
Palestine Journal of Mathematics

Vol. 12(Special Issue II)(2023) , 13–19 © Palestine Polytechnic University-PPU 2023

LEAST COMMON MULTIPLE OF PRODUCT GRAPHS

Reji T, Ruby R and Sneha B

Communicated by S. Monikandan

MSC 2010 Classifications: 05C38, 05C51, 05C70.

Keywords and phrases: Graph decomposition, Least common multiple, Cartesian product.

Abstract A graph G without isolated vertices is a least common multiple of two graphs H1
and H2 if G is a smallest graph, in terms of number of edges, such that there exists a decompo-
sition of G into edge disjoint copies of H1 and H2. The collection of all least common multiples
of H1 and H2 is denoted by LCM(H1, H2) and the size of a least common multiple of H1
and H2 is denoted by lcm(H1, H2). In this paper lcm(P4, Cm � Pn), lcm(P4,Wm � Pn) and
lcm(P4,Wm � Cn) are determined where the product is the cartesian product.

1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices.
The size of a graph G is the number of edges of G denoted by |E(G)|. A graph H is said to
divide a graph G if there exists a set of subgraphs of G, each isomorphic to H , whose edge sets
partition the edge set of G. Such a set of subgraphs is called an H-decomposition of G. G is
said to be H-decomposable if G has an H- decomposition and write H|G.

A graph G is called a common multiple of two graphs H1 and H2 if both H1|G and H2|G.
A graph G is a least common multiple of H1 and H2 if G is a common multiple of H1 and H2
and no other common multiple has fewer edges. Several authors have investigated the problem
of finding least common multiples of pairs of graphs H1 and H2; that is graphs of minimum size
which are both H1 and H2 decomposable. The problem was introduced by Chartrand et.al in [4]
and they showed that every two nonempty graphs have a least common multiple. The problem of
finding the size of least common multiples of graphs has been studied for several pairs of graphs:
cycles and stars [4, 13, 14], paths and complete graphs [9], pairs of cycles [8], pairs of complete
graphs [3], complete graphs and a 4-cycle [2], pairs of cubes [1], complete graph and star [11]
and paths and stars [7]. Pairs of graphs having a unique least common multiple were investigated
by several authors [6, 12, 10]. Least common multiple of digraphs were considered in [5].

An obvious necessary condition for the existence of a graph G which is a common multiple
of H1 and H2 is that both |E(H1)| and |E(H2)| divide |E(G)|. This condition is not always
sufficient. Therefore, we may ask: Given two graphs H1 and H2, for which value of q does
there exist a graph G having q edges which is a common multiple of the graphs H1 and H2?
Adams, Bryant and Maenhaut [2] gave a complete solution to this problem in the case where H1
is the 4-cycle and H2 is a complete graph; Bryant and Maenhaut [3] gave a complete solution to
this problem in the case where H1 is the complete graph K3 and H2 is a complete graph. Thus
the problem to find least common multiple of H1 and H2 is to find the least positive integer q
such that there exists a graph G having q edges which is both H1 and H2 decomposable. We
denote the set of all least common multiples of H1 and H2 by LCM(H1, H2). The size of a least
common multiple of H1 and H2 is denoted by lcm(H1, H2). Since every two nonempty graphs
have a least common multiple, LCM(H1, H2) is nonempty. The number of elements in the set
LCM(H1, H2) is greater than one for many pairs of graphs. For example both P7 and C6 are
least common multiples of P4 and P3.

In fact, Chartrand et.al [6] proved that for every positive integer n there exist two graphs
having exactly n least common multiples. In [9] it was shown that every least common multiple
of two connected graphs is connected and that every least common multiple of two 2-connected
graphs is 2-connected. But this is not the case for disconnected graphs. For example if we take
H1 = 2K2, H2 = C5, then G1 = 2C5 and G2 which is the graph obtained by identifying two
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vertices in two copies of C5, are in LCM(H1, H2) of which G1 is disconnected while G2 is
connected.

2 Main Result

The cartesian product of two graphs G and H denoted by G � H is a graph with vertex set
V (G)×V (H) for which {(x, u), (y, v)} is an edge if x = y and {u, v} ∈ E(H) or {x, y} ∈ E(G)
and u = v. The graph G � H has |V (G)||V (H)| vertices and |V (G)||E(H)| + |V (H)||E(G)|
edges. In this section graphs that belong to LCM(P4, Cm � Pn), LCM(P4,Wm � Pn) and
LCM(P4,Wm � Cn) are constructed and hence computed the lcm of the respective pairs of
graphs. Let Gt for t = 1, 2, 3 denote the t-th copy of the graph G. Also let vt and et denote a
vertex and an edge in Gt.

2.1 lcm of P4 and Cm � Pn
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Figure 1. Cm � Pn

Let a1, a2, . . . , am and b1, b2, . . . , bn be the vertices of Cm and Pn respectively. Cm × {bj},
1 ≤ j ≤ n are the Cm-fibers and {ai}×Pn, 1 ≤ i ≤ m are the Pn-fibers in Cm � Pn. Label the
vertices and edges of the j-th Cm-fiber, Cm×{bj} as {v1,j , v2,j , . . . , vm,j}, {f1,j , f2,j , . . . , fm,j}
and that of the i-th Pn-fiber, {ai} × Pn as {vi,1, vi,2, . . . , vi,n}, {ei,1, ei,2, . . . , ei,n−1}.

Theorem 2.1. lcm(P4, Cm � Pn) =

{
2mn−m if m ≡ 0 (mod 3) or n ≡ 2 (mod 3)
6mn− 3m otherwise

Proof. Least common multiple of P4 and Cm � Pn is the number of edges in the graph of least
size that is both P4-decomposable and Cm � Pn-decomposable. We consider various cases
for m and n in modulo 3 and will construct in each case a graph of least size that is both P4-
decomposable and Cm � Pn-decomposable.

Case 1: n = 2, m ∈ N, m ≥ 3
The graph G = Cm � P2 has 3m edges. A P4-decomposition of G is given by the following

copies of P4: (fi,1, ei,1, fi,2), 1 ≤ i ≤ m. Thus G is P4-decomposable and hence

lcm(P4, Cm � P2) = 3m.
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Case 2: m = 3, n ∈ N, n ≥ 3
In this case G = C3 � Pn, which has 6n− 3 edges. A P4-decomposition of G is obtained as

follows:

{(f1,j , e2,j , f2,j+1), 1 ≤ j ≤ n− 1}, {(e1,j , f3,j , e3,j−1), 2 ≤ j ≤ n− 1},

(e1,1, f3,1, e3,1), (f1,n, f3,n, e3,n−1)

Thus G is P4-decomposable and hence lcm(P4, C3 � Pn) = 6n− 3.
Case 3: m = 3k, k ≥ 2
Subcase 3.1: n = 3l, l ≥ 1
The graph G = C3k � P3l has 3k(3l − 1) + (3l)(3k) edges and hence |E(G)| ≡ 0 (mod 3).

The 3l − 1 edges of the i-th Pn-fiber of G, where 1 ≤ i ≤ m, together with the edge fi,n of
the n-th Cm-fiber makes a P3l+1, which is P4-decomposable. For 1 ≤ j ≤ n − 1, the j-th Cm-
fiber contains 3k edges and hence it is P4-decomposable. Thus G is P4-decomposable and hence
lcm(P4, C3k � P3l) = 3k(3l − 1) + (3l)(3k).

Subcase 3.2: n = 3l+ 1, l ≥ 1
In this case G = C3k � P3l+1 and |E(G)| = 3k(3l) + (3l + 1)(3k) ≡ 0 (mod 3). Here

each Cm-fiber has 3k edges and each Pn-fiber has 3l edges and hence every Cm-fiber and Pn-
fiber are P4-decomposable. Thus G is P4-decomposable and hence lcm(P4, C3k � P3l+1) =
3k(3l) + (3l+ 1)(3k).

Subcase 3.3: n = 3l+ 2, l ≥ 1
Here G = C3k � P3l+2 and it has 3k(3l+1)+(3l+2)(3k) edges which is a multiple of three.

The j-th Cm-fiber, where 1 ≤ j ≤ n − 2, has 3k edges and hence it is P4-decomposable. The
first 3l edges of the i-th Pn-fiber, where 1 ≤ i ≤ m makes a P3l+1, which is P4-decomposable.
Consider the edges of the (n−1)-th and n-th Cm-fibers and the edges {ei,n−1, 1 ≤ i ≤ m}. Then
{(fi,n−1, ei,n−1, fi,n), 1 ≤ i ≤ m} gives a copy of P4 for each i. Thus G is P4-decomposable
and hence lcm(P4, C3k � P3l+2) = 3k(3l+ 1) + (3l+ 2)(3k).

Case 4: m = 3k + 1, k ≥ 1
Subcase 4.1: n = 3l, l ≥ 1
The graph G = C3k+1 � P3l has (3k+1)(3l−1)+(3l)(3k+1) edges and hence |E(G)| ≡ 2

(mod 3). The first 3k edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 1, makes a P3k+1, which
is P4-decomposable. The 3l − 1 edges of the i-th Pn-fiber, where 2 ≤ i ≤ m − 1, together
with the edge fi−1,n of the n-th Cm-fiber makes a P3l+1, which is P4-decomposable. Now
{(e1,j , fm,j , em,j), 1 ≤ j ≤ n− 1} gives a copy of P4 for each j. The edges {fm−1,n, fm,n} are
left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

1,n with the vertex v2
1,n and the vertex v2

m−1,n
with the vertex v3

m−1,n. The left out edges {f t
m−1,n, f

t
m,n; t = 1, 2, 3} in the three copies of

G will make a P7 in H , which is P4-decomposable. Thus H is P4-decomposable and hence
lcm(P4, C3k+1 � P3l) = 3((3k + 1)(3l − 1) + (3l)(3k + 1)).

Subcase 4.2: n = 3l+ 1, l ≥ 1
In this case G = C3k+1 � P3l+1 which has (3k+ 1)(3l) + (3l+ 1)(3k+ 1) edges and hence

|E(G)| ≡ 1 (mod 3). The first 3k edges of the j-th Cm-fiber, where 1 ≤ j ≤ n, makes a P3k+1,
which is P4-decomposable. For 2 ≤ i ≤ m − 1, the i-th Pn-fiber, has 3l edges and hence it is
P4-decomposable. Now {(e1,j , fm,j , em,j), 1 ≤ j ≤ n − 1} gives a copy of P4 for each j. The
edge fm,n is left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

m,n with the vertex v2
1,n and the vertex v2

m,n

with the vertex v3
1,n. The left out edges {f t

m,n; t = 1, 2, 3} in the three copies of G will make a
P4 in H . Thus H is P4-decomposable and hence lcm(P4, C3k+1 � P3l+1) = 3((3k + 1)(3l) +
(3l+ 1)(3k + 1)).

Subcase 4.3: n = 3l+ 2, l ≥ 1
Here G = C3k+1 � P3l+2 and |E(G)| = (3k+1)(3l+1)+(3l+2)(3k+1), which is a multiple

of three. The first 3k edges of the j-th Cm-fiber, where 1 ≤ j ≤ n− 2, makes a P3k+1, which is
P4-decomposable. The first 3l edges of the i-th Pn-fiber, where 2 ≤ i ≤ m − 1 makes a P3l+1,
which is P4-decomposable. {(e1,j , fm,j , em,j), 1 ≤ j ≤ n − 1} gives a copy of P4 for each j.
Consider the edges of the (n−1)-th and n-th Cm-fibers and the edges {ei,n−1, 1 ≤ i ≤ m}. Then
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{(fi,n−1, ei,n−1, fi,n), 1 ≤ i ≤ m} gives a copy of P4 for each i. Thus G is P4-decomposable
and hence lcm(P4, C3k+1 � P3l+2) = (3k + 1)(3l+ 1) + (3l+ 2)(3k + 1).

Case 5: m = 3k + 2, k ≥ 1
Subcase 5.1: n = 3l, l ≥ 1
For the graph G = C3k+2 � P3l, |E(G)| = (3k + 2)(3l − 1) + (3l)(3k + 2) ≡ 1 (mod 3).

The 3k + 2 edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 1, together with the edge em,j of
the m-th Pn-fiber, makes 3k + 3 edges, which is P4-decomposable. The 3l − 1 edges of the i-th
Pn-fiber, where 1 ≤ i ≤ m− 1, together with the edge fi,n of the n-th Cm-fiber makes a P3l+1,
which is P4-decomposable. The edge fm,n is left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

m,n with the vertex v2
1,n and the vertex v2

m,n

with the vertex v3
1,n. The left out edges {f t

m,n; t = 1, 2, 3} in the three copies of G will make a
P4 in H . Thus H is P4-decomposable and hence lcm(P4, C3k+2 � P3l) = 3((3k + 2)(3l − 1) +
(3l)(3k + 2)).

Subcase 5.2: n = 3l+ 1, l ≥ 1
In this case G = C3k+2 � P3l+1 which has (3k+ 2)(3l) + (3l+ 1)(3k+ 2) edges and hence

|E(G)| ≡ 2 (mod 3). The 3k + 2 edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 1, together
with the edge em,j of the m-th Pn-fiber, makes 3k + 3 edges, which is P4-decomposable. For
1 ≤ i ≤ m−1, the i-th Pn-fiber, has 3l edges and hence it is P4-decomposable. The first 3k edges
of the n-th Cm-fiber makes a P3k+1, which is P4-decomposable. The edges {fm−1,n, fm,n} are
left out.

Take three copies of G namely G1, G2, G3 and each copy has the above decomposition. Let
H be the graph obtained by identifying the vertex v1

1,n with the vertex v2
1,n and the vertex v2

m−1,n
with the vertex v3

m−1,n. The left out edges {f t
m−1,n, f

t
m,n; t = 1, 2, 3} in the three copies of

G will make a P7 in H , which is P4-decomposable. Thus H is P4-decomposable and hence
lcm(P4, C3k+2 � P3l+1) = 3((3k + 2)(3l) + (3l+ 1)(3k + 2)).

Subcase 5.3: n = 3l+ 2, l ≥ 1
The graph G = C3k+1 � P3l+2 has (3k + 2)(3l + 1) + (3l + 2)(3k + 2) edges, which is a

multiple of three. The 3k + 2 edges of the j-th Cm-fiber, where 1 ≤ j ≤ n − 2, together with
the edge em,j of the m-th Pn-fiber, makes 3k + 3 edges, which is P4-decomposable. The first
3l edges of the i-th Pn-fiber, where 1 ≤ i ≤ m − 1 makes a P3l+1, which is P4-decomposable.
Consider the edges of the (n−1)-th and n-th Cm-fibers and the edges {ei,n−1, 1 ≤ i ≤ m}. Then
{(fi,n−1, ei,n−1, fi,n), 1 ≤ i ≤ m} gives a copy of P4 for each i. Thus G is P4-decomposable
and hence lcm(P4, C3k+2 � P3l+2) = (3k + 2)(3l+ 1) + (3l+ 2)(3k + 2).

Theorem 2.2. Cm � Pn is P4-decomposable if and only if m ≡ 0 (mod 3) or n ≡ 2 (mod 3).

2.2 lcm of P4 and Wm � Pn

Let Wm denote the wheel graph of order m, which contains a cycle Cm−1 and a vertex called
hub, which is adjacent to every vertex of Cm−1. |E(Wm)| = 2m − 2. Let a1, a2, . . . , am and
b1, b2, . . . , bn be the vertices of Wm and Pn respectively, where am is the hub vertex of Wm.
Wm × {bj}, 1 ≤ j ≤ n are the Wm-fibers and {ai} × Pn, 1 ≤ i ≤ m are the Pn-fibers in
Wm � Pn. Label the vertices and edges of the j-th Wm-fiber, Wm×{bj} as {v1,j , v2,j , . . . , vm,j},
{f1,j , f2,j , . . . , fm−1,j , g1,j , g2,j , . . . , gm−1,j} where {f1,j , f2,j , . . . , fm−1,j} are the edges of the
cycle in the j-th Wm-fiber and {g1,j , g2,j , . . . , gm−1,j} are the edges connecting the hub and the
vertices of the cycle in the j-th Wm-fiber. The vertices and edges of the i-th Pn-fiber, {ai} × Pn

are labelled as {vi,1, vi,2, . . . , vi,n} and {ei,1, ei,2, . . . , ei,n−1} respectively.
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Figure 2. Wm � Pn

Theorem 2.3. lcm(P4,Wm � Pn) =

{
3mn− 2n−m if 2m+ n ≡ 0 (mod 3)
3(3mn− 2n−m) otherwise

Proof. Let P
′

be the path v1,1f1,1v2,1f2,1 . . . fm−2,1vm−1,1gm−1,1vm,1, which is contained in
the first Wm-fiber, P

′′
: vm,1em,1vm,2em,2 . . . vm,n−1em,n−1vm,n, the m-th Pn-fiber and P

′′′
:

vm,ngm−1,nvm−1,nfm−2,n . . . v2,nf1,nv1,n, the path contained in the last Wm-fiber.
Let G = Wm � Pn. Then |E(G)| = m(n− 1) + n(2m− 2) = 3mn− 2n−m. Consider the

edges of G∗ = (Wm � Pn)\{P
′
, P

′′
, P

′′′}. Copies of P4 are obtained as follows :
For a fixed j, 1 ≤ j ≤ n− 2, {(gi,j , ei,j , fi,j+1), 1 ≤ i ≤ m− 2}, {(fm−1,j , em−1,j , gm−1,j+1)},

{(gi,n−1, ei,n−1, gi,n), 1 ≤ i ≤ m− 2}, (fm−1,n−1, em−1,n−1, fm−1,n).

Thus G∗ is P4-decomposable. The paths P
′
, P

′′
and P

′′′
makes the path P ∗ of length 2m+n−3

in Wm � Pn. Thus Wm � Pn is P4-decomposable if P ∗ is P4-decomposable and this happens if
2m+ n ≡ 0 (mod 3).

If 2m+ n ≡ 1 or 2 (mod 3), take three copies of G namely G1, G2, G3 and in each copy of
G, the subgraph G∗ has the above decomposition. Let H be the graph obtained by identifying the
vertex v1

1,1 with the vertex v2
1,n and the vertex v2

1,1 with the vertex v3
1,1. Then the path P ∗ in the

three copies of G will make a path of length 3(2m+n−3) in H , which is P4-decomposable and
so is H . Thus lcm(P4,Wm � Pn) = |E(Wm � Pn)| if 2m+n ≡ 0 (mod 3) and 3|E(Wm � Pn)|
otherwise.

Theorem 2.4. Wm � Pn is P4-decomposable if and only if 2m+ n ≡ 0 (mod 3).

2.3 lcm of P4 and Wm � Cn

Let a1, a2, . . . , am and b1, b2, . . . , bn be the vertices of Wm and Cn respectively, where am is the
hub vertex of Wm. Wm × {bj}, 1 ≤ j ≤ n are the Wm-fibers and {ai} × Cn, 1 ≤ i ≤ m are the
Cn-fibers in Wm � Cn. Label the vertices and edges of the j-th Wm-fiber, Wm × {bj} as in the
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above case of Wm � Pn. The vertices and edges of the i-th Cn-fiber, {ai} × Cn are labelled as
{vi,1, vi,2, . . . , vi,n}, {ei,1, ei,2, . . . , ei,n}.
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Figure 3. Wm � Cn

Theorem 2.5. lcm(P4,Wm � Cn) =

{
3mn− 2n if n ≡ 0 (mod 3)
3(3mn− 2n) otherwise

Proof. Let G = Wm � Cn. Then |E(G)| = mn + n(2m − 2) = 3mn − 2n. Copies of P4 are
obtained as follows :
For a fixed j, 2 ≤ j ≤ n− 2, {(gi,j , ei,j , fi,j+1), 1 ≤ i ≤ m− 2}, {(fm−1,j , em−1,j , gm−1,j+1)},

{(gi,1, ei,n, fi,n), (fi,1, ei,1, fi,2), (gi,n−1, ei,n−1, gi,n); 1 ≤ i ≤ m− 2},

(fm−1,1, em−1,1, gm−1,2), (fm−1,n−1, em−1,n−1, fm−1,n), (em−1,n, gm−1,1, em,n)

The path P ∗ of length n consisting of the edges {em,1, em,2, . . . , em,n−1, gm−1,n} is left out. Thus
Wm � Cn is P4-decomposable if P ∗ is P4-decomposable and this happens if n ≡ 0 (mod 3).

If n ≡ 1 or 2 (mod 3), take three copies of G namely G1, G2, G3 having the above decom-
position. Let H be the graph obtained by identifying the vertex v1

m,1 with the vertex v2
m,1 and

the vertex v2
m−1,n with the vertex v3

m−1,n. Then the path P ∗ in the three copies of G will make
a path of length 3n in H , which is P4-decomposable and so is H . Thus lcm(P4,Wm � Cn) =
|E(Wm � Cn)| if n ≡ 0 (mod 3) and 3|E(Wm � Cn)| otherwise.

Theorem 2.6. Wm � Cn is P4-decomposable if and only if n ≡ 0 (mod 3).
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