LEAST COMMON MULTIPLE OF PRODUCT GRAPHS

Reji T, Ruby R and Sneha B

Communicated by S. Monikandan

MSC 2010 Classifications: 05C38, 05C51, 05C70.

Keywords and phrases: Graph decomposition, Least common multiple, Cartesian product.

Abstract A graph G without isolated vertices is a least common multiple of two graphs H_1 and H_2 if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of G into edge disjoint copies of H_1 and H_2 . The collection of all least common multiples of H_1 and H_2 is denoted by $LCM(H_1, H_2)$ and the size of a least common multiple of H_1 and H_2 is denoted by $LCM(H_1, H_2)$. In this paper $lcm(P_4, C_m \Box P_n)$, $lcm(P_4, W_m \Box P_n)$ and $lcm(P_4, W_m \Box C_n)$ are determined where the product is the cartesian product.

1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices. The size of a graph G is the number of edges of G denoted by |E(G)|. A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-decomposition of G. G is said to be H-decomposable if G has an H- decomposition and write H|G.

A graph G is called a common multiple of two graphs H_1 and H_2 if both $H_1|G$ and $H_2|G$. A graph G is a least common multiple of H_1 and H_2 if G is a common multiple of H_1 and H_2 and no other common multiple has fewer edges. Several authors have investigated the problem of finding least common multiples of pairs of graphs H_1 and H_2 ; that is graphs of minimum size which are both H_1 and H_2 decomposable. The problem was introduced by Chartrand et.al in [4] and they showed that every two nonempty graphs have a least common multiple. The problem of finding the size of least common multiples of graphs has been studied for several pairs of graphs: cycles and stars [4, 13, 14], paths and complete graphs [9], pairs of cycles [8], pairs of complete graphs [3], complete graphs and a 4-cycle [2], pairs of cubes [1], complete graph and stars [11] and paths and stars [7]. Pairs of graphs having a unique least common multiple were investigated by several authors [6, 12, 10]. Least common multiple of digraphs were considered in [5].

An obvious necessary condition for the existence of a graph G which is a common multiple of H_1 and H_2 is that both $|E(H_1)|$ and $|E(H_2)|$ divide |E(G)|. This condition is not always sufficient. Therefore, we may ask: Given two graphs H_1 and H_2 , for which value of q does there exist a graph G having q edges which is a common multiple of the graphs H_1 and H_2 ? Adams, Bryant and Maenhaut [2] gave a complete solution to this problem in the case where H_1 is the 4-cycle and H_2 is a complete graph; Bryant and Maenhaut [3] gave a complete solution to this problem in the case where H_1 is the complete graph K_3 and H_2 is a complete graph. Thus the problem to find least common multiple of H_1 and H_2 is to find the least positive integer q such that there exists a graph G having q edges which is both H_1 and H_2 decomposable. We denote the set of all least common multiples of H_1 and H_2 by $LCM(H_1, H_2)$. The size of a least common multiple of H_1 and H_2 is denoted by $lcm(H_1, H_2)$. Since every two nonempty graphs have a least common multiple, $LCM(H_1, H_2)$ is nonempty. The number of elements in the set $LCM(H_1, H_2)$ is greater than one for many pairs of graphs. For example both P_7 and C_6 are least common multiples of P_4 and P_3 .

In fact, Chartrand et.al [6] proved that for every positive integer n there exist two graphs having exactly n least common multiples. In [9] it was shown that every least common multiple of two connected graphs is connected and that every least common multiple of two 2-connected graphs is 2-connected. But this is not the case for disconnected graphs. For example if we take $H_1 = 2K_2$, $H_2 = C_5$, then $G_1 = 2C_5$ and G_2 which is the graph obtained by identifying two vertices in two copies of C_5 , are in $LCM(H_1, H_2)$ of which G_1 is disconnected while G_2 is connected.

2 Main Result

The cartesian product of two graphs G and H denoted by $G \Box H$ is a graph with vertex set $V(G) \times V(H)$ for which $\{(x, u), (y, v)\}$ is an edge if x = y and $\{u, v\} \in E(H)$ or $\{x, y\} \in E(G)$ and u = v. The graph $G \Box H$ has |V(G)||V(H)| vertices and |V(G)||E(H)| + |V(H)||E(G)| edges. In this section graphs that belong to $LCM(P_4, C_m \Box P_n)$, $LCM(P_4, W_m \Box P_n)$ and $LCM(P_4, W_m \Box C_n)$ are constructed and hence computed the *lcm* of the respective pairs of graphs. Let G^t for t = 1, 2, 3 denote the *t*-th copy of the graph G. Also let v^t and e^t denote a vertex and an edge in G^t .

2.1 lcm of P_4 and $C_m \square P_n$

Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n be the vertices of C_m and P_n respectively. $C_m \times \{b_j\}$, $1 \le j \le n$ are the C_m -fibers and $\{a_i\} \times P_n$, $1 \le i \le m$ are the P_n -fibers in $C_m \Box P_n$. Label the vertices and edges of the *j*-th C_m -fiber, $C_m \times \{b_j\}$ as $\{v_{1,j}, v_{2,j}, \ldots, v_{m,j}\}$, $\{f_{1,j}, f_{2,j}, \ldots, f_{m,j}\}$ and that of the *i*-th P_n -fiber, $\{a_i\} \times P_n$ as $\{v_{i,1}, v_{i,2}, \ldots, v_{i,n}\}$, $\{e_{i,1}, e_{i,2}, \ldots, e_{i,n-1}\}$.

Theorem 2.1.
$$lcm(P_4, C_m \Box P_n) = \begin{cases} 2mn - m & \text{if } m \equiv 0 \pmod{3} \text{ or } n \equiv 2 \pmod{3} \\ 6mn - 3m & \text{otherwise} \end{cases}$$

Proof. Least common multiple of P_4 and $C_m \square P_n$ is the number of edges in the graph of least size that is both P_4 -decomposable and $C_m \square P_n$ -decomposable. We consider various cases for m and n in modulo 3 and will construct in each case a graph of least size that is both P_4 -decomposable and $C_m \square P_n$ -decomposable.

Case 1: $n = 2, m \in \mathbb{N}, m \ge 3$

The graph $G = C_m \square P_2$ has 3m edges. A P_4 -decomposition of G is given by the following copies of P_4 : $(f_{i,1}, e_{i,1}, f_{i,2}), 1 \le i \le m$. Thus G is P_4 -decomposable and hence

$$lcm(P_4, C_m \Box P_2) = 3m.$$

Case 2: $m = 3, n \in \mathbb{N}, n \ge 3$

In this case $G = C_3 \square P_n$, which has 6n - 3 edges. A P_4 -decomposition of G is obtained as follows:

$$\{(f_{1,j}, e_{2,j}, f_{2,j+1}), 1 \le j \le n-1\}, \{(e_{1,j}, f_{3,j}, e_{3,j-1}), 2 \le j \le n-1\},$$
$$(e_{1,1}, f_{3,1}, e_{3,1}), \qquad (f_{1,n}, f_{3,n}, e_{3,n-1})$$

Thus G is P_4 -decomposable and hence $lcm(P_4, C_3 \Box P_n) = 6n - 3$.

Case 3: $m = 3k, k \ge 2$

Subcase 3.1: $n = 3l, l \ge 1$

The graph $G = C_{3k} \Box P_{3l}$ has 3k(3l-1) + (3l)(3k) edges and hence $|E(G)| \equiv 0 \pmod{3}$. The 3l-1 edges of the *i*-th P_n -fiber of G, where $1 \le i \le m$, together with the edge $f_{i,n}$ of the *n*-th C_m -fiber makes a P_{3l+1} , which is P_4 -decomposable. For $1 \le j \le n-1$, the *j*-th C_m -fiber contains 3k edges and hence it is P_4 -decomposable. Thus G is P_4 -decomposable and hence $lcm(P_4, C_{3k} \Box P_{3l}) = 3k(3l-1) + (3l)(3k)$.

Subcase 3.2: $n = 3l + 1, l \ge 1$

In this case $G = C_{3k} \square P_{3l+1}$ and $|E(G)| = 3k(3l) + (3l+1)(3k) \equiv 0 \pmod{3}$. Here each C_m -fiber has 3k edges and each P_n -fiber has 3l edges and hence every C_m -fiber and P_n -fiber are P_4 -decomposable. Thus G is P_4 -decomposable and hence $lcm(P_4, C_{3k} \square P_{3l+1}) = 3k(3l) + (3l+1)(3k)$.

Subcase 3.3: $n = 3l + 2, l \ge 1$

Here $G = C_{3k} \Box P_{3l+2}$ and it has 3k(3l+1) + (3l+2)(3k) edges which is a multiple of three. The *j*-th C_m -fiber, where $1 \le j \le n-2$, has 3k edges and hence it is P_4 -decomposable. The first 3l edges of the *i*-th P_n -fiber, where $1 \le i \le m$ makes a P_{3l+1} , which is P_4 -decomposable. Consider the edges of the (n-1)-th and n-th C_m -fibers and the edges $\{e_{i,n-1}, 1 \le i \le m\}$. Then $\{(f_{i,n-1}, e_{i,n-1}, f_{i,n}), 1 \le i \le m\}$ gives a copy of P_4 for each *i*. Thus *G* is P_4 -decomposable and hence $lcm(P_4, C_{3k} \Box P_{3l+2}) = 3k(3l+1) + (3l+2)(3k)$.

Case 4: $m = 3k + 1, k \ge 1$

Subcase 4.1: $n = 3l, l \ge 1$

The graph $G = C_{3k+1} \Box P_{3l}$ has (3k+1)(3l-1) + (3l)(3k+1) edges and hence $|E(G)| \equiv 2 \pmod{3}$. (mod 3). The first 3k edges of the *j*-th C_m -fiber, where $1 \leq j \leq n-1$, makes a P_{3k+1} , which is P_4 -decomposable. The 3l-1 edges of the *i*-th P_n -fiber, where $2 \leq i \leq m-1$, together with the edge $f_{i-1,n}$ of the *n*-th C_m -fiber makes a P_{3l+1} , which is P_4 -decomposable. Now $\{(e_{1,j}, f_{m,j}, e_{m,j}), 1 \leq j \leq n-1\}$ gives a copy of P_4 for each *j*. The edges $\{f_{m-1,n}, f_{m,n}\}$ are left out.

Take three copies of G namely G^1, G^2, G^3 and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{1,n}^1$ with the vertex $v_{1,n}^2$ and the vertex $v_{m-1,n}^2$ with the vertex $v_{m-1,n}^3$. The left out edges $\{f_{m-1,n}^t, f_{m,n}^t; t = 1, 2, 3\}$ in the three copies of G will make a P_7 in H, which is P_4 -decomposable. Thus H is P_4 -decomposable and hence $lcm(P_4, C_{3k+1} \Box P_{3l}) = 3((3k+1)(3l-1) + (3l)(3k+1)).$

Subcase 4.2: $n = 3l + 1, l \ge 1$

In this case $G = C_{3k+1} \square P_{3l+1}$ which has (3k+1)(3l) + (3l+1)(3k+1) edges and hence $|E(G)| \equiv 1 \pmod{3}$. The first 3k edges of the *j*-th C_m -fiber, where $1 \leq j \leq n$, makes a P_{3k+1} , which is P_4 -decomposable. For $2 \leq i \leq m-1$, the *i*-th P_n -fiber, has 3l edges and hence it is P_4 -decomposable. Now $\{(e_{1,j}, f_{m,j}, e_{m,j}), 1 \leq j \leq n-1\}$ gives a copy of P_4 for each *j*. The edge $f_{m,n}$ is left out.

Take three copies of G namely G^1, G^2, G^3 and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{m,n}^1$ with the vertex $v_{1,n}^2$ and the vertex $v_{m,n}^2$ with the vertex $v_{1,n}^3$. The left out edges $\{f_{m,n}^t; t = 1, 2, 3\}$ in the three copies of G will make a P_4 in H. Thus H is P_4 -decomposable and hence $lcm(P_4, C_{3k+1} \Box P_{3l+1}) = 3((3k+1)(3l) + (3l+1)(3k+1))$.

Subcase 4.3: $n = 3l + 2, l \ge 1$

Here $G = C_{3k+1} \Box P_{3l+2}$ and |E(G)| = (3k+1)(3l+1)+(3l+2)(3k+1), which is a multiple of three. The first 3k edges of the *j*-th C_m -fiber, where $1 \le j \le n-2$, makes a P_{3k+1} , which is P_4 -decomposable. The first 3l edges of the *i*-th P_n -fiber, where $2 \le i \le m-1$ makes a P_{3l+1} , which is P_4 -decomposable. $\{(e_{1,j}, f_{m,j}, e_{m,j}), 1 \le j \le n-1\}$ gives a copy of P_4 for each *j*. Consider the edges of the (n-1)-th and *n*-th C_m -fibers and the edges $\{e_{i,n-1}, 1 \le i \le m\}$. Then $\{(f_{i,n-1}, e_{i,n-1}, f_{i,n}), 1 \le i \le m\}$ gives a copy of P_4 for each *i*. Thus *G* is P_4 -decomposable and hence $lcm(P_4, C_{3k+1} \Box P_{3l+2}) = (3k+1)(3l+1) + (3l+2)(3k+1)$.

Case 5: $m = 3k + 2, \ k \ge 1$

Subcase 5.1: $n = 3l, l \ge 1$

For the graph $G = C_{3k+2} \Box P_{3l}$, $|E(G)| = (3k+2)(3l-1) + (3l)(3k+2) \equiv 1 \pmod{3}$. The 3k+2 edges of the *j*-th C_m -fiber, where $1 \leq j \leq n-1$, together with the edge $e_{m,j}$ of the *m*-th P_n -fiber, makes 3k+3 edges, which is P_4 -decomposable. The 3l-1 edges of the *i*-th P_n -fiber, where $1 \leq i \leq m-1$, together with the edge $f_{i,n}$ of the *n*-th C_m -fiber makes a P_{3l+1} , which is P_4 -decomposable. The edge $f_{m,n}$ is left out. Take three copies of G namely G^1, G^2, G^3 and each copy has the above decomposition. Let

Take three copies of G namely G^1, G^2, G^3 and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{m,n}^1$ with the vertex $v_{1,n}^2$ and the vertex $v_{m,n}^2$ with the vertex $v_{1,n}^3$. The left out edges $\{f_{m,n}^t; t = 1, 2, 3\}$ in the three copies of G will make a P_4 in H. Thus H is P_4 -decomposable and hence $lcm(P_4, C_{3k+2} \Box P_{3l}) = 3((3k+2)(3l-1) + (3l)(3k+2))$.

Subcase 5.2: $n = 3l + 1, \ l \ge 1$

In this case $G = C_{3k+2} \square P_{3l+1}$ which has (3k+2)(3l) + (3l+1)(3k+2) edges and hence $|E(G)| \equiv 2 \pmod{3}$. The 3k+2 edges of the *j*-th C_m -fiber, where $1 \leq j \leq n-1$, together with the edge $e_{m,j}$ of the *m*-th P_n -fiber, makes 3k+3 edges, which is P_4 -decomposable. For $1 \leq i \leq m-1$, the *i*-th P_n -fiber, has 3l edges and hence it is P_4 -decomposable. The first 3k edges of the *n*-th C_m -fiber makes a P_{3k+1} , which is P_4 -decomposable. The edges $\{f_{m-1,n}, f_{m,n}\}$ are left out.

Take three copies of G namely G^1, G^2, G^3 and each copy has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{1,n}^1$ with the vertex $v_{1,n}^2$ and the vertex $v_{m-1,n}^2$ with the vertex $v_{m-1,n}^3$. The left out edges $\{f_{m-1,n}^t, f_{m,n}^t; t = 1, 2, 3\}$ in the three copies of G will make a P_7 in H, which is P_4 -decomposable. Thus H is P_4 -decomposable and hence $lcm(P_4, C_{3k+2} \Box P_{3l+1}) = 3((3k+2)(3l) + (3l+1)(3k+2)).$ Subcase 5.3: $n = 3l+2, l \ge 1$

The graph $G = C_{3k+1} \square P_{3l+2}$ has (3k+2)(3l+1) + (3l+2)(3k+2) edges, which is a multiple of three. The 3k+2 edges of the *j*-th C_m -fiber, where $1 \le j \le n-2$, together with the edge $e_{m,j}$ of the *m*-th P_n -fiber, makes 3k+3 edges, which is P_4 -decomposable. The first 3l edges of the *i*-th P_n -fiber, where $1 \le i \le m-1$ makes a P_{3l+1} , which is P_4 -decomposable. Consider the edges of the (n-1)-th and *n*-th C_m -fibers and the edges $\{e_{i,n-1}, 1 \le i \le m\}$. Then $\{(f_{i,n-1}, e_{i,n-1}, f_{i,n}), 1 \le i \le m\}$ gives a copy of P_4 for each *i*. Thus *G* is P_4 -decomposable and hence $lcm(P_4, C_{3k+2} \square P_{3l+2}) = (3k+2)(3l+1) + (3l+2)(3k+2)$.

Theorem 2.2. $C_m \square P_n$ is P_4 -decomposable if and only if $m \equiv 0 \pmod{3}$ or $n \equiv 2 \pmod{3}$.

2.2 Icm of P_4 and $W_m \square P_n$

Let W_m denote the wheel graph of order m, which contains a cycle C_{m-1} and a vertex called hub, which is adjacent to every vertex of C_{m-1} . $|E(W_m)| = 2m - 2$. Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n be the vertices of W_m and P_n respectively, where a_m is the hub vertex of W_m . $W_m \times \{b_j\}, 1 \le j \le n$ are the W_m -fibers and $\{a_i\} \times P_n, 1 \le i \le m$ are the P_n -fibers in $W_m \square P_n$. Label the vertices and edges of the j-th W_m -fiber, $W_m \times \{b_j\}$ as $\{v_{1,j}, v_{2,j}, \ldots, v_{m,j}\}$, $\{f_{1,j}, f_{2,j}, \ldots, f_{m-1,j}, g_{1,j}, g_{2,j}, \ldots, g_{m-1,j}\}$ where $\{f_{1,j}, f_{2,j}, \ldots, f_{m-1,j}\}$ are the edges of the cycle in the j-th W_m -fiber and $\{g_{1,j}, g_{2,j}, \ldots, g_{m-1,j}\}$ are the edges connecting the hub and the vertices of the cycle in the j-th W_m -fiber. The vertices and edges of the i-th P_n -fiber, $\{a_i\} \times P_n$ are labelled as $\{v_{i,1}, v_{i,2}, \ldots, v_{i,n}\}$ and $\{e_{i,1}, e_{i,2}, \ldots, e_{i,n-1}\}$ respectively.

Figure 2. $W_m \square P_n$

Theorem 2.3. $lcm(P_4, W_m \Box P_n) = \begin{cases} 3mn - 2n - m & \text{if } 2m + n \equiv 0 \pmod{3} \\ 3(3mn - 2n - m) & \text{otherwise} \end{cases}$

Proof. Let P' be the path $v_{1,1}f_{1,1}v_{2,1}f_{2,1}\dots f_{m-2,1}v_{m-1,1}g_{m-1,1}v_{m,1}$, which is contained in the first W_m -fiber, $P'': v_{m,1}e_{m,1}v_{m,2}e_{m,2}\dots v_{m,n-1}e_{m,n-1}v_{m,n}$, the *m*-th P_n -fiber and $P''': v_{m,n}g_{m-1,n}v_{m-1,n}f_{m-2,n}\dots v_{2,n}f_{1,n}v_{1,n}$, the path contained in the last W_m -fiber.

Let $G = W_m \Box P_n$. Then |E(G)| = m(n-1) + n(2m-2) = 3mn - 2n - m. Consider the edges of $G^* = (W_m \Box P_n) \setminus \{P', P'', P'''\}$. Copies of P_4 are obtained as follows : For a fixed $j, 1 \le j \le n-2$, $\{(q_{i,j}, e_{i,j}, f_{i,j+1}), 1 \le i \le m-2\}$, $\{(f_{m-1,j}, e_{m-1,j}, q_{m-1,j+1})\}$.

a fixed
$$j, 1 \le j \le n-2, \{(g_{i,j}, e_{i,j}, f_{i,j+1}), 1 \le i \le m-2\}, \{(f_{m-1,j}, e_{m-1,j}, g_{m-1,j+1})\}, j \ge n-2, j \le n-2,$$

$$\{(g_{i,n-1}, e_{i,n-1}, g_{i,n}), 1 \le i \le m-2\}, (f_{m-1,n-1}, e_{m-1,n-1}, f_{m-1,n})$$

Thus G^* is P_4 -decomposable. The paths P', P'' and P''' makes the path P^* of length 2m + n - 3 in $W_m \square P_n$. Thus $W_m \square P_n$ is P_4 -decomposable if P^* is P_4 -decomposable and this happens if $2m + n \equiv 0 \pmod{3}$.

If $2m + n \equiv 1$ or 2 (mod 3), take three copies of G namely G^1, G^2, G^3 and in each copy of G, the subgraph G^* has the above decomposition. Let H be the graph obtained by identifying the vertex $v_{1,1}^1$ with the vertex $v_{1,n}^2$ and the vertex $v_{1,1}^2$ with the vertex $v_{1,1}^3$. Then the path P^* in the three copies of G will make a path of length 3(2m + n - 3) in H, which is P_4 -decomposable and so is H. Thus $lcm(P_4, W_m \Box P_n) = |E(W_m \Box P_n)|$ if $2m + n \equiv 0 \pmod{3}$ and $3|E(W_m \Box P_n)|$ otherwise.

Theorem 2.4. $W_m \square P_n$ is P_4 -decomposable if and only if $2m + n \equiv 0 \pmod{3}$.

2.3 Icm of P_4 and $W_m \square C_n$

Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n be the vertices of W_m and C_n respectively, where a_m is the hub vertex of W_m . $W_m \times \{b_j\}, 1 \le j \le n$ are the W_m -fibers and $\{a_i\} \times C_n, 1 \le i \le m$ are the C_n -fibers in $W_m \square C_n$. Label the vertices and edges of the *j*-th W_m -fiber, $W_m \times \{b_j\}$ as in the

above case of $W_m \square P_n$. The vertices and edges of the *i*-th C_n -fiber, $\{a_i\} \times C_n$ are labelled as $\{v_{i,1}, v_{i,2}, \ldots, v_{i,n}\}, \{e_{i,1}, e_{i,2}, \ldots, e_{i,n}\}$.

Figure 3. $W_m \square C_n$

Theorem 2.5. $lcm(P_4, W_m \Box C_n) = \begin{cases} 3mn - 2n & \text{if } n \equiv 0 \pmod{3} \\ 3(3mn - 2n) & \text{otherwise} \end{cases}$

Proof. Let $G = W_m \square C_n$. Then |E(G)| = mn + n(2m - 2) = 3mn - 2n. Copies of P_4 are obtained as follows :

For a fixed $j, 2 \le j \le n-2, \{(g_{i,j}, e_{i,j}, f_{i,j+1}), 1 \le i \le m-2\}, \{(f_{m-1,j}, e_{m-1,j}, g_{m-1,j+1})\}, (j, j) \le n-2, (j, j) \le n-2,$

$$\{(g_{i,1}, e_{i,n}, f_{i,n}), (f_{i,1}, e_{i,1}, f_{i,2}), (g_{i,n-1}, e_{i,n-1}, g_{i,n}); 1 \le i \le m-2\}$$

$$(f_{m-1,1}, e_{m-1,1}, g_{m-1,2}), (f_{m-1,n-1}, e_{m-1,n-1}, f_{m-1,n}), (e_{m-1,n}, g_{m-1,1}, e_{m,n})$$

The path P^* of length *n* consisting of the edges $\{e_{m,1}, e_{m,2}, \ldots, e_{m,n-1}, g_{m-1,n}\}$ is left out. Thus $W_m \square C_n$ is P_4 -decomposable if P^* is P_4 -decomposable and this happens if $n \equiv 0 \pmod{3}$.

If $n \equiv 1$ or 2 (mod 3), take three copies of G namely G^1, G^2, G^3 having the above decomposition. Let H be the graph obtained by identifying the vertex $v_{m,1}^1$ with the vertex $v_{m,1}^2$ and the vertex $v_{m-1,n}^2$ with the vertex $v_{m-1,n}^3$. Then the path P^* in the three copies of G will make a path of length 3n in H, which is P_4 -decomposable and so is H. Thus $lcm(P_4, W_m \square C_n) = |E(W_m \square C_n)|$ if $n \equiv 0 \pmod{3}$ and $3|E(W_m \square C_n)|$ otherwise.

Theorem 2.6. $W_m \square C_n$ is P_4 -decomposable if and only if $n \equiv 0 \pmod{3}$.

Acknowledgement

The authors are thankful to Prof. M. I. Jinnah, formerly University of Kerala, India for his support and for suggesting this topic.

References

 P.Adams, D. Bryant, S.I. El-Zanati, C.Vanden Eynden and B. Maenhaut, Least common multiples of cubes, *Bull. Inst. Combin. Appl.*, 38 (2003) 45-49.

- [2] P. Adams, D. Bryant and B. Maenhaut, Common multiples of complete graphs and a 4-cycle, *Discrete Math.* 275 (2004) 289-297; doi.org/10.1016/j.disc.2002.11.001
- [3] D. Bryant and B. Maenhaut, Common multiples of complete graphs, *Proc. London Math. Soc.* 86(2) (2003) 302-326; doi.org/10.1112/S0024611502013771
- [4] G. Chartrand, L. Holley, G. Kubicki and M. Schultz, Greatest common divisors and least common multiples of graphs, *Period. Math. Hungar* 27(2) (1993) 95-104; doi.org/10.1007/bf01876635
- [5] G. Chartrand and F. Saba, On least common multiple of digraphs, Util. Math. 49 (1996) 45-63.
- [6] G. Chartrand, G. Kubicki, C.M. Mynhardt and F. Saba, On graphs with a unique least common multiple, Ars Combin. 46 (1997) 177-190.
- [7] Z-C Chen and T-W Shyu, Common multiples of paths and stars, Ars Combin. 146 (2019) 115-122; hdl.handle.net/11536/152715
- [8] O.Favaron and C.M. Mynhardt, On the sizes of least common multiples of several pairs of graphs, Ars Combin. 43 (1996) 181-190.
- [9] C.M. Mynhardt and F. Saba, On the sizes of least common multiples of paths versus complete graphs, *Util. Math.* **46** (1994) 117-128.
- [10] T. Reji, On graphs that have a unique least common multiple with matchings, *Far East J. Appl. Math.* 18(3) (2005) 281-288.
- [11] T. Reji and J. Varughese. Least common multiple of graphs. Discrete Math. Algorithms Appl. 8(2) (2016) 1650032 1-8; doi.org/10.1142/S1793830916500324.
- T Reji, J. Varughese and R Ruby. On graphs that have a unique least common multiple. *Cubo* 24 (1) (2022) 53-62; doi.org/10.4067/S0719-06462022000100053.
- [13] C. Sunil Kumar, Least common multiple of a cycle and a star, *Electron. Notes Discrete Math.* 15 (2003) 204-206; doi.org/10.1016/S1571-0653(04)00581-5
- [14] P. Wang, On the sizes of least common multiples of stars versus cycles, Util. Math. 53 (1998) 231-242.

Author information

Reji T, Ruby R and Sneha B, Department of Mathematics, Government College, Chittur, Palakkad, Kerala-678104, India.

E-mail: rejiaran@gmail.com, rubymathpkd@gmail.com (Corresponding author), sneharbkrishnan@gmail.com