LEAST COMMON MULTIPLE OF PRODUCT GRAPHS

Reji T, Ruby R and Sneha B

Communicated by S . Monikandan

MSC 2010 Classifications: 05C38, 05C51, 05C70.
Keywords and phrases: Graph decomposition, Least common multiple, Cartesian product.

Abstract

A graph G without isolated vertices is a least common multiple of two graphs H_{1} and H_{2} if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of G into edge disjoint copies of H_{1} and H_{2}. The collection of all least common multiples of H_{1} and H_{2} is denoted by $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ and the size of a least common multiple of H_{1} and H_{2} is denoted by $l c m\left(H_{1}, H_{2}\right)$. In this paper $l c m\left(P_{4}, C_{m} \square P_{n}\right), l c m\left(P_{4}, W_{m} \square P_{n}\right)$ and $\operatorname{lcm}\left(P_{4}, W_{m} \square C_{n}\right)$ are determined where the product is the cartesian product.

1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices. The size of a graph G is the number of edges of G denoted by $|E(G)|$. A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-decomposition of $G . G$ is said to be H-decomposable if G has an H-decomposition and write $H \mid G$.

A graph G is called a common multiple of two graphs H_{1} and H_{2} if both $H_{1} \mid G$ and $H_{2} \mid G$. A graph G is a least common multiple of H_{1} and H_{2} if G is a common multiple of H_{1} and H_{2} and no other common multiple has fewer edges. Several authors have investigated the problem of finding least common multiples of pairs of graphs H_{1} and H_{2}; that is graphs of minimum size which are both H_{1} and H_{2} decomposable. The problem was introduced by Chartrand et.al in [4] and they showed that every two nonempty graphs have a least common multiple. The problem of finding the size of least common multiples of graphs has been studied for several pairs of graphs: cycles and stars [4, 13, 14], paths and complete graphs [9], pairs of cycles [8], pairs of complete graphs [3], complete graphs and a 4-cycle [2], pairs of cubes [1], complete graph and star [11] and paths and stars [7]. Pairs of graphs having a unique least common multiple were investigated by several authors [6, 12,10]. Least common multiple of digraphs were considered in [5].

An obvious necessary condition for the existence of a graph G which is a common multiple of H_{1} and H_{2} is that both $\left|E\left(H_{1}\right)\right|$ and $\left|E\left(H_{2}\right)\right|$ divide $|E(G)|$. This condition is not always sufficient. Therefore, we may ask: Given two graphs H_{1} and H_{2}, for which value of q does there exist a graph G having q edges which is a common multiple of the graphs H_{1} and H_{2} ? Adams, Bryant and Maenhaut [2] gave a complete solution to this problem in the case where H_{1} is the 4-cycle and H_{2} is a complete graph; Bryant and Maenhaut [3] gave a complete solution to this problem in the case where H_{1} is the complete graph K_{3} and H_{2} is a complete graph. Thus the problem to find least common multiple of H_{1} and H_{2} is to find the least positive integer q such that there exists a graph G having q edges which is both H_{1} and H_{2} decomposable. We denote the set of all least common multiples of H_{1} and H_{2} by $\operatorname{LCM}\left(H_{1}, H_{2}\right)$. The size of a least common multiple of H_{1} and H_{2} is denoted by $l c m\left(H_{1}, H_{2}\right)$. Since every two nonempty graphs have a least common multiple, $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ is nonempty. The number of elements in the set $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ is greater than one for many pairs of graphs. For example both P_{7} and C_{6} are least common multiples of P_{4} and P_{3}.

In fact, Chartrand et.al [6] proved that for every positive integer n there exist two graphs having exactly n least common multiples. In [9] it was shown that every least common multiple of two connected graphs is connected and that every least common multiple of two 2-connected graphs is 2 -connected. But this is not the case for disconnected graphs. For example if we take $H_{1}=2 K_{2}, H_{2}=C_{5}$, then $G_{1}=2 C_{5}$ and G_{2} which is the graph obtained by identifying two
vertices in two copies of C_{5}, are in $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ of which G_{1} is disconnected while G_{2} is connected.

2 Main Result

The cartesian product of two graphs G and H denoted by $G \square H$ is a graph with vertex set $V(G) \times V(H)$ for which $\{(x, u),(y, v)\}$ is an edge if $x=y$ and $\{u, v\} \in E(H)$ or $\{x, y\} \in E(G)$ and $u=v$. The graph $G \square H$ has $|V(G)||V(H)|$ vertices and $|V(G)||E(H)|+|V(H) \| E(G)|$ edges. In this section graphs that belong to $\operatorname{LCM}\left(P_{4}, C_{m} \square P_{n}\right), L C M\left(P_{4}, W_{m} \square P_{n}\right)$ and $\operatorname{LCM}\left(P_{4}, W_{m} \square C_{n}\right)$ are constructed and hence computed the $l c m$ of the respective pairs of graphs. Let G^{t} for $t=1,2,3$ denote the t-th copy of the graph G. Also let v^{t} and e^{t} denote a vertex and an edge in G^{t}.

2.1 lcm of P_{4} and $C_{m} \square P_{n}$

Figure 1. $\mathbf{C}_{\mathrm{m}} \square \mathbf{P}_{\mathrm{n}}$
Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be the vertices of C_{m} and P_{n} respectively. $C_{m} \times\left\{b_{j}\right\}$, $1 \leq j \leq n$ are the C_{m}-fibers and $\left\{a_{i}\right\} \times P_{n}, 1 \leq i \leq m$ are the P_{n}-fibers in $C_{m} \square P_{n}$. Label the vertices and edges of the j-th C_{m}-fiber, $C_{m} \times\left\{b_{j}\right\}$ as $\left\{v_{1, j}, v_{2, j}, \ldots, v_{m, j}\right\},\left\{f_{1, j}, f_{2, j}, \ldots, f_{m, j}\right\}$ and that of the i-th P_{n}-fiber, $\left\{a_{i}\right\} \times P_{n}$ as $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\},\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n-1}\right\}$.

Theorem 2.1. lcm $\left(P_{4}, C_{m} \square P_{n}\right)= \begin{cases}2 m n-m & \text { if } m \equiv 0(\bmod 3) \text { or } n \equiv 2(\bmod 3) \\ 6 m n-3 m & \text { otherwise }\end{cases}$
Proof. Least common multiple of P_{4} and $C_{m} \square P_{n}$ is the number of edges in the graph of least size that is both P_{4}-decomposable and $C_{m} \square P_{n}$-decomposable. We consider various cases for m and n in modulo 3 and will construct in each case a graph of least size that is both P_{4} decomposable and $C_{m} \square P_{n}$-decomposable.

Case 1: $n=2, m \in \mathbb{N}, m \geq 3$
The graph $G=C_{m} \square P_{2}$ has $3 m$ edges. A P_{4}-decomposition of G is given by the following copies of $P_{4}:\left(f_{i, 1}, e_{i, 1}, f_{i, 2}\right), 1 \leq i \leq m$. Thus G is P_{4}-decomposable and hence

$$
\operatorname{lcm}\left(P_{4}, C_{m} \square P_{2}\right)=3 m .
$$

Case 2: $m=3, n \in \mathbb{N}, n \geq 3$
In this case $G=C_{3} \square P_{n}$, which has $6 n-3$ edges. A P_{4}-decomposition of G is obtained as follows:

$$
\begin{gathered}
\left\{\left(f_{1, j}, e_{2, j}, f_{2, j+1}\right), 1 \leq j \leq n-1\right\},\left\{\left(e_{1, j}, f_{3, j}, e_{3, j-1}\right), 2 \leq j \leq n-1\right\}, \\
\left(e_{1,1}, f_{3,1}, e_{3,1}\right),
\end{gathered}\left(f_{1, n}, f_{3, n}, e_{3, n-1}\right)
$$

Thus G is P_{4}-decomposable and hence $\operatorname{lcm}\left(P_{4}, C_{3} \square P_{n}\right)=6 n-3$.
Case 3: $m=3 k, k \geq 2$
Subcase 3.1: $n=3 l, l \geq 1$
The graph $G=C_{3 k} \square P_{3 l}$ has $3 k(3 l-1)+(3 l)(3 k)$ edges and hence $|E(G)| \equiv 0(\bmod 3)$. The $3 l-1$ edges of the i-th P_{n}-fiber of G, where $1 \leq i \leq m$, together with the edge $f_{i, n}$ of the n-th C_{m}-fiber makes a $P_{3 l+1}$, which is P_{4}-decomposable. For $1 \leq j \leq n-1$, the j-th C_{m} fiber contains $3 k$ edges and hence it is P_{4}-decomposable. Thus G is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k} \square P_{3 l}\right)=3 k(3 l-1)+(3 l)(3 k)$.

Subcase 3.2: $n=3 l+1, l \geq 1$
In this case $G=C_{3 k} \square P_{3 l+1}$ and $|E(G)|=3 k(3 l)+(3 l+1)(3 k) \equiv 0(\bmod 3)$. Here each C_{m}-fiber has $3 k$ edges and each P_{n}-fiber has $3 l$ edges and hence every C_{m}-fiber and $P_{n^{-}}$ fiber are P_{4}-decomposable. Thus G is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k} \square P_{3 l+1}\right)=$ $3 k(3 l)+(3 l+1)(3 k)$.

Subcase 3.3: $n=3 l+2, l \geq 1$
Here $G=C_{3 k} \square P_{3 l+2}$ and it has $3 k(3 l+1)+(3 l+2)(3 k)$ edges which is a multiple of three. The j-th C_{m}-fiber, where $1 \leq j \leq n-2$, has $3 k$ edges and hence it is P_{4}-decomposable. The first $3 l$ edges of the i-th P_{n}-fiber, where $1 \leq i \leq m$ makes a $P_{3 l+1}$, which is P_{4}-decomposable. Consider the edges of the $(n-1)$-th and n-th C_{m}-fibers and the edges $\left\{e_{i, n-1}, 1 \leq i \leq m\right\}$. Then $\left\{\left(f_{i, n-1}, e_{i, n-1}, f_{i, n}\right), 1 \leq i \leq m\right\}$ gives a copy of P_{4} for each i. Thus G is P_{4}-decomposable and hence $\operatorname{lcm}\left(P_{4}, C_{3 k} \square P_{3 l+2}\right)=3 k(3 l+1)+(3 l+2)(3 k)$.

Case 4: $m=3 k+1, k \geq 1$
Subcase 4.1: $n=3 l, l \geq 1$
The graph $G=C_{3 k+1} \square P_{3 l}$ has $(3 k+1)(3 l-1)+(3 l)(3 k+1)$ edges and hence $|E(G)| \equiv 2$ $(\bmod 3)$. The first $3 k$ edges of the j-th C_{m}-fiber, where $1 \leq j \leq n-1$, makes a $P_{3 k+1}$, which is P_{4}-decomposable. The $3 l-1$ edges of the i-th P_{n}-fiber, where $2 \leq i \leq m-1$, together with the edge $f_{i-1, n}$ of the n-th C_{m}-fiber makes a $P_{3 l+1}$, which is P_{4}-decomposable. Now $\left\{\left(e_{1, j}, f_{m, j}, e_{m, j}\right), 1 \leq j \leq n-1\right\}$ gives a copy of P_{4} for each j. The edges $\left\{f_{m-1, n}, f_{m, n}\right\}$ are left out.

Take three copies of G namely G^{1}, G^{2}, G^{3} and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{1, n}^{1}$ with the vertex $v_{1, n}^{2}$ and the vertex $v_{m-1, n}^{2}$ with the vertex $v_{m-1, n}^{3}$. The left out edges $\left\{f_{m-1, n}^{t}, f_{m, n}^{t} ; t=1,2,3\right\}$ in the three copies of G will make a P_{7} in H, which is P_{4}-decomposable. Thus H is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k+1} \square P_{3 l}\right)=3((3 k+1)(3 l-1)+(3 l)(3 k+1))$.

Subcase 4.2: $n=3 l+1, l \geq 1$
In this case $G=C_{3 k+1} \square P_{3 l+1}$ which has $(3 k+1)(3 l)+(3 l+1)(3 k+1)$ edges and hence $|E(G)| \equiv 1(\bmod 3)$. The first $3 k$ edges of the j-th C_{m}-fiber, where $1 \leq j \leq n$, makes a $P_{3 k+1}$, which is P_{4}-decomposable. For $2 \leq i \leq m-1$, the i-th P_{n}-fiber, has $3 l$ edges and hence it is P_{4}-decomposable. Now $\left\{\left(e_{1, j}, f_{m, j}, e_{m, j}\right), 1 \leq j \leq n-1\right\}$ gives a copy of P_{4} for each j. The edge $f_{m, n}$ is left out.

Take three copies of G namely G^{1}, G^{2}, G^{3} and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{m, n}^{1}$ with the vertex $v_{1, n}^{2}$ and the vertex $v_{m, n}^{2}$ with the vertex $v_{1, n}^{3}$. The left out edges $\left\{f_{m, n}^{t} ; t=1,2,3\right\}$ in the three copies of G will make a P_{4} in H. Thus H is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k+1} \square P_{3 l+1}\right)=3((3 k+1)(3 l)+$ $(3 l+1)(3 k+1))$.

Subcase 4.3: $n=3 l+2, l \geq 1$
Here $G=C_{3 k+1} \square P_{3 l+2}$ and $|E(G)|=(3 k+1)(3 l+1)+(3 l+2)(3 k+1)$, which is a multiple of three. The first $3 k$ edges of the j-th C_{m}-fiber, where $1 \leq j \leq n-2$, makes a $P_{3 k+1}$, which is P_{4}-decomposable. The first $3 l$ edges of the i-th P_{n}-fiber, where $2 \leq i \leq m-1$ makes a $P_{3 l+1}$, which is P_{4}-decomposable. $\left\{\left(e_{1, j}, f_{m, j}, e_{m, j}\right), 1 \leq j \leq n-1\right\}$ gives a copy of P_{4} for each j. Consider the edges of the $(n-1)$-th and n-th C_{m}-fibers and the edges $\left\{e_{i, n-1}, 1 \leq i \leq m\right\}$. Then
$\left\{\left(f_{i, n-1}, e_{i, n-1}, f_{i, n}\right), 1 \leq i \leq m\right\}$ gives a copy of P_{4} for each i. Thus G is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k+1} \square P_{3 l+2}\right)=(3 k+1)(3 l+1)+(3 l+2)(3 k+1)$.

Case 5: $m=3 k+2, k \geq 1$
Subcase 5.1: $n=3 l, l \geq 1$
For the graph $G=C_{3 k+2} \square P_{3 l},|E(G)|=(3 k+2)(3 l-1)+(3 l)(3 k+2) \equiv 1(\bmod 3)$. The $3 k+2$ edges of the j-th C_{m}-fiber, where $1 \leq j \leq n-1$, together with the edge $e_{m, j}$ of the m-th P_{n}-fiber, makes $3 k+3$ edges, which is P_{4}-decomposable. The $3 l-1$ edges of the i-th P_{n}-fiber, where $1 \leq i \leq m-1$, together with the edge $f_{i, n}$ of the n-th C_{m}-fiber makes a $P_{3 l+1}$, which is P_{4}-decomposable. The edge $f_{m, n}$ is left out.

Take three copies of G namely G^{1}, G^{2}, G^{3} and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{m, n}^{1}$ with the vertex $v_{1, n}^{2}$ and the vertex $v_{m, n}^{2}$ with the vertex $v_{1, n}^{3}$. The left out edges $\left\{f_{m, n}^{t} ; t=1,2,3\right\}$ in the three copies of G will make a P_{4} in H. Thus H is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k+2} \square P_{3 l}\right)=3((3 k+2)(3 l-1)+$ $(3 l)(3 k+2))$.

Subcase 5.2: $n=3 l+1, l \geq 1$
In this case $G=C_{3 k+2} \square P_{3 l+1}$ which has $(3 k+2)(3 l)+(3 l+1)(3 k+2)$ edges and hence $|E(G)| \equiv 2(\bmod 3)$. The $3 k+2$ edges of the j-th C_{m}-fiber, where $1 \leq j \leq n-1$, together with the edge $e_{m, j}$ of the m-th P_{n}-fiber, makes $3 k+3$ edges, which is P_{4}-decomposable. For $1 \leq i \leq m-1$, the i-th P_{n}-fiber, has $3 l$ edges and hence it is P_{4}-decomposable. The first $3 k$ edges of the n-th C_{m}-fiber makes a $P_{3 k+1}$, which is P_{4}-decomposable. The edges $\left\{f_{m-1, n}, f_{m, n}\right\}$ are left out.

Take three copies of G namely G^{1}, G^{2}, G^{3} and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{1, n}^{1}$ with the vertex $v_{1, n}^{2}$ and the vertex $v_{m-1, n}^{2}$ with the vertex $v_{m-1, n}^{3}$. The left out edges $\left\{f_{m-1, n}^{t}, f_{m, n}^{t} ; t=1,2,3\right\}$ in the three copies of G will make a P_{7} in H, which is P_{4}-decomposable. Thus H is P_{4}-decomposable and hence $l c m\left(P_{4}, C_{3 k+2} \square P_{3 l+1}\right)=3((3 k+2)(3 l)+(3 l+1)(3 k+2))$.

Subcase 5.3: $n=3 l+2, l \geq 1$
The graph $G=C_{3 k+1} \square P_{3 l+2}$ has $(3 k+2)(3 l+1)+(3 l+2)(3 k+2)$ edges, which is a multiple of three. The $3 k+2$ edges of the j-th C_{m}-fiber, where $1 \leq j \leq n-2$, together with the edge $e_{m, j}$ of the m-th P_{n}-fiber, makes $3 k+3$ edges, which is P_{4}-decomposable. The first $3 l$ edges of the i-th P_{n}-fiber, where $1 \leq i \leq m-1$ makes a $P_{3 l+1}$, which is P_{4}-decomposable. Consider the edges of the $(n-1)$-th and n-th C_{m}-fibers and the edges $\left\{e_{i, n-1}, 1 \leq i \leq m\right\}$. Then $\left\{\left(f_{i, n-1}, e_{i, n-1}, f_{i, n}\right), 1 \leq i \leq m\right\}$ gives a copy of P_{4} for each i. Thus G is P_{4}-decomposable and hence $\operatorname{lcm}\left(P_{4}, C_{3 k+2} \square P_{3 l+2}\right)=(3 k+2)(3 l+1)+(3 l+2)(3 k+2)$.

Theorem 2.2. $C_{m} \square P_{n}$ is P_{4}-decomposable if and only if $m \equiv 0(\bmod 3)$ or $n \equiv 2(\bmod 3)$.

2.2 lcm of P_{4} and $W_{m} \square P_{n}$

Let W_{m} denote the wheel graph of order m, which contains a cycle C_{m-1} and a vertex called hub, which is adjacent to every vertex of $C_{m-1} .\left|E\left(W_{m}\right)\right|=2 m-2$. Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be the vertices of W_{m} and P_{n} respectively, where a_{m} is the hub vertex of W_{m}. $W_{m} \times\left\{b_{j}\right\}, 1 \leq j \leq n$ are the W_{m}-fibers and $\left\{a_{i}\right\} \times P_{n}, 1 \leq i \leq m$ are the P_{n}-fibers in $W_{m} \square P_{n}$. Label the vertices and edges of the j-th W_{m}-fiber, $W_{m} \times\left\{b_{j}\right\}$ as $\left\{v_{1, j}, v_{2, j}, \ldots, v_{m, j}\right\}$, $\left\{f_{1, j}, f_{2, j}, \ldots, f_{m-1, j}, g_{1, j}, g_{2, j}, \ldots, g_{m-1, j}\right\}$ where $\left\{f_{1, j}, f_{2, j}, \ldots, f_{m-1, j}\right\}$ are the edges of the cycle in the j-th W_{m}-fiber and $\left\{g_{1, j}, g_{2, j}, \ldots, g_{m-1, j}\right\}$ are the edges connecting the hub and the vertices of the cycle in the j-th W_{m}-fiber. The vertices and edges of the i-th P_{n}-fiber, $\left\{a_{i}\right\} \times P_{n}$ are labelled as $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\}$ and $\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n-1}\right\}$ respectively.

Figure 2. $\mathrm{W}_{\mathrm{m}} \square \mathrm{P}_{\mathrm{n}}$
Theorem 2.3. lcm $\left(P_{4}, W_{m} \square P_{n}\right)= \begin{cases}3 m n-2 n-m & \text { if } 2 m+n \equiv 0(\bmod 3) \\ 3(3 m n-2 n-m) & \text { otherwise }\end{cases}$
Proof. Let P^{\prime} be the path $v_{1,1} f_{1,1} v_{2,1} f_{2,1} \ldots f_{m-2,1} v_{m-1,1} g_{m-1,1} v_{m, 1}$, which is contained in the first W_{m}-fiber, $P^{\prime \prime}: v_{m, 1} e_{m, 1} v_{m, 2} e_{m, 2} \ldots v_{m, n-1} e_{m, n-1} v_{m, n}$, the m-th P_{n}-fiber and $P^{\prime \prime \prime}$: $v_{m, n} g_{m-1, n} v_{m-1, n} f_{m-2, n} \ldots v_{2, n} f_{1, n} v_{1, n}$, the path contained in the last W_{m}-fiber.

Let $G=W_{m} \square P_{n}$. Then $|E(G)|=m(n-1)+n(2 m-2)=3 m n-2 n-m$. Consider the edges of $G^{*}=\left(W_{m} \square P_{n}\right) \backslash\left\{P^{\prime}, P^{\prime \prime}, P^{\prime \prime \prime}\right\}$. Copies of P_{4} are obtained as follows :
For a fixed $j, 1 \leq j \leq n-2,\left\{\left(g_{i, j}, e_{i, j}, f_{i, j+1}\right), 1 \leq i \leq m-2\right\},\left\{\left(f_{m-1, j}, e_{m-1, j}, g_{m-1, j+1}\right)\right\}$,

$$
\left\{\left(g_{i, n-1}, e_{i, n-1}, g_{i, n}\right), 1 \leq i \leq m-2\right\},\left(f_{m-1, n-1}, e_{m-1, n-1}, f_{m-1, n}\right)
$$

Thus G^{*} is P_{4}-decomposable. The paths $P^{\prime}, P^{\prime \prime}$ and $P^{\prime \prime \prime}$ makes the path P^{*} of length $2 m+n-3$ in $W_{m} \square P_{n}$. Thus $W_{m} \square P_{n}$ is P_{4}-decomposable if P^{*} is P_{4}-decomposable and this happens if $2 m+n \equiv 0(\bmod 3)$.

If $2 m+n \equiv 1$ or $2(\bmod 3)$, take three copies of G namely G^{1}, G^{2}, G^{3} and in each copy of G, the subgraph G^{*} has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{1,1}^{1}$ with the vertex $v_{1, n}^{2}$ and the vertex $v_{1,1}^{2}$ with the vertex $v_{1,1}^{3}$. Then the path P^{*} in the three copies of G will make a path of length $3(2 m+n-3)$ in H, which is P_{4}-decomposable and so is H. Thus $l c m\left(P_{4}, W_{m} \square P_{n}\right)=\left|E\left(W_{m} \square P_{n}\right)\right|$ if $2 m+n \equiv 0(\bmod 3)$ and $3\left|E\left(W_{m} \square P_{n}\right)\right|$ otherwise.

Theorem 2.4. $W_{m} \square P_{n}$ is P_{4}-decomposable if and only if $2 m+n \equiv 0(\bmod 3)$.

2.3 lcm of \boldsymbol{P}_{4} and $\boldsymbol{W}_{\boldsymbol{m}} \square \boldsymbol{C}_{\boldsymbol{n}}$

Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be the vertices of W_{m} and C_{n} respectively, where a_{m} is the hub vertex of $W_{m} . W_{m} \times\left\{b_{j}\right\}, 1 \leq j \leq n$ are the W_{m}-fibers and $\left\{a_{i}\right\} \times C_{n}, 1 \leq i \leq m$ are the C_{n}-fibers in $W_{m} \square C_{n}$. Label the vertices and edges of the j-th W_{m}-fiber, $W_{m} \times\left\{b_{j}\right\}$ as in the
above case of $W_{m} \square P_{n}$. The vertices and edges of the i-th C_{n}-fiber, $\left\{a_{i}\right\} \times C_{n}$ are labelled as $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\},\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n}\right\}$.

Figure 3. $W_{m} \square C_{n}$
Theorem 2.5. $\operatorname{lcm}\left(P_{4}, W_{m} \square C_{n}\right)= \begin{cases}3 m n-2 n & \text { if } n \equiv 0(\bmod 3) \\ 3(3 m n-2 n) & \text { otherwise }\end{cases}$
Proof. Let $G=W_{m} \square C_{n}$. Then $|E(G)|=m n+n(2 m-2)=3 m n-2 n$. Copies of P_{4} are obtained as follows :
For a fixed $j, 2 \leq j \leq n-2,\left\{\left(g_{i, j}, e_{i, j}, f_{i, j+1}\right), 1 \leq i \leq m-2\right\},\left\{\left(f_{m-1, j}, e_{m-1, j}, g_{m-1, j+1}\right)\right\}$,

$$
\left\{\left(g_{i, 1}, e_{i, n}, f_{i, n}\right),\left(f_{i, 1}, e_{i, 1}, f_{i, 2}\right),\left(g_{i, n-1}, e_{i, n-1}, g_{i, n}\right) ; 1 \leq i \leq m-2\right\}
$$

$$
\left(f_{m-1,1}, e_{m-1,1}, g_{m-1,2}\right),\left(f_{m-1, n-1}, e_{m-1, n-1}, f_{m-1, n}\right),\left(e_{m-1, n}, g_{m-1,1}, e_{m, n}\right)
$$

The path P^{*} of length n consisting of the edges $\left\{e_{m, 1}, e_{m, 2}, \ldots, e_{m, n-1}, g_{m-1, n}\right\}$ is left out. Thus $W_{m} \square C_{n}$ is P_{4}-decomposable if P^{*} is P_{4}-decomposable and this happens if $n \equiv 0(\bmod 3)$.

If $n \equiv 1$ or $2(\bmod 3)$, take three copies of G namely G^{1}, G^{2}, G^{3} having the above decomposition. Let H be the graph obtained by identifying the vertex $v_{m, 1}^{1}$ with the vertex $v_{m, 1}^{2}$ and the vertex $v_{m-1, n}^{2}$ with the vertex $v_{m-1, n}^{3}$. Then the path P^{*} in the three copies of G will make a path of length $3 n$ in H, which is P_{4}-decomposable and so is H. Thus $\operatorname{lcm}\left(P_{4}, W_{m} \square C_{n}\right)=$ $\left|E\left(W_{m} \square C_{n}\right)\right|$ if $n \equiv 0(\bmod 3)$ and $3\left|E\left(W_{m} \square C_{n}\right)\right|$ otherwise.

Theorem 2.6. $W_{m} \square C_{n}$ is P_{4}-decomposable if and only if $n \equiv 0(\bmod 3)$.

Acknowledgement

The authors are thankful to Prof. M. I. Jinnah, formerly University of Kerala, India for his support and for suggesting this topic.

References

[1] P.Adams, D. Bryant, S.I. El-Zanati, C.Vanden Eynden and B. Maenhaut, Least common multiples of cubes, Bull. Inst. Combin. Appl., 38 (2003) 45-49.
[2] P. Adams, D. Bryant and B. Maenhaut, Common multiples of complete graphs and a 4-cycle, Discrete Math. 275 (2004) 289-297; doi.org/10.1016/j.disc.2002.11.001
[3] D. Bryant and B. Maenhaut, Common multiples of complete graphs, Proc. London Math. Soc. 86(2) (2003) 302-326; doi.org/10.1112/S0024611502013771
[4] G. Chartrand, L. Holley, G. Kubicki and M. Schultz, Greatest common divisors and least common multiples of graphs, Period. Math. Hungar 27(2) (1993) 95-104; doi.org/10.1007/bf01876635
[5] G. Chartrand and F. Saba, On least common multiple of digraphs, Util. Math. 49 (1996) 45-63.
[6] G. Chartrand, G. Kubicki, C.M. Mynhardt and F. Saba, On graphs with a unique least common multiple, Ars Combin. 46 (1997) 177-190.
[7] Z-C Chen and T-W Shyu, Common multiples of paths and stars, Ars Combin. 146 (2019) 115-122; hdl.handle.net/11536/152715
[8] O.Favaron and C.M. Mynhardt, On the sizes of least common multiples of several pairs of graphs, Ars Combin. 43 (1996) 181-190.
[9] C.M. Mynhardt and F. Saba, On the sizes of least common multiples of paths versus complete graphs, Util. Math. 46 (1994) 117-128.
[10] T. Reji, On graphs that have a unique least common multiple with matchings, Far East J. Appl. Math. 18(3) (2005) 281-288.
[11] T. Reji and J. Varughese. Least common multiple of graphs. Discrete Math. Algorithms Appl. 8(2) (2016) 1650032 1-8; doi.org/10.1142/S1793830916500324.
[12] T Reji, J. Varughese and R Ruby. On graphs that have a unique least common multiple. Cubo 24 (1) (2022) 53-62; doi.org/10.4067/S0719-06462022000100053.
[13] C. Sunil Kumar, Least common multiple of a cycle and a star, Electron. Notes Discrete Math. 15 (2003) 204-206; doi.org/10.1016/S1571-0653(04)00581-5
[14] P. Wang, On the sizes of least common multiples of stars versus cycles, Util. Math. 53 (1998) 231-242.

Author information

Reji T, Ruby R and Sneha B, Department of Mathematics, Government College, Chittur, Palakkad, Kerala678104, India.
E-mail: rejiaran@gmail.com, rubymathpkd@gmail.com (Corresponding author), sneharbkrishnan@gmail.com

