$K_n(\lambda)$ IS FULLY { P_4, C_6 }-DECOMPOSABLE

R. Chinnavedi and R. Sangeetha

Communicated by A. Muthusamy

MSC 2010 Classifications: 05C38, 05C70.

Keywords and phrases: Decomposition, Complete multigraph, Path, Cycle.

Abstract Let P_{k+1} denote a path of length k, C_{ℓ} denote a cycle of length ℓ , and $K_n(\lambda)$ denote the complete multigraph on n vertices in which every pair of distinct vertices is joined by λ edges. In this paper, we proved that the necessary conditions are also sufficient for a $\{P_4, C_6\}$ -decomposition of $K_n(\lambda)$.

1 Introduction

All graphs considered here are finite and undirected with no loops. For the standard graphtheoretic terminology the reader is referred to [2]. A simple graph in which every pair of distinct vertices is joined by an edge is called a *complete graph*, denoted by K_n . If more than one edge joining two vertices are allowed, the resulting object is called a *multigraph*. Let $K_n(\lambda)$ denote the *complete multigraph* on *n* vertices in which every pair of distinct vertices is joined by λ edges. A *complete bipartite graph* is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = a and |Y| = b, such a graph is denoted by $K_{a,b}$. In $K_{a,b}(\lambda)$, we label the vertices in the partite set X as $\{x_1, x_2, \ldots, x_a\}$ and Y as $\{x_{a+1}, x_{a+2}, \ldots, x_{a+b}\}$. A cycle is a closed trail with no repeated vertex other than the first and last vertex. A cycle with ℓ edges is denoted by C_{ℓ} . A *path* is an open trail with no repeated vertex. A path with k edges is denoted by P_{k+1} . The complete bipartite graph $K_{1,m}$ is called a *star* and is denoted by S_m . For $m \geq 3$, the vertex of degree m in S_m is called the *center* and any vertex of degree 1 in S_m is called an *end vertex*.

Let G be a graph and let G_1 be a subgraph of G. Then $G \setminus G_1$ is obtained from G by deleting the edges of G_1 . Let G_1 and G_2 be subgraphs of G. The union $G_1 \cup G_2$ of G_1 and G_2 is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. We say that G_1 and G_2 are edge-disjoint if they have no edge in common. If G_1 and G_2 are edge-disjoint, we denote their union by $G_1 + G_2$. A decomposition of a graph G is a collection of edge-disjoint subgraphs G_1, G_2, \ldots, G_n of G such that every edge of G is in exactly one G_i . Here it is said that G is decomposed or decomposable into G_1, G_2, \ldots, G_n . If G has a decomposition into p_1 copies of G_1, \ldots, p_n copies of G_n , then we say that G has a $\{p_1G_1, \ldots, p_nG_n\}$ -decomposition. If such a decomposition exists for all values of p_1, \ldots, p_n satisfying necessary conditions, then we say that G has a $\{G_1, \ldots, G_n\}_{\{p_1, \ldots, p_n\}}$ -decomposition or G is fully $\{G_1, \ldots, G_n\}$ -decomposable.

In [8], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of $\{pG_1, qG_2\}$ -decomposition of $K_n(\lambda)$, when $(G_1, G_2) \in \{(P_n, S_{n-1}), (C_n, S_{n-1}), (P_n, C_n)\}$. In [10], Shyu gave the necessary conditions for a $\{pP_{k+1}, qC_\ell\}$ -decomposition of K_n and proved that K_n is fully $\{P_{k+1}, C_k\}$ -decomposable, when k is even, n is odd, $n \geq 5k + 1$ and settled the case k = 4 completely. In [11], Shyu proved that K_n is fully $\{P_4, C_3\}$ -decomposable. In [7], Jeevadoss and Muthusamy proved that K_n is fully $\{P_{k+1}, C_k\}$ -decomposable, when k is even and n is odd with n > 4k. In [6], Ilayaraja and Muthusamy proved that K_n is fully $\{P_4, C_4\}$ -decomposable. In [9], Sarvate and Zhang obtained necessary and sufficient conditions for the existence of a $\{pP_3, qC_3\}$ -decomposition of $K_n(\lambda)$, when p = q. In [12], Shyu gave the necessary conditions for a $\{pC_k, qP_{k+1}, rS_k\}$ -decomposition of K_n and proved that K_n is fully $\{C_4, P_5, S_4\}$ -decomposable, when n is odd. In [3], the authors gave the necessary conditions for a $\{pP_{k+1}, qC_\ell\}$ -decomposition of $K_n(\lambda)$ and proved that $K_n(\lambda)$ is fully $\{P_5, C_6\}$ -decomposable. In this paper we prove that $K_n(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

2 Preliminaries

For convenience we denote $V(K_n(\lambda)) = \{x_1, x_2, \dots, x_n\}$. The notation $(x_1x_2 \cdots x_\ell)$ denotes a cycle with vertices x_1, x_2, \dots, x_ℓ and edges $x_1x_2, x_2x_3, \dots, x_{\ell-1}x_\ell, x_\ell x_1$, and $[x_1x_2 \cdots x_{k+1}]$ is a path with vertices x_1, x_2, \dots, x_{k+1} and edges $x_1x_2, x_2x_3, \dots, x_kx_{k+1}$.

We recall here some results on P_{k+1} and C_{ℓ} -decompositions that are useful for our proofs.

Theorem 2.1. (Bryantet al.[1]) Let λ , n and ℓ be integers with $n, \ell \geq 3$ and $\lambda \geq 1$. There exists a decomposition of $K_n(\lambda)$ into C_ℓ if and only if $\ell \leq n$, $\lambda(n-1)$ is even and ℓ divides $\lambda\binom{n}{2}$. There exists a decomposition of $K_n(\lambda)$ into C_ℓ and a perfect matching if and only if $\ell \leq n$, $\lambda(n-1)$ is odd and ℓ divides $\lambda\binom{n}{2} - \frac{n}{2}$.

Theorem 2.2. (Tarsi [13]) A necessary and sufficient conditions for the existence of a P_{k+1} -decomposition of $K_n(\lambda)$ is $\lambda\binom{n}{2} \equiv 0 \pmod{k}$ and $n \geq k+1$.

Theorem 2.3. (Hung-Chih Lee[5]) For positive integers λ , a, b and ℓ with $\lambda a \equiv \lambda b \equiv \ell \equiv 0 \pmod{2}$ and $\min\{a,b\} \geq \frac{\ell}{2} \geq 2$, the multigraph $K_{a,b}(\lambda)$ is C_{ℓ} -decomposable if one of the following conditions holds: (i) λ is odd and ℓ divides ab, (ii) λ is even and ℓ divides 2ab (iii) λ is even and λa or λb is divisible by ℓ .

Theorem 2.4. (**Truszczynski**[14]) Let k be a positive integer and let a and b be positive even integers such that $a \ge b$. $K_{a,b}(\lambda)$ has a P_{k+1} -decomposition if and only if $a \ge \lceil \frac{k+1}{2} \rceil$, $b \ge \lceil \frac{k}{2} \rceil$ and $\lambda ab \equiv 0 \pmod{k}$.

In [3], the authors discussed the necessary conditions for a $\{pP_{k+1}, qC_{\ell}\}$ -decomposition of $K_n(\lambda)$ when $\lambda \ge 1$, which is as follows:

Theorem 2.5. (Chinnavediet al. [3]) Let λ , n, k and ℓ be positive integers such that $n \ge \max\{\ell, k+1\}$. If $K_n(\lambda)$ can be decomposed into p copies of P_{k+1} and q copies of C_ℓ for nonnegative integers p and q, then (i) $pk + q\ell = \lambda\binom{n}{2}$ (ii) $p \ne 1$ if n is odd or n and λ are both even and (iii) $p \ge \frac{n}{2}$ if λ is odd and n is even.

We prove that the above necessary conditions are sufficient for k = 3 and $\ell = 6$ in Theorem 3.5.

3 Main Result

In this section, we discuss a $\{P_4, C_6\}_{\{p,q\}}$ -decomposition of $K_n(\lambda)$, when $\lambda \ge 1$. By Theorem 2.5, it is enough to consider the $\{pP_4, qC_6\}$ -decomposition of $K_n(\lambda)$, for $n \ge 6$.

Remark 3.1. Necessary conditions for the existence of a $\{P_4, C_6\}_{\{p,q\}}$ -decomposition in $K_n(\lambda)$ are satisfied when $n \equiv 0, 1, 3, 4 \pmod{6}$ if $\lambda \ge 1$ and $n \equiv 2, 5 \pmod{6}$ if $\lambda \equiv 0, 3 \pmod{6}$, (or $\lambda \equiv 0 \pmod{3}$). i.e., there does not exist nonnegative integers p and q satisfying $3p + 6q = \lambda \binom{n}{2}$ when $n \equiv 2, 5 \pmod{6}$ if $\lambda \equiv 1, 2, 4, 5 \pmod{6}$.

Remark 3.2. If G is C_{ℓ} -decomposable and $\ell \equiv 0 \pmod{k}$, then G is fully $\{P_{k+1}, C_{\ell}\}$ - decomposable as each C_{ℓ} can be decomposed into $\frac{\ell}{k}$ copies of P_{k+1} .

The proof of the following two lemmas are immediate from Theorem 2.3 and Remark 3.2.

Lemma 3.3. If p and q are nonnegative integers such that 3p + 6q = 24, then $K_{6,4}$ is fully $\{P_4, C_6\}$ -decomposable.

Lemma 3.4. If p and q are nonnegative integers such that 3p + 6q = 36, then $K_{6,6}$ is fully $\{P_4, C_6\}$ -decomposable.

We now prove our main result.

Theorem 3.5. For any nonnegative integers p and q and any integer $n \ge 6$, there exists a $\{P_4, C_6\}_{\{p,q\}}$ -decomposition of $K_n(\lambda)$ if and only if (i) $3p + 6q = \lambda\binom{n}{2}$, (ii) $p \ge \frac{n}{2}$, if λ is odd and n is even (iii) $p \ne 1$ if otherwise.

Proof. The necessary part follows from Theorem 2.5. By Theorem 2.1 and Remark 3.2, $K_n(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable if $\lambda \binom{n}{2} \equiv 0 \pmod{6}$, n is odd or n and λ are both even. First we prove the result for $6 \le n \le 17$ with λ is odd; then we use induction to settle the remaining cases. As we discuss $\{pP_4, qC_6\}$ -decompositions of $K_n(\lambda)$ for all possible choices of p and q, we have the following cases:

Case 1: *n* = 6.

If $\lambda = 1$, then $(p,q) \in \{(3,1), (5,0)\}$. The graph K_6 can be decomposed into $3P_4 : [x_2x_5x_1x_3], [x_1x_4x_2x_6], [x_4x_6x_3x_5]$ and a $C_6 : (x_1x_2x_3x_4x_5x_6)$. By Theorem 2.2, K_6 is $\{5P_4, 0C_6\}$ -decomposable.

If $\lambda \ge 3$, then we write $K_6(\lambda) = K_6(\lambda - 1) + K_6 = \frac{\lambda - 1}{2}K_6(2) + K_6$. By Theorem 2.1 and Remark 3.2, the graph $K_6(2)$ is $\{P_4, C_6\}_{\{p,q\}}$ -decomposable. Therefore $K_6(\lambda)$ is fully $\{P_4, C_6\}_{decomposable}$.

Case 2: n = 7.

If $\lambda = 1$, then $(p,q) \in \{(3,2), (5,1), (7,0)\}$. The graph K_7 can be decomposed into $3P_4 : [x_3x_7x_4x_6], [x_3x_1x_7x_2], [x_2x_5x_7x_6]$ and $2C_6 : (x_1x_2x_3x_4x_5x_6), (x_1x_4x_2x_6x_3x_5)$. For $(p,q) \in \{(5,1), (7,0)\}$, a $\{pP_4, qC_6\}$ -decomposition of K_7 follows easily from a $\{3P_4, 2C_6\}$ -decomposition of K_7 as C_6 can be decomposed into 2 copies of P_4 . By Theorem 2.1 and Remark 3.2, the graph $K_7(2)$ is fully $\{P_4, C_6\}$ -decomposable.

If $\lambda \ge 3$, then we write $K_7(\lambda) = K_7(\lambda - 1) + K_7 = \frac{\lambda - 1}{2}K_7(2) + K_7$. Therefore $K_7(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

Case 3: n = 8.

If $\lambda = 3$, then $(p,q) \in \{(4,12), (6,11), (8,10), \dots, (28,0)\}$ (we see that the values of p increases by 2 and the values of q decreases by 1). The graph $K_8(3)$ can be decomposed into $4P_4$: $[x_2x_3x_5x_6], [x_7x_3x_8x_4], [x_8x_4x_2x_3], [x_5x_6x_7x_1]$ and $12C_6$: $(x_7x_1x_3x_2x_8x_5), (x_7x_1x_5x_6x_8x_4), 2$ copies of $(x_8x_2x_4x_7x_3x_5), (x_8x_3x_1x_5x_7x_6), 3$ copies of $(x_1x_8x_7x_2x_6x_4), (x_1x_2x_5x_4x_3x_6)$. For $(p,q) \in \{(6,11), (8,10), (10,9), \dots, (28,0)\}$, a $\{pP_4, qC_6\}$ -decomposition of $K_8(3)$ follows easily from a $\{4P_4, 12C_6\}$ -decomposition of $K_8(3)$ as C_6 can be decomposed into 2 copies of P_4 . By Theorem 2.1 and Remark 3.2, the graph $K_8(6)$ is fully $\{P_4, C_6\}$ -decomposable. If $\lambda \ge 9$, then we write $K_8(\lambda) = K_8(\lambda - 3) + K_8(3) = \frac{\lambda - 3}{6}K_8(6) + K_8(3)$. Therefore $K_8(\lambda)$

If $\lambda \ge 9$, then we write $K_8(\lambda) = K_8(\lambda-3) + K_8(3) = \frac{\lambda-3}{6}K_8(6) + K_8(3)$. Therefore $K_8(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

Case 4: n = 9.

By Theorem 2.1 and Remark 3.2, the graph $K_9(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable. **Case 5:** n = 10.

If $\lambda = 1$, then $(p,q) \in \{(5,5), (7,4), (9,3), \dots, (15,0)\}$. We write $K_{10} = (K_{10} \setminus K_6) + K_6$. The graph $K_{10} \setminus K_6$ can be decomposed into $2P_4 : [x_{10}x_7x_8x_9]$, $[x_8x_6x_9x_7]$ and $4C_6 : (x_{10}x_1x_9x_2x_8x_3), (x_{10}x_2x_7x_1x_8x_4), (x_{10}x_5x_9x_3x_7x_6), (x_{10}x_9x_4x_7x_5x_8)$. By combining these copies of P_4 and C_6 along with the copies of P_4 and C_6 in K_6 , we get the decompositions $(p,q) \in \{(5,5), (7,4)\}$. For $(p,q) \in \{(9,3), (11,2), (13,1), (15,0)\}$, a $\{pP_4, qC_6\}$ -decomposition of K_{10} follows easily from a $\{7P_4, 4C_6\}$ -decomposition of K_{10} as C_6 can be decomposed into 2 copies of P_4 . By Theorem 2.1 and Remark 3.2, the graph $K_{10}(2)$ is fully $\{P_4, C_6\}$ -decomposable.

If $\lambda \ge 3$, then we write $K_{10}(\lambda) = K_{10}(\lambda - 1) + K_{10} = \frac{\lambda - 1}{2}K_{10}(2) + K_{10}$. Therefore $K_{10}(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

Case 6: n = 11.

If $\lambda = 3$, then $(p,q) \in \{(3,26), (5,25), (7,24), \dots, (55,0)\}$. We write $K_{11}(3) = (K_{11}(3) \setminus K_7(3)) + K_7(3)$. The graph $K_{11}(3) \setminus K_7(3)$ can be decomposed into $17C_6$: $(x_8x_9x_5x_{10}x_{11}x_2), (x_8x_{10}x_4x_{11}x_9x_7), (x_{11}x_9x_4x_8x_{10}x_1), (x_3x_9x_1x_8x_{10}x_{11}), (x_8x_9x_{11}x_6x_{10}x_3), (x_8x_5x_{11}x_{10}x_2x_9), 3$ copies $(x_{11}x_8x_6x_9x_{10}x_7), 2$ copies of $(x_{11}x_1x_{10}x_2x_9x_3), (x_8x_4x_{10}x_5x_9x_7), (x_{11}x_2x_8x_1x_9x_4), (x_{10}x_3x_8x_5x_{11}x_6)$. By combining these copies of P_4 and C_6 along with the copies of P_4 and C_6 in $K_7(3)$, we get the decompositions $(p,q) \in \{(3,26), (5,25), (7,24), (9,23), (11,22), (13,21), (15,20), (17,19), (19,18), (21,17)\}$. For $(p,q) \in \{(23,16), (25,15), (27,14), \dots, (55,0)\}$, a $\{pP_4, qC_6\}$ -decomposition of $K_{11}(3)$ follows easily from a $\{21P_4, 17C_6\}$ -decomposition of $K_{11}(6)$ is fully $\{P_4, C_6\}$ -decomposable.

If $\lambda \ge 9$, then we write $K_{11}(\lambda) = K_{11}(\lambda - 3) + K_{11}(3) = \frac{\lambda - 3}{6}K_{11}(6) + K_{11}(3)$. Therefore $K_{11}(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

Case 7: *n* = 12.

By taking $K_{12}(\lambda) = 2K_6(\lambda) + \lambda K_{6,6}$, we get all the possible decompositions.

By Theorem 2.1 and Remark 3.2, the graph $K_{13}(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable. **Case 9:** n = 14.

By taking $K_{14}(\lambda) = K_8(\lambda) + K_6(\lambda) + 2\lambda K_{4,6}$, we get all the possible decompositions. **Case 10:** n = 15.

By taking $K_{15}(\lambda) = K_9(\lambda) + K_7(\lambda) + 2\lambda K_{4,6}$, we get all the possible decompositions. **Case 11:** n = 16.

By taking $K_{16}(\lambda) = K_{10}(\lambda) + K_6(\lambda) + \lambda K_{4,6} + \lambda K_{6,6}$, we get all the possible decompositions. **Case 12:** n = 17.

By Theorem 2.1 and Remark 3.2, the graph $K_{17}(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

Now we prove the result for n > 17. We apply by mathematical induction on n and split the proof into six cases as follows.

 $n \equiv 0 \pmod{6}. \text{ Let } n = 6r, \text{ with } r \geq 3. \text{ Assume that } K_{6t}(\lambda) \text{ is fully } \{P_4, C_6\}\text{-decomposable if } 1 \leq t < r. \text{ Write } K_{6r}(\lambda) = K_{6(r-2)}(\lambda) + K_{12}(\lambda) + K_{6(r-2),12}(\lambda) = K_{6(r-2)}(\lambda) + K_{12}(\lambda) + (r-2)K_{6,12}(\lambda) = K_{6(r-2)}(\lambda) + K_{12}(\lambda) + (3r-6)\lambda K_{6,4}. \text{ Suppose the nonnegative integers } p \text{ and } q \text{ satisfy the obvious necessary conditions for a } \{pP_4, qC_6\}\text{-decomposition in } K_{6r}(\lambda).$ Then we have $3p + 6q = \frac{\lambda(6r) \times (6r-1)}{2} = \frac{\lambda}{2}(36r^2 - 6r) = \lambda(18r^2 - 3r) = 18\lambda r^2 - 3\lambda r = 18\lambda r^2 - 3\lambda r + 144\lambda - 144\lambda = 18\lambda r^2 - 75\lambda r + 78\lambda + 66\lambda + 72\lambda r - 144\lambda = \lambda(18r^2 - 75r + 78) + 66\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(36r^2 - 150r + 156) + 66\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(36r^2 - 78r - 72r + 156) + 66\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(6r - 12) \times (6r - 13) + 66\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(6(r-2) \times 6(r-2) - 1) + 66\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(6(r-2) \times 6(r-2) - 1) + 66\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(6(r-2) \times 6(r-2) - 1) + \frac{132\lambda}{2} + 4 \times 6\lambda(3r - 6) = \frac{\lambda}{2}(6(r-2) \times 6(r-2) - 1) + \frac{\lambda}{2}(132) + (3r - 6)\lambda 4 \times 6 = \frac{\lambda}{2}(6(r-2) \times 6(r-2) - 1) + \frac{\lambda}{2}(12 \times 11) + (3r - 6)24\lambda = (3p_1 + 6q_1) + (3p_2 + 6q_2) + (3p_3 + 6q_3). \text{ By the induction hypothesis and Case 7, the graphs } K_{6(r-2)}(\lambda) \text{ and } K_{12}(\lambda) \text{ are fully } \{P_4, C_6\}\text{-decomposable. By Lemma 3.3 and Remark 3.2, the graph } K_{6,4}(\lambda) \text{ is fully } \{P_4, C_6\}\text{-decomposable and hence } K_{6r}(\lambda) \text{ is fully } \{P_4, C_6\}\text{-decomposable and hence } K_{6r}(\lambda) \text{ is fully } \{P_4, C_6\}\text{-decomposable.}$

 $n \equiv 1 \pmod{6}. \text{ Let } n = 6r + 1, \text{ with } r \geq 3. \text{ Assume that } K_{6t+1}(\lambda) \text{ is fully } \{P_4, C_6\}-\text{decomposable if } 1 \leq t < r. \text{ Write } K_{6r+1}(\lambda) = K_{6(r-2)+1}(\lambda) + K_{13}(\lambda) + K_{6(r-2),12}(\lambda) = K_{6(r-2)+1}(\lambda) + K_{13}(\lambda) + (3r - 6)\lambda K_{6,4}. \text{ Suppose the nonnegative integers } p \text{ and } q \text{ satisfy the obvious necessary conditions for a } \{pP_4, qC_6\}-\text{decomposition in } K_{6r+1}(\lambda). \text{ Then we have } 3p + 6q = \frac{\lambda(6r+1)\times(6r)}{2} = \frac{\lambda}{2}(36r^2 + 6r) = \lambda(18r^2 + 3r) = 18\lambda r^2 + 3\lambda r = 18\lambda r^2 + 3\lambda r + 144\lambda - 144\lambda = 18\lambda r^2 - 69\lambda r + 66\lambda + 78\lambda + 72\lambda r - 144\lambda = \lambda(18r^2 - 69r + 66) + 78\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(36r^2 - 138r + 132) + 78\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(36r^2 - 72r - 66r + 132) + 78\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(6r - 11) \times (6r - 12) + 78\lambda + 72\lambda r - 144\lambda = \frac{\lambda}{2}(6(r - 2) + 1 \times 6(r - 2)) + 78\lambda + 24\lambda r - 144\lambda = \frac{\lambda}{2}(6(r - 2) + 1 \times 6(r - 2)) + 1 \times 6(r - 2) + 1 - 1) + \frac{156\lambda}{2} + 4 \times 6\lambda(3r - 6) = \frac{\lambda}{2}(6(r - 2) + 1 \times 6(r - 2) + 1 - 1) + \frac{\lambda}{2}(13 \times 12) + (3r - 6)24\lambda = (3p_1 + 6q_1) + (3p_2 + 6q_2) + (3p_3 + 6q_3). \text{ By the induction hypothesis and Case 8, the graphs } K_{6(r-2)+1}(\lambda) \text{ and } K_{13}(\lambda) \text{ are fully } \{P_4, C_6\}-\text{decomposable. By Lemma 3.3 and Remark 3.2, the graph <math>K_{6,4}(\lambda)$ is fully $\{P_4, C_6\}-\text{decomposable.}$

The formula formula to the formula fo

 $n \equiv 3 \pmod{6}. \text{ Let } n = 6r + 3, \text{ with } r \geq 3. \text{ Assume that } K_{6t+3}(\lambda) \text{ is fully } \{P_4, C_6\}-\text{decomposable if } 1 \leq t < r. \text{ Write } K_{6r+3}(\lambda) = K_{6(r-1)+1}(\lambda) + K_9(\lambda) + K_{6(r-1),8}(\lambda) = K_{6(r-1)+1}(\lambda) + K_9(\lambda) + K_{6(r-1),8}(\lambda) = K_{6(r-1)+1}(\lambda) + K_9(\lambda) + 2(r-1)\lambda K_{6,4}. \text{ Suppose the nonnegative integers } p \text{ and } q \text{ satisfy the obvious necessary conditions for a } \{pP_4, qC_6\}-\text{decomposition in } K_{6r+3}(\lambda). \text{ Then we have } 3p + 6q = \frac{\lambda(6r+3)\times(6r+2)}{2} = \frac{\lambda}{2}(36r^2 + 30r + 6) = \lambda(18r^2 + 15r + 3) = 18\lambda r^2 + 15\lambda r + 3\lambda = 18\lambda r^2 + 15\lambda r + 51\lambda - 48\lambda = 18\lambda r^2 - 33\lambda r + 15\lambda + 36\lambda + 48\lambda r - 48\lambda = \frac{\lambda}{2}(36r^2 - 36r - 30r + 30) + 36\lambda + 48\lambda r - 48\lambda = \frac{\lambda}{2}(36r^2 - 66r + 30) + 36\lambda + 48\lambda r - 48\lambda = \frac{\lambda}{2}(6r - 6 + 1) \times (6r - 6) + 36\lambda + 48\lambda r - 48\lambda = \frac{\lambda}{2}(6(r - 1) + 1 \times 6(r - 1) + 1 - 1) + \frac{\lambda}{2}(72) + (2r - 2)\lambda 4 \times 6 = \frac{\lambda}{2}(6(r - 1) + 1 \times 6(r - 1) + 1 - 1) + \frac{\lambda}{2}(72) + (2r - 2)\lambda 4 \times 6 = \frac{\lambda}{2}(6(r - 1) + 1 \times 6(r - 1) + 1 - 1) + \frac{\lambda}{2}(9 \times 8) + (2r - 2)24\lambda = (3p_1 + 6q_1) + (3p_2 + 6q_2) + (3p_3 + 6q_3). \text{ By the induction hypothesis and Case 4, the graphs } K_{6(r-1)+1}(\lambda) \text{ and } K_9(\lambda) \text{ are fully } \{P_4, C_6\}-\text{decomposable. By Lemma 3.3 and Remark 3.2, the graph } K_{6,4}(\lambda) \text{ is fully } \{P_4, C_6\}-\text{decomposable and hence } K_{6r+3}(\lambda) \text{ is fully } \{P_4, C_6\}-\text{decomposable.}$

 $n \equiv 4 \pmod{6}. \text{ Let } n = 6r + 4, \text{ with } r \geq 3. \text{ Assume that } K_{6t+4}(\lambda) \text{ is fully } \{P_4, C_6\}-\text{decomposable if } 1 \leq t < r. \text{ Write } K_{6r+4}(\lambda) = K_{2(3r-1)}(\lambda) + K_6(\lambda) + K_{4,6}(\lambda) + K_{6(r-1),6}(\lambda) = K_{2(3r-1)}(\lambda) + K_6(\lambda) + \lambda K_{4,6} + (r-1)\lambda K_{6,6}. \text{ Suppose the nonnegative integers } p \text{ and } q \text{ satisfy the obvious necessary conditions for a } \{pP_4, qC_6\}-\text{decomposition in } K_{6r+4}(\lambda). \text{ Then we have } 3p + 6q = \frac{\lambda(6r+4)\times(6r+3)}{2} = \frac{\lambda}{2}(36r^2 + 42r + 12) = \lambda(18r^2 + 21r + 6) = 18\lambda r^2 + 21\lambda r + 6\lambda = 18\lambda r^2 + 21\lambda r + 42\lambda - 36\lambda = 18\lambda r^2 - 15\lambda r + 3\lambda + 15\lambda + 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 15r + 3) + 15\lambda + 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(36r^2 - 18r - 12r + 6) + 15\lambda + 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(36r^2 - 30r + 6) + 15\lambda + 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(36r^2 - 18r - 12r + 6) + 15\lambda + 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 2) \times (6r - 3) + 15\lambda + 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(2(3r - 1) \times 2(3r - 1) - 1) + 15\lambda + 24\lambda + 36\lambda(r - 1) = \frac{\lambda}{2}(2(3r - 1) \times 2(3r - 1) - 1) + \frac{\lambda}{2}(30) + 24\lambda + (r - 1)\lambda 6 \times 6 = \frac{\lambda}{2}(2(3r - 1) \times 2(3r - 1) - 1) + \frac{\lambda}{2}(6 \times 5) + 24\lambda + (r - 1)36\lambda = (3p_1 + 6q_1) + (3p_2 + 6q_2) + (3p_3 + 6q_3) + (3p_4 + 6q_4). \text{By the induction hypothesis and Case 1, the graphs <math>K_{2(3r-1)}(\lambda)$ and $K_6(\lambda)$ are fully $\{P_4, C_6\}$ -decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs $K_{6,4}(\lambda)$ and $K_{6,6}(\lambda)$ are fully $\{P_4, C_6\}$ -decomposable.

 $n \equiv 5 \pmod{6}$. Let n = 6r + 5, with $r \geq 3$. Assume that $K_{6t+5}(\lambda)$ is fully $\{P_4, C_6\}$ decomposable if $1 \le t < r$. Write $K_{6r+5}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + K_{6(r-1),10}(\lambda) =$ $K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + (r-1)\lambda K_{6,4} + (r-1)K_{6,10}(\lambda) = K_{6(r-1)+1}(\lambda) + K_{11}(\lambda) + K_{$ $1\lambda K_{6.6}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\{pP_4, qC_6\}$ -decomposition in $K_{6r+5}(\lambda)$. Then we have $3p + 6q = \frac{\lambda(6r+5)\times(6r+4)}{2} = \frac{\lambda}{2}(36r^2 + 16r^2)$ $54r + 20) = \lambda(18r^2 + 27r + 10) = 18\lambda r^2 + 27\lambda r + 10\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 60\lambda r - 33\lambda r + 70\lambda - 60\lambda = 18\lambda r^2 + 70\lambda r - 70\lambda - 70\lambda = 18\lambda r^2 + 70\lambda r - 70\lambda r - 70\lambda - 70\lambda = 18\lambda r^2 + 70\lambda r - 70\lambda r - 70\lambda - 70\lambda = 18\lambda r^2 + 70\lambda r - 70\lambda r - 70\lambda - 70\lambda = 18\lambda r^2 + 70\lambda r - 70\lambda - 70\lambda$ $18\lambda r^2 - 33\lambda r + 15\lambda + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda r - 36\lambda = \lambda(18r^2 - 33r + 15) + 55\lambda + 24\lambda r - 36\lambda r$ $36\lambda r - 36\lambda = \frac{\lambda}{2}(36r^2 - 66r + 30) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(36r^2 - 36r - 30r + 36\lambda r - 36\lambda r + 36\lambda r - 36\lambda r + 36\lambda r + 36\lambda r - 36\lambda r + 36\lambda r + 36\lambda r - 36\lambda r + 36$ $30) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda r = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + 55\lambda r = \frac{\lambda}{2}(6r - 5) \times (6r - 6) + \frac{\lambda}{2}(6r - 5) \times (6r - 5)$ $\frac{\lambda}{2}(6r-6+1) \times (6r-6) + 55\lambda + 24\lambda r - 24\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda = \frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)) + 55\lambda + 36\lambda r - 36\lambda + 36\lambda + 36\lambda r - 36\lambda + 36\lambda r - 36\lambda + 36\lambda r - 36\lambda + 36\lambda$ $\bar{2}4\lambda(r-1) + 36\lambda(r-1) = \frac{\lambda}{2}(6(r-1)+1\times6(r-1)+1-1) + \frac{110\lambda}{2} + 4\times6\lambda(r-1) + 6\times6\lambda(r-1) = \frac{110\lambda}{2} + 4\times6\lambda(r-1) = \frac{110\lambda}{2} + \frac{1$ $\frac{\lambda}{2}(6(r-1)+1\times6(r-1)+1-1)+\frac{\lambda}{2}(110)+(r-1)\lambda4\times6+(r-1)\lambda6\times6=\frac{\lambda}{2}(6(r-1)+1\times6(r$ $\overline{1-1}$ + $\frac{\lambda}{2}(11\times10) + (r-1)24\lambda + (r-1)36\lambda = (3p_1+6q_1) + (3p_2+6q_2) + (3p_3+6q_3) + (3p_4+6q_4).$ By the induction hypothesis and Case 6, the graphs $K_{6(r-1)+1}(\lambda)$ and $K_{11}(\lambda)$ are fully $\{P_4, C_6\}$ decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs $K_{6,4}(\lambda)$ and $K_{6,6}(\lambda)$ are fully $\{P_4, C_6\}$ -decomposable and hence $K_{6r+5}(\lambda)$ is fully $\{P_4, C_6\}$ -decomposable.

Acknowledgments

The second author thanks the University Grants Commission, New Delhi for its financial support (NO. F. MRP-6292/15(SERO/UGC)). Further authors thank the anonymous referee for the helpful remarks and suggestions.

References

 D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Cycle decompositions of complete multigraphs, J. Combin. Des. 19, 42–69 (2011).

- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).
- [3] R. Chinnavedi and R. Sangeetha, $K_n(\lambda)$ is fully $\{P_5, C_6\}$ -Decomposable, *Contrib. Discrete Math.* 17 (1), 1–12 (2022).
- [4] R. Chinnavedi and R. Sangeetha, $K_n(\lambda)$ is fully $\{P_4, C_4\}$ -Decomposable, *Indian J. Discrete Math.* 6 (2), 129–139 (2020).
- [5] Hung-Chih Lee, Decomposition of the complete bipartite multigraph into cycles and stars, *Discrete Math.* 338, 1362–1369 (2015).
- [6] M. Ilayaraja and A. Muthusamy, $\{pP_4, qC_4\}$ -Decomposition of complete graphs, *Indian J. Discrete Math.* **4** (2), 13–33 (2018).
- [7] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, *Discrete Math.* **331**, 98–108 (2014).
- [8] H. M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multifactorization of λK_m , J. Combin. Math. Combin. Comput. 69, 145–150 (2009).
- [9] D. G. Sarvate and L. Zhang, Decomposition of a λK_v into equal number of K_3^s and P_3^s , Bull. Inst. Combin. Appl. 67, 43–48 (2013).
- [10] T. W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97, 257–270 (2010).
- [11] T. W. Shyu, Decomposition of complete graphs into paths of length three and triangles, *Ars Combin.* **107**, 209–224 (2012).
- [12] T. W. Shyu, Decompositions of complete bipartite graphs and complete graphs into paths, stars and cycles with four edges each, *Discuss. Math. Graph Theory* 41, 451–468 (2021).
- [13] M. Tarsi, Decomposition of complete multigraph into simple paths: Nonbalanced handcuffed designs, J. Combin. Theory Ser A 34, 60–70 (1983).
- [14] M. Truszczynski, Note on the decomposition of $\lambda K_{m,n}(\lambda K_{m,n}^*)$ into paths, *Discrete Math.* 55, 89–96 (1985).

Author information

R. Chinnavedi and R. Sangeetha, Department of Mathematics, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu, India-613 503. E-mail: chinnavedi571991@gmail.com, jaisangmaths@yahoo.com