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Abstract A graph G without isolated vertices is a least common multiple of two graphs H|
and H, if G is a smallest graph, in terms of number of edges, such that there exists a decompo-
sition of G into edge disjoint copies of H; and H,. The collection of all least common multiples
of Hy and H; is denoted by LCM (Hy, H>) and the size of a least common multiple of H;
and H, is denoted by lcm(Hy, H,). In this paper lcm(Py, C,, O Py), lem(Py, Wy, O P,) and
lem(Py, W,, O C,,) are determined where the product is the cartesian product.

1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices.
The size of a graph G is the number of edges of G denoted by |E(G)|. A graph H is said to
divide a graph G if there exists a set of subgraphs of G, each isomorphic to H, whose edge sets
partition the edge set of G. Such a set of subgraphs is called an H-decomposition of G. G is
said to be H-decomposable if G has an H- decomposition and write H|G.

A graph G is called a common multiple of two graphs H; and H, if both H|G and H,|G.
A graph G is a least common multiple of H; and H; if G is a common multiple of H; and H;
and no other common multiple has fewer edges. Several authors have investigated the problem
of finding least common multiples of pairs of graphs H; and H>; that is graphs of minimum size
which are both H| and H, decomposable. The problem was introduced by Chartrand et.al in [4]
and they showed that every two nonempty graphs have a least common multiple. The problem of
finding the size of least common multiples of graphs has been studied for several pairs of graphs:
cycles and stars [4, 13, 14], paths and complete graphs [9], pairs of cycles [8], pairs of complete
graphs [3], complete graphs and a 4-cycle [2], pairs of cubes [1], complete graph and star [11]
and paths and stars [7]. Pairs of graphs having a unique least common multiple were investigated
by several authors [6, 12, 10]. Least common multiple of digraphs were considered in [5].

An obvious necessary condition for the existence of a graph G which is a common multiple
of H, and H; is that both |E(H,)| and |E(H;)| divide |E(G)|. This condition is not always
sufficient. Therefore, we may ask: Given two graphs H; and H,, for which value of ¢ does
there exist a graph G having ¢ edges which is a common multiple of the graphs H; and H;?
Adams, Bryant and Maenhaut [2] gave a complete solution to this problem in the case where H
is the 4-cycle and H; is a complete graph; Bryant and Maenhaut [3] gave a complete solution to
this problem in the case where H is the complete graph K3 and H, is a complete graph. Thus
the problem to find least common multiple of H; and H; is to find the least positive integer ¢
such that there exists a graph G having ¢ edges which is both H; and H, decomposable. We
denote the set of all least common multiples of H; and H, by LCM (H, H;). The size of a least
common multiple of H; and H, is denoted by lcm(H;, H,). Since every two nonempty graphs
have a least common multiple, LCM (H, H,) is nonempty. The number of elements in the set
LCM(H;y, Hy) is greater than one for many pairs of graphs. For example both P; and Cy are
least common multiples of P, and P;.

In fact, Chartrand et.al [6] proved that for every positive integer n there exist two graphs
having exactly n least common multiples. In [9] it was shown that every least common multiple
of two connected graphs is connected and that every least common multiple of two 2-connected
graphs is 2-connected. But this is not the case for disconnected graphs. For example if we take
H, = 2K,, H, = (s, then G| = 2C5 and G, which is the graph obtained by identifying two
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vertices in two copies of Cs, are in LCM (Hy, H,) of which G is disconnected while G, is
connected.

2 Main Result

The cartesian product of two graphs G and H denoted by G J H is a graph with vertex set
V(G) xV (H) for which {(z,u), (y,v)} isanedge if v = y and {u,v} € E(H) or {z,y} € E(G)
and u = v. The graph G O H has |V (G)||V (H)| vertices and |V (G)||E(H)| + |V (H)||E(G)|
edges. In this section graphs that belong to LCM (Py,C,, O P,,), LCM(Py, W, O P,) and
LCM(Py,W,, O C,) are constructed and hence computed the lcm of the respective pairs of
graphs. Let G for t = 1,2, 3 denote the ¢-th copy of the graph G. Also let v* and e! denote a
vertex and an edge in G*.

2.1 lemof Py and C,,, O P,
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Figure1. C,,, 1 P,

Let ai,a,...,a, and by, by, ..., b, be the vertices of C,, and P, respectively. C,, x {b;},
1 < j < nare the Cy,-fibers and {a;} x P,, 1 <1i < m are the P,-fibers in C,, O] P,. Label the
vertices and edges of the j-th C,,-fiber, Cy,, X {b;} as {vi j,v25,...,Um i}, {fi5, fojr- s fmj}
and that of the i-th P,,-fiber, {a;} X P, as {v; 1,vi2,...,Vin}> {€i1,€i2, - €in_1}

2mn—m  ifm=0 (mod 3) orn=2 (mod 3)

Theorem 2.1. icm(Py, Cy, O P,) = {6 3 therwi
mn — 3m  otherwise

Proof. Least common multiple of P4 and C,,, O P, is the number of edges in the graph of least
size that is both P;-decomposable and C,, [0 P,-decomposable. We consider various cases
for m and n in modulo 3 and will construct in each case a graph of least size that is both P;-
decomposable and C),, [ P,-decomposable.

Casel:n=2, meN, m>3

The graph G = C,,, J P, has 3m edges. A Py-decomposition of G is given by the following
copies of Ps: (fi 1, €1, fi2), 1 <i < m.Thus G is Ps-decomposable and hence

lcm(P4, Cm O Pz) = 3m.
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Case2: m=3neN, n>3
In this case G = C3 U P,, which has 6n — 3 edges. A P;-decomposition of G is obtained as
follows:

{(fl,jan,j7f2,j+l)7l S .7 S n — 1}7{(61,j7f3,jve3,j71)72 S] S n— 1}7

(e11, f3,1,€3,1), (fi,ns f3m,€30—1)

Thus G is P;-decomposable and hence lcm(Py, C3 O P,,) = 6n — 3.

Case 3: m =3k, k>2

Subcase 3.1: n =131, 1 > 1

The graph G = C3;, O P3; has 3k(31 — 1) + (31)(3k) edges and hence |E(G)| = 0 (mod 3).
The 31 — 1 edges of the i-th P,-fiber of G, where 1 < ¢ < m, together with the edge f; ,, of
the n-th C,,-fiber makes a P31, which is P;-decomposable. For 1 < j < n — 1, the j-th C,,-
fiber contains 3k edges and hence it is P;-decomposable. Thus G is Ps-decomposable and hence
lem(Py, C3 O Pyy) = 3k(31 — 1) + (31)(3k).

Subcase 3.2: n=3l+1,1>1

In this case G = C5;, O Py4 and |E(G)| = 3k(31) + (31 + 1)(3k) = 0 (mod 3). Here
each C,,-fiber has 3k edges and each P, -fiber has 3/ edges and hence every C,,-fiber and P, -
fiber are P;-decomposable. Thus G is Py-decomposable and hence lem(Py, C3 O P3yiy) =
3k(31) + (31 + 1)(3k).

Subcase 3.3: n=31+2,1>1

Here G = C3j, O P34 and it has 3%(31+ 1) + (31+2)(3k) edges which is a multiple of three.
The j-th C,,-fiber, where 1 < j < n — 2, has 3k edges and hence it is P;-decomposable. The
first 37 edges of the i-th P, -fiber, where 1 < i < m makes a P31, which is P;-decomposable.
Consider the edges of the (n— 1)-th and n-th C,-fibers and the edges {€; ,—1, 1 < < m}. Then
{(fin—1:€in—1, fin), 1 < i < m} gives a copy of P, for each i. Thus G is P;-decomposable
and hence lem(Py, Cs O Pyjin) = 3k(31+ 1) + (31 + 2)(3k).

Case4: m=3k+1, k>1

Subcase 4.1: n =31, 1 > 1

The graph G = C3541 0 Py has (3k+1)(31— 1)+ (31)(3k + 1) edges and hence |E(G)| = 2
(mod 3). The first 3k edges of the j-th C,,-fiber, where 1 < j < n — 1, makes a P31, which
is Py-decomposable. The 3/ — 1 edges of the i-th P,-fiber, where 2 < i < m — 1, together
with the edge f;_i, of the n-th C),-fiber makes a P34, which is P4-decomposable. Now
{(e1,j, fm.,js€m,j), 1 <j <n—1} gives a copy of P, for each j. The edges { fi—1,n, fm.n} are
left out.

Take three copies of G namely G', G2, G* and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v fn with the vertex vin and the vertex v>

m—1,n
with the vertex v _, . The left out edges {f% _, ., f}, .;t = 1,2,3} in the three copies of
G will make a Py in H, which is Pj-decomposable. Thus H is P;-decomposable and hence
lem(Py, O3y O Py) = 3((3k + 1)(31 — 1) 4+ (31)(3k + 1)).

Subcase 4.2: n=3l+1,1>1

In this case G = C3x41 O P4y which has (3k + 1)(31) + (31 + 1)(3k + 1) edges and hence
|[E(G)| =1 (mod 3). The first 3k edges of the j-th C,,-fiber, where 1 < j < n, makes a Psx1,
which is P;-decomposable. For 2 < i < m — 1, the i-th P,-fiber, has 3/ edges and hence it is
Py-decomposable. Now {(e1 ;, fm,j,€m,;), 1 <j < n— 1} gives a copy of P4 for each j. The
edge f, » is left out.

Take three copies of G' namely G', G?, G* and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex vy, ,, with the vertex v , and the vertex v7, ,,
with the vertex vin. The left out edges {f;, ,;t = 1,2,3} in the three copies of G will make a
Py in H. Thus H is Ps-decomposable and hence lem( Py, Cspr1 O Payg1) = 3((3k + 1)(31) +
Bl+ 1)(3k+1)).

Subcase 4.3: n=31+2,1>1

Here G = C3p+1 O Pyyp and |E(G)| = (3k+1)(31+1)+(3142)(3k+1), which is a multiple
of three. The first 3k edges of the j-th C,,-fiber, where 1 < j < n — 2, makes a Psj1, which is
Py-decomposable. The first 3/ edges of the i-th P,-fiber, where 2 < ¢ < m — 1 makes a Py,
which is Py-decomposable. {(ei ;j, fm,j;€m,j), 1 < j < n — 1} gives a copy of P, for each j.
Consider the edges of the (n— 1)-th and n-th C,,-fibers and the edges {e; ,—1,1 < i < m}. Then
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{(fin—1:€in—1, fin), 1 <i < m} gives a copy of P, for each i. Thus G is P;-decomposable
and hence lem(Py, Capyy O Pyjn) = Bk +1)(31+ 1) + (31 +2)(3k + 1).

Case 5: m=3k+2, k>1

Subcase 5.1: n =31, 1 > 1

For the graph G = Cs42 O Py, |E(G)| = B3k +2)(31 — 1) + 3))(3k +2) = 1 (mod 3).
The 3k + 2 edges of the j-th C,,-fiber, where 1 < j < n — 1, together with the edge e,, ; of
the m-th P, -fiber, makes 3k + 3 edges, which is P;-decomposable. The 3/ — 1 edges of the i-th
P, -fiber, where 1 < i < m — 1, together with the edge f; ,, of the n-th C),,-fiber makes a P31,
which is P4-decomposable. The edge f,,, , is left out.

Take three copies of G namely G', G2, G* and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex vy, , with the vertex v, and the vertex v7, ,,
with the vertex v} . The left out edges { ft it =1,2,3} in the three copies of G will make a
P, in H. Thus H is P;-decomposable and hence lem(Py, Cspsn O Py) =3((3k+2)(31— 1) +
(31)(3k + 2)).

Subcase 5.2: n=31+1,1>1

In this case G = C3442 O P4y which has (3k +2)(31) + (31 + 1)(3k + 2) edges and hence
|E(G)| = 2 (mod 3). The 3k + 2 edges of the j-th C,,-fiber, where 1 < j < n — 1, together
with the edge e, ; of the m-th P,-fiber, makes 3k 4 3 edges, which is P;-decomposable. For
1 <14 < m—1,the i-th P,-fiber, has 3/ edges and hence it is P;-decomposable. The first 3k edges
of the n-th C,,,-fiber makes a Pj;, which is P;-decomposable. The edges { fi—1.n, fm.n} are
left out.

Take three copies of G' namely G', G?, G* and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v{ , with the vertex v ,, and the vertex v7,

—1,n
with the vertex v) _, . The left out edges {f% _, ., f} .;t = 1,2,3} in the three copies of
G will make a Py in H, which is Pj-decomposable. Thus H is P;-decomposable and hence
lC’I”I”L(P47 Cspan O P3l+1) = 3((3/{3 + 2)(3[) + (3l + 1)(3k‘ + 2))

Subcase 5.3: n=31+2,1>1

The graph G = Csp41 O Py4p has (3k +2)(31 + 1) + (31 + 2)(3k + 2) edges, which is a
multiple of three. The 3k + 2 edges of the j-th C,,-fiber, where 1 < j < n — 2, together with
the edge ey, ; of the m-th P,-fiber, makes 3k + 3 edges, which is P4-decomposable. The first
31 edges of the i-th P, -fiber, where 1 < i < m — 1 makes a P3|, which is Ps;-decomposable.
Consider the edges of the (n— 1)-th and n-th C,,-fibers and the edges {e; ,—1,1 < i < m}. Then
{(fin—1,€in—1, fin), 1 < i < m} gives a copy of P, for each i. Thus G is P;-decomposable
and hence lcm(P4, Csro U P3[+2) = (3]€ + 2) (3l + 1) + (3l + 2)(3k + 2). O

Theorem 2.2. C,,, O P, is Py-decomposable if and only if m =0 (mod 3) or n =2 (mod 3).

2.2 Icm of P, and W,,, 0 P,

Let W,,, denote the wheel graph of order m, which contains a cycle C,,_; and a vertex called
hub, which is adjacent to every vertex of Cy,—1. |E(W,,)| = 2m — 2. Let ay,a,...,a,, and
b1, by, ...,b, be the vertices of W,,, and P, respectively, where a,, is the hub vertex of W,,.
Wi x {b;}, 1 < j < n are the W,,-fibers and {a;} x P,, 1 < i < m are the P, -fibers in
W, O P,. Label the vertices and edges of the j-th W,,,-fiber, W,,, x {b;} as {v1 j,v2 j, ..., Um ; },
{fl,ja f2,j; ceey fm,Lj, 915,925 - ,gmfl)j} where {fl,j7 fz’j, ey fmfl’j} are the edges of the
cycle in the j-th W,,-fiber and {gi j, 92 ;,...,gm—1,,} are the edges connecting the hub and the
vertices of the cycle in the j-th W,,,-fiber. The vertices and edges of the i-th P,,-fiber, {a;} x P,
are labelled as {v; 1,vi2,...,v;,} and {e; 1,€i2, ..., € n—1} respectively.



LEAST COMMON MULTIPLE OF PRODUCT GRAPHS 17

e o o - e S
T T P ]~
E P e Z
<// - . ‘;
\ /
N e B ——— o
— / —
\ i I — \
2 - L
—_ /—
N $
T Jan =3 Im—1n
M1,

Figure2. W, 0P,

3mn—2n—-m if2m+mn =0 (mod 3)

Theorem 2.3. lcm(Py, W, O P,) = )
3(3mn —2n —m) otherwise

Proof. Let P’ be the path vy 1 fi1v2,1f2,1 -+« fm—2,1Vm—1,19m—1,1Vm,1, Which is contained in
the first W,,,-fiber, P Um,1€m,1Vm.26m.2 - - - Um,n—1€m,n—1Um,n, the m-th P, -fiber and A
UmnGm—1,nVm—1,nfm-2n - - - V2.0 f1,nV1,n, the path contained in the last W, -fiber.

Let G = W,, O P,. Then |E(G)| = m(n — 1) + n(2m — 2) = 3mn — 2n — m. Consider the
edges of G* = (W,, O P,)\{P', P", P""}. Copies of P, are obtained as follows :
Forafixed j,1 <j <n—2,{(gij,eij fijr1), 1 <i<m =2} {(fn-14s€m—14,Im—1,+1)}

{(gi,n—] 5 6i,n—lagi,n>a 1<i<m-— 2}7 (fm—l,n—l yEm—1,n—1, fm—l,n,)-

Thus G* is P4-decomposable. The paths P', P" and P makes the path P* of length 2m+n —3
in W, OO P,,. Thus W,,, 0 P, is P;-decomposable if P* is P;-decomposable and this happens if
2m+n =0 (mod 3).

If 2m +n =1 or 2 (mod 3), take three copies of G' namely G', G2, G3 and in each copy of
G, the subgraph G* has the above decomposition. Let H be the graph obtained by identifying the
vertex v | with the vertex v}, and the vertex v, with the vertex v{ |. Then the path P* in the
three copies of G will make a path of length 3(2m +n — 3) in H, which is P;-decomposable and
sois H. Thus lem(Py, W,,, O P,,) = |E(W,, O P,)| if 2m+n =0 (mod 3) and 3|E(W,,, O P,)|
otherwise. O

Theorem 2.4. W,,, O P, is Py-decomposable if and only if 2m +mn =0 (mod 3).

2.3 Iecmof P, and W,,, O C,,

Let ay,ay,...,a, and by, by, ..., b, be the vertices of W,,, and C,, respectively, where a,, is the
hub vertex of W,,,. Wy, x {b;}, 1 < j < n are the W,,,-fibers and {a;} x C),, 1 <1i < m are the
C,-fibers in W,,, I C,. Label the vertices and edges of the j-th W,,,-fiber, W,,, x {b,} as in the
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above case of W,,, O P,. The vertices and edges of the i-th C,,-fiber, {a;} x C,, are labelled as
{Uz‘,h Vi2ye-ey Ui,n}, {ei,1,€¢,27 sy ei,n}-

1 . 2.1 Im—1,1 B
] EF
(8}
|
Nr -
iy 1S
/
— -
6
. o Py " o . T e
. . —— . .
S $
IR fZ,n —2.n gm—1,n

Figure 3. W,, 1 C,

3mn —2n ifn=0 (mod 3)

Theorem 2.5. lem(Py, W,,, O C,,) = {3(3mn ") otherwise

Proof. Let G = W,,, 0 C,,. Then |E(G)| = mn + n(2m — 2) = 3mn — 2n. Copies of P, are
obtained as follows :
Forafixed j, 2 < j <n—2,{(gij:€ij fij+1), 1 <i<m =2} {(fn—1js€m—1jIm-1,4+1)},

{(gi,1,€ims fin)s (fins€in, fiz), (Gin—1,€in—1,9in): 1 <i<m—2},

(fm,— 1,1, €m—1,1,9m—1 ,2)7 (fm,— I,n—1€m—1,n—1, fm—l,n)y (em— 1,ns Ym—1,1, em,n)

The path P* of length n consisting of the edges {en,1,€m 2, - - -, €m.n—1, gm—1,n} is left out. Thus
W,, O C,, is Py-decomposable if P* is P;-decomposable and this happens if n = 0 (mod 3).
If n =1 or2 (mod 3), take three copies of G namely G', G, G* having the above decom-
position. Let H be the graph obtained by identifying the vertex v}ml with the vertex vfml and
the vertex vfn_m with the vertex vfnfl’n. Then the path P* in the three copies of G will make
a path of length 3n in H, which is Ps-decomposable and so is H. Thus lem(Py, W,, O C,,) =
|[E(W,, OC,)|ifn=0 (mod 3) and 3| E(W,, O C,)| otherwise. i

Theorem 2.6. W,,, O C,, is Py-decomposable if and only if n =0 (mod 3).
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