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AbstractAn analysis has been carried out to study the effects of thermal radiation and suc-
tion or injection on two-dimensional magnetohydrodynamic laminar boundary layer flow of a
micropolar fluid past a wedge embedded in a porous stratum. The fluid assuming to be vis-
cous, incompressible and electrically conducting micropolar fluid. The radiative heat flux in the
energy equation is described by Rosseland approximation. The governing partial differential
equations are derived and transformed using a similarity transformation. The transformed equa-
tions are solved using MATLAB bvp4c code. Numerical results are presented graphically for the
distribution of velocity, microrotation and temperature profiles with in the boundary layer.

1 Introduction

A boundary layer is a flow of a fluid over a body is an important phenomenon in fluid mechanics.
Sakiadis [1] analysed the boundary layer produced by a sheet issuing with constant speed from
a slit into a fluid at rest and found that the flow was of Blasius type, in which the boundary layer
thickness increased with the distance from the slit. An extension to this problem Lawrence Crane
[2] studied the analytical solution to the boundary layer equations for the problem of steady two-
dimensional flow over a stretching surface. The flow in this case finds certain similarities with in
the Hiemenz [3] boundary layer flow near a stagnation point in which the mainstream velocity
is proportional to the distance from the stagnation point. H. Schlitchting and K Gersten [4]
explained a few analyses on the boundary layer flow past a wedge with different angles from
flat plate at zero incidences to two-dimensional stagnation flows. The study of the boundary
layer flow field adjacent to wedge is very important and is an essential part in the area of fluid
dynamics. Nowadays, a convectional flow of newtonian and non-newtonian fluid over the wedge
becomes important.

The steady two-dimensional incompressible laminar boundary layer flow over a wedge with
uniform suction/injection has been carried out by Watanabe et al. [5]. Magnetohydrodynamic is
the study of fluid flow in an electrically conducting fluid in the presence of electromagnetic field
that affects the fluid flow characteristics. Magnetic fields are used in technological processes
such as MHD power generator designs, plasma studies, petroleum industries, MHD pumps,
Nuclear reactors cooling etc. Magnetohydrodynamic is significant in the control of boundary
layer flow and metallurgical processes. The steady two-dimensional boundary layer flow past
a wedge with suction/injection of a newtonian fluid have been investigated by Kafoussias and
Nanousis [6], Kandasamy et al. [7, 8], Nanousis [9]. Srinivasacharya et al. [10] analysed the
steady laminar magnetohydrodynamic boundary layer flow of a nanofluid past a fixed wedge.

The flow along a porous stratum have a variety of applications such as electronic cooling,
packed bed reactors, extraction of crude oil, ground water hydrology, geothermal systems, in-
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dustrial and agricultural assignment.The steady two-dimensional magnetohydrodynamic bound-
ary layer flow of a viscous fluid over a constant wedge with porous medium has been studied
by Ramesh et al. [11]. Baag et al. [12] analysed the magnetohydrodynamic boundary layer
flow over a stretching sheet embedded in a porous medium with the transfer of heat. Rashad and
Bakier [13] analysed magnetohydrodynamic effects on non-Darcy forced convection boundary
layer flow over a permeable wedge embedded in a porous medium with uniform heat flux. An-
buchezhian et al. [14] described the magnetohydrodynamic laminar boundary layer flow past a
porous wedge with the effects of variable and temperature in the presence of chemical reaction.

The study of heat transfer in the boundary layer flow of an incompressible newtonian fluid
with dependent viscosity temperature past a non-isothermal wedge in the presence of thermal
radiation and heat generation/absorption has been analysed by Dulal Pal and Hiranmoy Mondal
[15]. Govind Rajput et al. [16] investigated the study of the buoyancy effects on the magne-
tohydrodynamic flow past a stretching sheet with in porous medium by considering the effect
of radiation. Xiaohong Su et al. [17] examined the magnetohydrodynamic mixed convection
flow over a permeable stretching wedge in the presence of thermal radiation and ohmic heating
and also proposed a new analytical method named DTM-BF. Paresh Vyas and Ashutosh Ranjan
[18] carried out the magnetohydrodynamic boundary layer flow over a stretching sheet with the
effects of the thermal radiation and heat transfer dissipation in a porous medium.

Over the past decades a great interest in flow of a micropolar fluid has been increased sub-
stantially due to phenomenon of these fluids in industrial processes. Eringen [19, 20], pioneering
researcher who has formulated the theory of micropolar fluid. This theory describes the effects of
microscopic arising from the local structure and micro-motions of the fluid elements and is capa-
ble of explain the behaviour of an animal crystals and real fluids with suspensions. Hassan [21]
examined the thermal radiation effect on the flow of a micropolar fluid past a continuous mov-
ing plate with suction/injection. Uddin and Kumar [22] examined the magnetohydrodynamic
boundary layer flow of a micropolar fluid past a wedge by considering viscous dissipation, joule
heating, hall and ion-slip effects. Gnaneswara Reddy [23] described the steady thermal bound-
ary layer flow induced by a stretching sheet immersed in an incompressible micropolar fluid in
presence of constant surface temperature with the effects of radiation and heat generation. The
steady two-dimensional boundary layer flow over a wedge with variable wall temperature and
constant wall heat flux has been analysed by Ishak et al. [24, 25]. Uddin and Kumar [27] investi-
gated the magnetohydrodynamic boundary layer flow over a wedge in presence of Joule heating,
viscous dissipation and hall and ion-silp effects. Vanita [28] studied the unsteady laminar bound-
ary layer flow of a micropolar fluid due to a moving wedge. Srivasacharya et al. [29] analysed
the variable magnetic field effects on magnetohydrodynamic boundary layer flow of nanofluid
past a wedge. Alok Kumar Pandey and Manoj Kumar [30] examined the two-dimensional steady
magnetohydrodynamic nanofluid flow past a wedge with influence of thermal radiation, chemi-
cal reaction and viscous-ohmic dissipation. Wubshet Ibrahim and Ayele Tulu [31] revealed the
influence of viscous dissipation on magnetohydrodynamic laminar boundary layer flow through
a wedge by heat and mass transfer of nanofluid within a porous media with the effects of Brow-
nian and Thermophoresisi parameters. The magnetohydrodynamic boundary layer flow of a
micropolar fluid over continuous moving stretching surface embedded in a non-Darcian porous
medium with the effect of radiation has been extensively reviewed by Mostafa et al. [32]. Syam
Sundar Majety and Gangadhar [?] studied the magnetohydrodynamic boundary layer flow over
a wedge embedded in a porous medium with effects of viscous dissipation, heat source, thermal
radiation and chemical reaction. Therefore, the objective of this paper is to examine the steady
two-dimensional magnetohydrodynamic boundary layer flow of a micropolar fluid past a wedge
embedded in a porous stratum with the effects of thermal radiation and suction/injection. In
energy equation the Rosseland approximation is considered to describe the radiative heat flux.
Hence the contribution of radiation only through the equation of energy. The transformed bound-
ary layer governing equations were solved using MATLAB bvp4c code. The obtained results are
presented graphically for velocity, angular velocity and temperature profiles.
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2 Analysis

Fig.1 indicates the geometry of the problem under consideration. The following assumptions are
made in order to simplify the solution.

(i) the steady, two-dimensional magnetohydrodynamic laminar boundary layer flow of an in-
compressible electrically conducting micropolar fluid over a wedge as shown in figure 1.

(ii) let x-axis be parallel to the wedge and y-axis be normal to it

(iii) an uniform transverse magnetic field with constant strength B0 is applied parallel to the
y-axis

(iv) the wedge embedded in a porous stratum

(v) the thermal radiation and suction/injection effects are considered.

Figure 1. Schematic diagram of the physical flow problem

Under these assumptions, the governing equations for two-dimensional laminar boundary layer
flow can be written as ( [25, 26]),
conservation of mass:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

conservation of momentum:

u
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conservation of angular momentum:
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micro inertia:
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the boundary conditions are,

y = 0; u = 0, v = v0, j = 0, N = −1
2
∂u

∂y
, T = Tw,

y →∞; u = U(x), N → 0 j → 0, T = T∞. (2.6)

The radiative heat flux qr, by using Rosseland approximation as follows,

qr = −
4σs
3Ke

∂(T 4)

∂y
, (2.7)

where, σs andKe be the Stefan-Boltzman constant and mean absorption coefficient, respectively.
We assume that the term T 4 can be expressed as a linear function of temperature difference within
the flow. By expanding T 4 in a Taylor series about terms at free stream T∞ as :

T 4 = T 4
∞ + 4T 3

∞(T − T −∞) + 6T 2
∞(T − T∞)2 + ...

and then neglecting higher order terms beyond the first degree in (T − T∞) we get,

T 4 ∼= 4T 3
∞T − 3T 4

∞. (2.8)

By applying above approximation to (2.7), we have

qr = −
16σsT 3

∞
3Ke

∂T

∂y
. (2.9)

From equations (2.8) and (2.9) eq.(2.5) can be written as,

u
∂T

∂x
+ v

∂T

∂y
=

ν

Pr

∂2T

∂y2 +
σB2

0
ρCp

u2 +
1
ρCp

16σsT 3
∞

3Ke

∂2T

∂y2 . (2.10)

In the above equations u, v are the velocity components along and perpendicular to the wall; U , is
the flow velocity at the outer edge of the boundary layer; ν, the kinematic viscosity; v0, velocity
of the suction/injection; T , temperature of the fluid; ρ, density of the fluid; B0 , the applied
magnetic field strength; Pr , Prandtl number; N , angular velocity outside the boundary layer; qr,
radiative heat flux; λ, porosity stratum parameter; κ, the gyro-viscosity; j , micro-inertia density;
µ, dynamic viscosity; γ, spin gradient viscosity; Tw, temperature at the wall.
The velocity of the free stream from the wedge is of the form U(x) = cxm where,m = β

2−β
and β is the Hartree pressure gradient parameter that corresponds to β = Ω

φ for a total angle Ω

of the wedge and c is a positive constant. We have noticed that 0≤ m ≤ 1 with m = 0 for the
boundary layer flow over a stationary flat plate (Blasius problem) and m = 1 for the flow near
the stagnation point on an infinite wall.
The spin gradient viscosity γ can be written as

γ(x, y) =

(
µ+

κ

2

)
j(x, y) = µ

(
1 +

K

2

)
j(x, y) (2.11)

Where K = κ
µ denotes dimensionless viscosity ratio and is known as material parameter. Equa-

tion (2.11) is importuned to allow the field of equations predicts the correct behavior in the
limiting case when the microstructure effects become negligible and the total spin N reduces to
the angular velocity. It is stated by Ahmadi [34] that for a non-constant microinertia, it is possible
using equation (2.11) to find similar and self-similar solutions for a large number of problems of
micropolar fluids. We notice that the case K = 0 describes the classical Navier-Stokes equation
for a viscous and incompressible fluid.
Following dimensionless similarity transformations will be introduced,

f(x, η) =

(
2

m+ 1
νxU

)−1/2

, Θ(x, η) =
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, η =

(
m+ 1

2
U

νx

)1/2

y,
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j(x, y) =
2νx

(m+ 1)U
i(η), N(x, y) = U

(
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2νx

)
h(x, η). (2.12)

The equation of continuity (2.1) is identically satisfied by the stream function ψ(x, y) can be
defined as,

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (2.13)

The governing partial differential equations (2.2), (2.3), (2.4) and (2.10) becomes,
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(
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)(
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2
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∂2θ
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2
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(
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− 1
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, (2.17)

The boundary conditions (2.6) becomes

η = 0;
∂f

∂η
= 0,

1
2
f +

1
2
x

U

dU

dx
f + x

∂f

∂x
= −v0

(
m+ 1

2
x

Uν
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, i(0) = 0, h(0) = −1
2
f ′′(0), θ(0) = 1,

η →∞;
∂f

∂η
→ 1, h(∞)→ 0, θ(∞)→ 0. (2.18)

By introducing the dimensionless parameters

s = −v0

(
m+ 1

2
x

Uν

)1/2

= ±kx(1−m)/2 (suction/injection parameter)

Mp =
σB2

0
ρck2 (Magnetic parameter)
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c2

cp(Tw − T∞)k(4m/(1−m))
(Eckert number)

Pr =
µcp
k

(Prandtl number)

R =
16σsT 3

∞
3kKe

(Radiation parameter)
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λ =
ν

K∗U
(Porous stratum parameter)

(2.19)

Where v0 is the velocity of suction or injection, when v0 < 0 and v0 > 0, respectively. The
equations (2.14) to (2.17) and boundary conditions (2.18) can be written as,

∂3f
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(
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ξ
∂f

∂ξ

)
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MpEcξ
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(2.23)

η = 0;
∂f

∂η
= 0,

1 +m

2
f +

1−m
2

ξ
∂f

∂ξ
= s, i(0) = 0, h(0) = −1

2
f ′′(0), θ(0) = 1,

η →∞;
∂f

∂η
, h(∞)→ 0, θ(∞)→ 0. (2.24)

Where s is suction ( s > 0) and injection ( s < 0) parameter and ξ = kx(1−m)/2 is the dimen-
sionless distance along the wedge (ξ > 0). In this system of equations f(ξ, η) is dimensionless
stream function, θ(ξ, η) is the dimensionless temperature and h(ξ, η) is the dimensionless micro-
rotation, Pr is the Prandtl number, m is the pressure gradient, s is the suction/injection, Mp is
the magnetic parameter, K is the material parameter, Ec is the Eckert number which are defined
in equations (2.19).
The parameter ξ denotes the dimensionless distance along the wedge(ξ < 0) . It is clear that
to retain the ξ - derivative terms, it is necessary to employ a numerical scheme suitable for the
solution of partial differential equations. In addition, owing to the coupling between adjacent
streamwise location through the ξ derivatives, a locally autonomous solution at any given stream
wise location, cannot be obtained. Therefore, in such a case an implicit marching numerical
solution scheme is usually applied proceeding the solution in the direction of ξ, i.e., calculating
unknown profiles at ξi+1 when the same profiles at ξi are known. The process starts at ξ = 0and
solution proceeds from ξi to ξi+1 but such a procedure is time consuming.
However, when the terms involving ∂f

∂ξ ,
∂θ
∂ξ and ∂h

∂ξ their η derivatives are deleted, the resulting
system of equations resembles, in effect a system of ordinary differential equations for the func-
tion f, θ and h with ξ as a parameter and the computational task is simplified. Furthermore, a
locally autonomous solution for any given ξ can be obtained because the stream wise coupling
is served.

Now, by the above mentioned factors, the system of equations (2.20) to (2.23) with boundary
conditions (2.24) can also be written as,

(1 +K)fηηη + ffηη +
2m

1 +m
(1− (f ′)2)− 2

m+ 1
Mpξ

2f ′ +Kh′ − 2
1 +m

ξ2(Mp + λ)f ′ = 0,

(2.25)
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(
1 +

K

2

)
(ihη)η + i

(
fhη −

(
3m− 1
1 +m

)
hfη

)
−K(2h+ fη) = 0, (2.26)
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(

1 +m

2

)
fiη, (2.27)

(1 +R)θηη + Prfθη + Pr
2

1 +m
MpEcξ

2(1+m)/(1−m)

f2
η = 0, (2.28)

η = 0; f(0) =
2

1 +m
s, fη(0) = 0, i(0) = 0, h(0) = −1

2
fηη(0), θ(0) = 1

η →∞; fη(∞) = 1, h(∞)→ 0, θ(∞)→ 0. (2.29)

Where prime denotes differentiation with respect to η.
If we integrate equation (2.27) we get

i = Af2(1−m)/(1+m), (2.30)

where h(η) is dimensionless constant of integration. If K 6= 0 but A = 0 i.e., i = 0 from
equation (2.26) we can find,

h = −1
2
f ′′, (2.31)

i.e., the gyration is identical to the angular velocity. Then equation (2.25) become(
1 +

K

2

)
fηηη + ffηη +

2m
m+ 1

(1− (fη)
2)− 2

1 +m
Mpζ

2fη = 0. (2.32)

3 Results and Discussion

The non-lnear ordinary differential eqautions (25) to (28) with boundary conditions (29) were
solved using MATLAB bvp4c code. The obtained results are presented graphically for different
values of material parameterK, suction/injection parameter s, magnetic parameterMp, pressure
gradient parameter m, radiation parameter R, porous stratum parameter λ and Prandtl number
Pr, while other parameters were fixed. To get clear interpretation of the results, the numerical
values are plotted as shown in figure 2 to 13.
Figure 2 illustrates the results of the variation of the swith fixedMp,K,m and λ in the boundary
layer region of the wedge. It is found that increase in suction/injection causes enhances in
velocity along the wedge by the varying suction/injection parameter. Also figure 3 shows the
variation of the s for fixed values ofMp,K,m,R and λ on the temperature field. The temperature
profile θ(η) suppresses as s increases. Figure 4 indicates the velocity profile f ′(η) for different
values of Mp. From this figure we conclude that for increasing values of Mp suppresses the
velocity profile. Figure 5 depicts the effects of Mp on temperature profile θ(η). It is evident
that increasing values of Mp there is an enhances in the temperature profile. Figure 6 plotted for
the effect of pressure gradient parameter m on velocity profile f ′(η), when m is increasing there
is significantly suppresses in velocity profile. Figure 7 drawn for temperature field for different
values of pressure gradient parameter m in presence of some fixed parameter. The temperature
profile suppresses as pressure gradient parameter m increases.
Figure 8 describes the variation of material parameterK on velocity in the region of the boundary
layer of the wedge.It is inferring that for increasing values of K causes suppresses in velocity
profile.
The effect of material parameter K on the temperature profile θ(η) as shown in figure 9. The
temperature profile is enhances for incraesing values of K. Figure 10 illustrate the effect of
porous stratum parameter λ on velocity profile f ′(η). It states that the increasing value of λ
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suppresses the velocity field. Figure 11 shows the influence of Prandtl number Pr on temperature
profile θ(η) . From the figure we observe that an increaseing in Prandtl number causes suppresses
in thickness and in general, with in boundary layer an average of temperature of fluid is small.
In fact, for small values of Pr there is an increase in thermal conductivities and for large values
ofPr the transfer of heat is able to diffuse away from the heated surface more rapidly. So, we
conclude that the boundary layer is thicker and the rate heat transfer is reduced for smaller values
of Pr .The influence of thermal radiation R on temperature field is plotted in figure 12. It is
discovered that for increasing values of R enhances the temperature with in boundary layer flow
of the wedge. The radiation parameter R states the relative condition of conduction heat transfer
to thermal radiation transfer and effective in the boundary layer flow. Figure 13 plotted for
dimensionless microrotation profile for different values of K while other parameters are fixed. It
evident that for increasing values of material parameter K microrotation profile suppresses and
become zero for away from the surface.

Figure 2. Influence of suction/injection parameter s on velocity profile f ′(η)

4 Conclusion

The problem of steady two-dimensional magnetohydrodynamic laminar boundary layer flow of
a micropolar fluid past a wedge embedded in a porous stratum with the effects of thermal radi-
ation and suction/injection was investigated. A transformed set of coupled non-linear ordinary
differential equation were solved by MATLAB bvp4c code. Some of the main important results
of the present work are as follows,

(i) For increasing values of s the velocity profile enhances and temperature profile suppresses.

(ii) The velocity suppresses for increasing values of MP , m, K, and λ.

(iii) The temperature profile suppresses for increasing values of m and Pr.

(iv) The temperature profile enhances for increasing values of Mp, K and R.

(v) The microrotation profile suppresses for increasing values of K.
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