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Abstract Based on MHD thin film lubrication theory, the steady and dynamic attributes of
pivoted curved slider bearings lubricated by couple stress fluid in the existence of a transverse
magnetic field is theoretically studied. Considering the transient squeezing motion, the MHD
dynamic Reynolds-type equation is derived from the continuity equation and the MHD motion
equations. Expressions for the steady film pressure, load-carrying capacity, dynamic stiffness
and damping coefficients are found and result are presented graphically. From the outcomes,
it is observed that, the effect of magnetic fields signifies an enhancement in the film pressure.
Overall, the applied magnetic-field effects characterized by the Hartmann number provide a sig-
nificant increase in values of the load-carrying capacity, the stiffness coefficient and the damping
coefficient as compared to the non-magnetic case. Also, the steady and dynamic features of the
bearings enhance due to effect of couple stress fluid as compared with Newtonian case.

1 Introduction

Slider bearings are used to support the axial load in engineering disciplines. Analysis of the
steady and dynamic characteristics of bearings is significant when studying the geometry of the
bearing. The steady characteristics serve as a foundation for bearing construction, allowing for
the avoidance of runner-pad interaction and the prediction of bearing stability, a study of dy-
namic characteristic shows more importance. Since slider bearing surfaces primarily work on
the wedge action theory, considering the knowledge of dynamic stiffness and damping behaviour
aids in bearing design. The liquid metals are excellent electrical conductors, and the load carry-
ing capacity can be increased with the application of electromagnetic force. The impact of MHD
on various bearing is carried out such as step slider bearing by Huges [1], Kuzma [2] studied
MHD journal , Shukla [3] analyzed composite slider bearing, inertia effect for inclined bearing
by Agarwal [4], and shown that the load enhances due to increase in magnetic field. Later, MHD
lubrication of finite slider bearings is represent by Lin [5] and Lin et.al [6] revealed the dynamic
properties of magnetic field plane slider bearing and found that the damping and stiffness coef-
ficients are increasing. From past decades, the study of lubrication with non-Newtonian fluids
has drawn attention of many investigators. Stokes [7] microcontinuum theory is the simplest
generalization of classical fluid theory that allows for polar effects such as couple stresses and
body couples. Numerous researchers have used couple stresses theory to explore the perfor-
mance of distinctive bearings such as slider bearing by Ramanaiah and Sarkar [8] presented the
squeeze film behavior of slider bearings, composite inclined step bearing by Sinha and Singh [9],
Gupta. et. al [10] studied hydrostatic thrust bearings, Lin [11] analysed finite journal bearings
and wide parabolic-shaped slider by Lin and Lu [12]. All these authors concluded that the effect
of couple stress fluid enhances the load carrying capacity and reduces the friction coefficient
as compared with Newtonian case. Several investigators are interested to study the combined
effect of MHD and couple stress such as slider bearing by Das [13], Biradar and Hanumagowda
[14] analysed composite slider bearing, sphere and plane surface by Naduvinamani.et.al [15],
plane slider bearing by Hanumagowda [16] and Naduvinamani.et.al [17]–[18] studied static and
dynamic characteristics of parabolic and plane inclined slider bearings and wide tapered land
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slider bearing. Based on their results obtained, it was concluded the effect of couple stress and
MHD enhances the bearing characteristics as compared with non-magnetic and Newtonian case.
Hanumagowda et al. [19]–[21] investigated the impact of couple stress and MHD on steady and
dynamic features for various slider bearing and found that there is an improvement in steady
and dynamic features Also, has extended his research to analyse Land-tapered slider bearing and
porous exponential slider bearings. Hence, an endeavour has been made to examine the impact
of MHD and CSF for pivoted curved slider bearing and to analysis steady and dynamic features.

2 Theoretical Analysis and Solution

The geometry of pivoted curved surface bearing lubricated with electrically couplestress fluid is
presented in figure.1. Considering that the portion of curved surface is parabola,Hc is the height
of the crown segment, h1 and h0 be the inlet and outlet film thickness, lower plate taken along
x-axis, while lubricant film taken along y-axis. U be the velocity of moving curved surface and
L be the length of pad in moving direction.

Figure 1. Geometry of pivoted curved slider bearing

Based on the standard assumptions, the relevant governing equations are:
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The velocity boundary conditions are:
At lower surface y = 0

u =
∂2u

∂y2 = 0 v = 0 (2.6)

At lower surface y = h

u = 0
∂2u

∂y2 = 0 v =
dh

dt
(2.7)

The solution of Equation (2.1) by using the equation (2.4) with boundary conditions (2.6) and
(2.7) is expressed as

u = −U
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The associated equations for (2.9), (2.10) and (2.11) is discussed by Hanumagowda.et.al[19].
MHD Reynold’s equation for pivoted curved slider bearing is
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Following non-dimensional quantities is introduce in equation (2.12)
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The MHD Reynold’s equation in non-dimensional form expressed as
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where,
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The equation for pressure is obtained by integrating equation (2.15) and using the boundary
conditions of pressure and it is expressed as
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The load-carrying capacity expression is
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The expression for the dimensionless load-carrying capacity is obtained, by taking into consid-
eration the constant minimum film height and zero squeezing velocity
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The expressions of steady film pressure P ∗s and steady load carrying capacity W ∗s in dimension-
less form are
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The expressions for linear dynamic stiffness coefficient in dimensionless form is given by

S∗d = −
(
∂W ∗s
∂h∗m

)
(2.18)

The expressions for linear dynamic damping coefficient in dimensionless form is given by

D∗d = −
(
∂W ∗

∂V ∗

)
(2.19)

3 Result and Discussion

The combined effect of magnetic field and CSF on the steady and dynamic features of pivoted
curved slider bearing is analysed. The results so obtained are plotted graphically and discussed
for various non-dimensional parameters such as M0,l∗,δ ,h∗m,β. The following range of values is
considered to plot the graphs: M0 = 0− 6, l∗ = 0.0− 0.6, δ = 0.1− 2.7, h∗m = 0.8− 1.4, β =
0.0− 0.6.

3.1 Dimensionless steady film pressure

The variation of dimensionless steady film pressure P ∗s as function M0 is presented in Figure
2 against x∗ and reported that the influence of the magnetic field (M0 = 2) is observed to in-
crease the steady film pressure as compared to non-magnetic case. Increasing the values of
Hartmann number(M0 = 4, 6, 8) enhances the steady film pressure. Figure 3 depicts the graph
of P ∗s against x∗ for distinctive l∗ values and observed that, dotted line presents Newtonian case
and solid lines for Non-Newtonian case and for increasing values of l∗, steady pressure P ∗s also
enhances and reaches its maximum and decreases gradually. The deviation of P ∗s against x∗
is displayed in Figure 4 for various values of h∗m and found that steady pressure P ∗s decreases
gradually for increasing h∗m values. The profile of P ∗s as function of δ against x∗ is elaborated in
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Figure 5 and seen that due to increase in profile parameterδ, P ∗s decreases and reaches its max-
imum for certain value of x∗ and later it increases. The graph of P ∗s against x∗ for distinctive
β values is depicted in Figure 6 and as result P ∗s increasing for increasing β values and attain
maximum pressure but for some particular value of x∗, a reversed trend is observed.

3.2 Dimensionless Steady load carrying capacity

In Figure 7, the profile of dimensionless steady load carrying capacity W ∗s as function of Hart-
mann number M0 against profile parameter δ is described. It is observed that the dotted line
signifies non-magnetic case and solid lines signifies magnetic case and increase in W ∗s is found
due to increase in M0 values. In addition, larger increments are obtained with larger Hartmann
numbers and larger profile parameters. The variation of W ∗s along δ for different l∗ values is
displayed in Figure 8 and found that steady load W ∗s is significant as compared to dotted line
(l∗ = 0) for increasing values of l∗. In Figure 9, the graph of W ∗s as function of h∗m is presented
against δ values and observed that owing to increase in h∗m values, load W ∗s decreases. The de-
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viation of W ∗s against δ is illustrated in Figure 10 for distinct β values and noticed that the effect
of β significantly increases the steady load.

3.3 Dynamic stiffness

Figure 11 depicts the deviation of dynamic stiffness S∗d against profile parameter δ for different
M0 values and noticed that S∗d raises with increasing M0 values as compared to dotted line. The
graph of S∗d as function of l∗ is elaborated in Figure 12 against δ and observed that as compared to
Newtonian case, dynamic stiffness is substantial for larger l∗ values. In Figure 13, the variation
of S∗d against δ for distinct values of h∗m is presented and seen that for decreasing values of h∗m ,
S∗d increases. The profile of S∗d versus δ for various β values is explained in Figure 14 and found
that dynamic stiffness significantly increases for larger β values. Also progressively decreases
along profile parameter δ in all the four figures is noticed.
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3.4 Damping coefficient

The variation of damping coefficient D∗d as function of Hartmann number against profile param-
eter δ is displayed in Figure 15. As result, the damping coefficient D∗d increases as compared
to dotted line (M0 = 0). In Figure 16, the deviation of D∗d against δ is presented for various
values l∗ and observed that as compared to dotted line, damping coefficient enhances for larger
values of l∗. Where as in Figure 17 presents the profile of D∗d versus δ for various values of
h∗m and seen that D∗d decreases due to increase in h∗m values. The graph of D∗d for different β
values is explained in Figure 18 against profile parameter δ and found that damping coefficient is
more pronounced for larger β values. Further from all four figures damping coefficient steadily
decreases for increasing values of profile parameter δ.

4 Conclusion

The impact of MHD steady and dynamic characteristics of pivoted slider bearing lubricated with
couple stress fluid is examined in the above section and the following conclusions are drawn
from the outcomes obtained:

• An increase in steady pressure, steady load, damping coefficient and dynamic stiffness for
larger values M0 is noted compared to the Non-magnetic case.

• The steady and dynamic characteristic increases for increasing values of l∗ in comparison
with Newtonian case.

• It is also noticed that due to increase in minimum film height h∗
m

the steady and dynamic
features progressively decrease.

• For increasing β values, an enhancement is noticed in steady and dynamic features.

• The steady load, steady pressure, dynamic stiffness and damping coefficient decreases after
attaining certain maximum value along profile parameter δ . The increasing values of δ
results in decrease in the damping coefficient.
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