (J2 − I2)

 .

Ch[AD(Pn)] =| λI −AD(Pn) |

=

∣∣∣∣∣∣∣
(λ+ 4)In−2 − 4Jn−2 − 5

2J(n−2)×2

− 5
2J2×(n−2) (λ+ 1)I2 − J2

∣∣∣∣∣∣∣ .
Now, by using Lemma 2.20, we get the desired result.

A dumbbell is the graph obtained from two disjoint cycles by joining them by a path.

Theorem 3.41. If Dn,n is a dumbbell graph, then

Ch[AD(Dn,n)] = (λ+ 4)2n−3(λ+ 9)[λ2 − (4(2n− 3) + 9)λ+ 36(2n− 3)− 169(n− 1)].

Proof. The graphDn,n of order 2n has two types of verices namely, 2n−2 vertices are of degree
2 and remaining two of degree 3. Hence,

AD(Dn,n) =

4(J2n−2 − I2n−2)
13
2 J(2n−2)×2

13
2 J2×(2n−2) 9(J2 − I2)

 .

Ch[AD(Dn,n)] =| λI −AD(Dn,n) |

=

∣∣∣∣∣∣∣
(λ+ 4)I2n−2 − 4J2n−2 − 13

2 J(2n−2)×2

− 13
2 J2×(2n−2) (λ+ 9)I2 − 9J2

∣∣∣∣∣∣∣ .
Now by using Lemma 2.20, we get the desired result.

4 Hyperenergetic graphs

A graph G with n vertices is said to be hyperenergetic [10] if E(G) ≥ 2n− 2, and to be nonhy-
perenergetic if E(G) ≤ 2n− 2. A non-complete graph whose energy is equal to 2n− 2 is called
borderenergetic [7].

Definition 4.1. A graph G of order n is said to be average degree square sum hyperenergetic if
AD(G) ≥ 2(n− 1)3.
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Definition 4.2. A graph G of order n is said to be average degree square sum non-hyperenergetic
if AD(G) ≤ 2(n− 1)3.

Definition 4.3. A non-complete graph of order n whose energy is equal to 2(n − 1)3 is called
average degree square sum borderenergetic.

Definition 4.4. Two graphs G1 and G2 are said to be average degree square sum equienergetic if
they have same average degree square sum energy. That is, E [AD(G1)] = E [AD(G2)].

Theorem 4.5. If G is an r-regular graph of order n, then G is

(i) average degree square sum borderenergetic for r = 0,

(ii) average degree square sum non-hyperenergetic for r ≥ 1.

Proof. The graph G is (n− 1− r)-regular graph.

Ch[AD(G), λ] = (λ− (n− 1)(n− 1− r)2)(λ+ (n− 1− r)2)n−1

Thus ,
E [AD(G)] = 2(n− 1− r)2(n− 1)

From Definition 4.1, the graph G is average degree square sum hyperenergetic if E(G) > 2(n−
1)3.
That is, if 2(n − 1 − r)2(n − 1) ≥ 2(n − 1)3 This inequality does not hold for any value of
r, whereas the two quantities are equal when r = 0. Hence, G is average degree square sum
borderenergetic for r = 0 and average degree square sum nonhyperenergetic for r ≥ 1.

Theorem 4.6. The graph L(Kn) is average degree square sum borderenergetic for n = 2, 3 and
average degree square sum non-hyperenergetic for n ≥ 4.

Proof. The complete graph Kn is (n− 1)-regular graph of order n. Thus,

Ch[AD(Kn), λ] = (λ− (n− 1)3)(λ+ (n− 1)2)n−1

The line graph of Kn is L(Kn) is (2n− 4)-regular graph of order n1 =
nr
2 and,

Ch[AD(L(Kn), λ] = (λ− 2(n− 2)2(n(n− 1)− 2))(λ+ 4(n− 2)2)
n(n−1)−2

2

Hence,
E [AD(L(Kn))] = 4(n− 2)2(n(n− 1)− 2)

Clearly, E [AD(L(Kn))] ≤ 2(n(n−1)
2 − 1)3 for n ≥ 4 and equality holds for n = 2, 3.

Hence, L(K2), L(K3) are average degree square sum borderenergetic and L(Kn) is average
degree square sum nonhyperenergetic for n ≥ 4.

Theorem 4.7. If G is an r-regular graph of order n, then J(G) is

(i) average degree square sum borderenergetic for r = 1,

(ii) average degree square sum non-hyperenergetic for r ≥ 2.

Proof. The jump graph J(G) is r-regular graph is r1 = ( (n−4)r
2 + 1)-regular graph with nr

2
vertices.

Ch[AD(J(G))] = (λ+ r2
1(
nr

2
− 1))(λ− r2

1)
(nr

2 −1) where, r1 =
(n− 4)r

2
+ 1

Hence,
E [AD(J(G)] = 2r2

1(
nr

2
− 1)

=
((n− 4)r + 2)2(nr − 2)

4
E [AD(J(G))] ≤ 2(nr2 − 1)3 for r ≥ 2 and equality holds for r = 1.
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Theorem 4.8. If G is an r-regular graph of order n, then T (G) is average degree square sum
non-hyperenergetic.

Proof. The total graph T (G) of an r-regular graph G is a regular graph of degree 2r with n+ nr
2

vertices. Then,

Ch[AD(T (G))] = (λ− 4r2(n+m− 1))(λ+ 4r2)n+m−1

Hence,
E(AD(T (G))) = 4r2(n(r + 2)− 2)

E [AD(T (G))] ≤ 2(n+ nr
2 − 1)3 for all r. Thus T (G) is average degree square sum nonhyper-

energetic.

5 Conclusion

We conclude with the following observations. In this paper, we have obtain the characteristic
polynomial of the average degree square sum matrix of graphs obtained by some graphs op-
erations. Further, bounds for both largest average degree square sum eigenvalue and average
degree square sum energy of graphs are established. Also, obtained sharp bounds. Characterized
average degree square sum hyperenergetic, borderenergetic and equienergetic of few graphs.
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