$K_{n}(\lambda)$ IS FULLY $\left\{P_{4}, C_{6}\right\}$-DECOMPOSABLE

R. Chinnavedi and R. Sangeetha

Communicated by A. Muthusamy

MSC 2010 Classifications: 05C38, 05C70.
Keywords and phrases: Decomposition, Complete multigraph, Path, Cycle.

Abstract

Let P_{k+1} denote a path of length k, C_{ℓ} denote a cycle of length ℓ, and $K_{n}(\lambda)$ denote the complete multigraph on n vertices in which every pair of distinct vertices is joined by λ edges. In this paper, we proved that the necessary conditions are also sufficient for a $\left\{P_{4}, C_{6}\right\}$ decomposition of $K_{n}(\lambda)$.

1 Introduction

All graphs considered here are finite and undirected with no loops. For the standard graphtheoretic terminology the reader is referred to [2]. A simple graph in which every pair of distinct vertices is joined by an edge is called a complete graph, denoted by K_{n}. If more than one edge joining two vertices are allowed, the resulting object is called a multigraph. Let $K_{n}(\lambda)$ denote the complete multigraph on n vertices in which every pair of distinct vertices is joined by λ edges. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if $|X|=a$ and $|Y|=b$, such a graph is denoted by $K_{a, b}$. In $K_{a, b}(\lambda)$, we label the vertices in the partite set X as $\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and Y as $\left\{x_{a+1}, x_{a+2}, \ldots, x_{a+b}\right\}$. A cycle is a closed trail with no repeated vertex other than the first and last vertex. A cycle with ℓ edges is denoted by C_{ℓ}. A path is an open trail with no repeated vertex. A path with k edges is denoted by P_{k+1}. The complete bipartite graph $K_{1, m}$ is called a star and is denoted by S_{m}. For $m \geq 3$, the vertex of degree m in S_{m} is called the center and any vertex of degree 1 in S_{m} is called an end vertex.

Let G be a graph and let G_{1} be a subgraph of G. Then $G \backslash G_{1}$ is obtained from G by deleting the edges of G_{1}. Let G_{1} and G_{2} be subgraphs of G. The union $G_{1} \cup G_{2}$ of G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We say that G_{1} and G_{2} are edge-disjoint if they have no edge in common. If G_{1} and G_{2} are edge-disjoint, we denote their union by $G_{1}+G_{2}$. A decomposition of a graph G is a collection of edge-disjoint subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ of G such that every edge of G is in exactly one G_{i}. Here it is said that G is decomposed or decomposable into $G_{1}, G_{2}, \ldots, G_{n}$. If G has a decomposition into p_{1} copies of G_{1}, \ldots, p_{n} copies of G_{n}, then we say that G has a $\left\{p_{1} G_{1}, \ldots, p_{n} G_{n}\right\}$-decomposition. If such a decomposition exists for all values of p_{1}, \ldots, p_{n} satisfying necessary conditions, then we say that G has a $\left\{G_{1}, \ldots, G_{n}\right\}_{\left\{p_{1}, \ldots, p_{n}\right\}}$-decomposition or G is fully $\left\{G_{1}, \ldots, G_{n}\right\}$-decomposable.

In [8], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of $\left\{p G_{1}, q G_{2}\right\}$-decomposition of $K_{n}(\lambda)$, when $\left(G_{1}, G_{2}\right) \in\left\{\left(P_{n}, S_{n-1}\right),\left(C_{n}, S_{n-1}\right),\left(P_{n}\right.\right.$, $\left.\left.C_{n}\right)\right\}$. In [10], Shyu gave the necessary conditions for a $\left\{p P_{k+1}, q C_{\ell}\right\}$-decomposition of K_{n} and proved that K_{n} is fully $\left\{P_{k+1}, C_{k}\right\}$-decomposable, when k is even, n is odd, $n \geq 5 k+1$ and settled the case $k=4$ completely. In [11], Shyu proved that K_{n} is fully $\left\{P_{4}, C_{3}\right\}$-decomposable. In [7], Jeevadoss and Muthusamy proved that K_{n} is fully $\left\{P_{k+1}, C_{k}\right\}$-decomposable, when k is even and n is odd with $n>4 k$. In [6], Ilayaraja and Muthusamy proved that K_{n} is fully $\left\{P_{4}, C_{4}\right\}$-decomposable. In [4], the authors proved that $K_{n}(\lambda)$ is fully $\left\{P_{4}, C_{4}\right\}$-decomposable. In [9], Sarvate and Zhang obtained necessary and sufficient conditions for the existence of a $\left\{p P_{3}, q C_{3}\right\}$-decomposition of $K_{n}(\lambda)$, when $p=q$. In [12], Shyu gave the necessary conditions for a $\left\{p C_{k}, q P_{k+1}, r S_{k}\right\}$-decomposition of K_{n} and proved that K_{n} is fully $\left\{C_{4}, P_{5}, S_{4}\right\}$ decomposable, when n is odd. In [3], the authors gave the necessary conditions for a $\left\{p P_{k+1}, q C_{\ell}\right\}$-decomposition of $K_{n}(\lambda)$ and proved that $K_{n}(\lambda)$ is fully $\left\{P_{5}, C_{6}\right\}$-decomposable. In this paper we prove that $K_{n}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

2 Preliminaries

For convenience we denote $V\left(K_{n}(\lambda)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The notation $\left(x_{1} x_{2} \cdots x_{\ell}\right)$ denotes a cycle with vertices $x_{1}, x_{2}, \ldots, x_{\ell}$ and edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{\ell-1} x_{\ell}, x_{\ell} x_{1}$, and $\left[x_{1} x_{2} \cdots x_{k+1}\right]$ is a path with vertices $x_{1}, x_{2}, \ldots, x_{k+1}$ and edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{k} x_{k+1}$.

We recall here some results on P_{k+1} and C_{ℓ}-decompositions that are useful for our proofs.
Theorem 2.1. (Bryantet al.[1]) Let λ, n and ℓ be integers with $n, \ell \geq 3$ and $\lambda \geq 1$. There exists a decomposition of $K_{n}(\lambda)$ into C_{ℓ} if and only if $\ell \leq n, \lambda(n-1)$ is even and ℓ divides $\lambda\binom{n}{2}$. There exists a decomposition of $K_{n}(\lambda)$ into C_{ℓ} and a perfect matching if and only if $\ell \leq n, \lambda(n-1)$ is odd and ℓ divides $\lambda\binom{n}{2}-\frac{n}{2}$.

Theorem 2.2. (Tarsi [13]) A necessary and sufficient conditions for the existence of a P_{k+1} decomposition of $K_{n}(\lambda)$ is $\lambda\binom{n}{2} \equiv 0(\bmod k)$ and $n \geq k+1$.

Theorem 2.3. (Hung-Chih Lee[5]) For positive integers λ, a, b and ℓ with $\lambda a \equiv \lambda b \equiv \ell \equiv 0$ $(\bmod 2)$ and $\min \{a, b\} \geq \frac{\ell}{2} \geq 2$, the multigraph $K_{a, b}(\lambda)$ is C_{ℓ}-decomposable if one of the following conditions holds: (i) λ is odd and ℓ divides $a b$, (ii) λ is even and ℓ divides $2 a b$ (iii) λ is even and λa or λb is divisible by ℓ.

Theorem 2.4. (Truszczynski[14]) Let k be a positive integer and let a and b be positive even integers such that $a \geq b$. $K_{a, b}(\lambda)$ has a P_{k+1}-decomposition if and only if $a \geq\left\lceil\frac{k+1}{2}\right\rceil, b \geq\left\lceil\frac{k}{2}\right\rceil$ and $\lambda a b \equiv 0(\bmod k)$.

In [3], the authors discussed the necessary conditions for a $\left\{p P_{k+1}, q C_{\ell}\right\}$-decomposition of $K_{n}(\lambda)$ when $\lambda \geq 1$, which is as follows:

Theorem 2.5. (Chinnavediet al. [3]) Let λ, n, k and ℓ be positive integers such that $n \geq$ $\max \{\ell, k+1\}$. If $K_{n}(\lambda)$ can be decomposed into p copies of P_{k+1} and q copies of C_{ℓ} for nonnegative integers p and q, then (i) $p k+q \ell=\lambda\binom{n}{2}$ (ii) $p \neq 1$ if n is odd or n and λ are both even and (iii) $p \geq \frac{n}{2}$ if λ is odd and n is even.

We prove that the above necessary conditions are sufficient for $k=3$ and $\ell=6$ in Theorem 3.5.

3 Main Result

In this section, we discuss a $\left\{P_{4}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{n}(\lambda)$, when $\lambda \geq 1$. By Theorem 2.5, it is enough to consider the $\left\{p P_{4}, q C_{6}\right\}$-decomposition of $K_{n}(\lambda)$, for $n \geq 6$.

Remark 3.1. Necessary conditions for the existence of a $\left\{P_{4}, C_{6}\right\}_{\{p, q\}}$-decomposition in $K_{n}(\lambda)$ are satisfied when $n \equiv 0,1,3,4(\bmod 6)$ if $\lambda \geq 1$ and $n \equiv 2,5(\bmod 6)$ if $\lambda \equiv 0,3(\bmod 6)$, (or $\lambda \equiv 0(\bmod 3)$). i.e., there does not exist nonnegative integers p and q satisfying $3 p+6 q=\lambda\binom{n}{2}$ when $n \equiv 2,5(\bmod 6)$ if $\lambda \equiv 1,2,4,5(\bmod 6)$.

Remark 3.2. If G is C_{ℓ}-decomposable and $\ell \equiv 0(\bmod k)$, then G is fully $\left\{P_{k+1}, C_{\ell}\right\}$-decomposable as each C_{ℓ} can be decomposed into $\frac{\ell}{k}$ copies of P_{k+1}.

The proof of the following two lemmas are immediate from Theorem 2.3 and Remark 3.2.
Lemma 3.3. If p and q are nonnegative integers such that $3 p+6 q=24$, then $K_{6,4}$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

Lemma 3.4. If p and q are nonnegative integers such that $3 p+6 q=36$, then $K_{6,6}$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

We now prove our main result.
Theorem 3.5. For any nonnegative integers p and q and any integer $n \geq 6$, there exists a $\left\{P_{4}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{n}(\lambda)$ if and only if (i) $3 p+6 q=\lambda\binom{n}{2}$, (ii) $p \geq \frac{n}{2}$, if λ is odd and n is even (iii) $p \neq 1$ if otherwise.

Proof. The necessary part follows from Theorem 2.5. By Theorem 2.1 and Remark 3.2, $K_{n}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable if $\lambda\binom{n}{2} \equiv 0(\bmod 6), n$ is odd or n and λ are both even. First we prove the result for $6 \leq n \leq 17$ with λ is odd; then we use induction to settle the remaining cases. As we discuss $\left\{p P_{4}, q C_{6}\right\}$-decompositions of $K_{n}(\lambda)$ for all possible choices of p and q, we have the following cases:
Case 1: $n=6$.
If $\lambda=1$, then $(p, q) \in\{(3,1),(5,0)\}$. The graph K_{6} can be decomposed into $3 P_{4}$: $\left[x_{2} x_{5} x_{1} x_{3}\right],\left[x_{1} x_{4} x_{2} x_{6}\right],\left[x_{4} x_{6} x_{3} x_{5}\right]$ and a $C_{6}:\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)$. By Theorem 2.2, K_{6} is $\left\{5 P_{4}, 0 C_{6}\right\}$-decomposable.

If $\lambda \geq 3$, then we write $K_{6}(\lambda)=K_{6}(\lambda-1)+K_{6}=\frac{\lambda-1}{2} K_{6}(2)+K_{6}$. By Theorem 2.1 and Remark 3.2, the graph $K_{6}(2)$ is $\left\{P_{4}, C_{6}\right\}_{\{p, q\}}$-decomposable. Therefore $K_{6}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$ decomposable.
Case 2: $n=7$.
If $\lambda=1$, then $(p, q) \in\{(3,2),(5,1),(7,0)\}$. The graph K_{7} can be decomposed into $3 P_{4}:\left[x_{3} x_{7} x_{4} x_{6}\right],\left[x_{3} x_{1} x_{7} x_{2}\right],\left[x_{2} x_{5} x_{7} x_{6}\right]$ and $2 C_{6}:\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right),\left(x_{1} x_{4} x_{2} x_{6} x_{3} x_{5}\right)$. For $(p, q) \in\{(5,1),(7,0)\}$, a $\left\{p P_{4}, q C_{6}\right\}$-decomposition of K_{7} follows easily from a $\left\{3 P_{4}, 2 C_{6}\right\}$ decomposition of K_{7} as C_{6} can be decomposed into 2 copies of P_{4}. By Theorem 2.1 and Remark 3.2, the graph $K_{7}(2)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

If $\lambda \geq 3$, then we write $K_{7}(\lambda)=K_{7}(\lambda-1)+K_{7}=\frac{\lambda-1}{2} K_{7}(2)+K_{7}$. Therefore $K_{7}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
Case 3: $n=8$.
If $\lambda=3$, then $(p, q) \in\{(4,12),(6,11),(8,10), \ldots,(28,0)\}$ (we see that the values of p increases by 2 and the values of q decreases by 1). The graph $K_{8}(3)$ can be decomposed into $4 P_{4}$: $\left[x_{2} x_{3} x_{5} x_{6}\right],\left[x_{7} x_{3} x_{8} x_{4}\right],\left[x_{8} x_{4} x_{2} x_{3}\right],\left[x_{5} x_{6} x_{7} x_{1}\right]$ and $12 C_{6}:\left(x_{7} x_{1} x_{3} x_{2} x_{8} x_{5}\right),\left(x_{7} x_{1} x_{5} x_{6} x_{8} x_{4}\right), 2$ copies of $\left(x_{8} x_{2} x_{4} x_{7} x_{3} x_{5}\right),\left(x_{8} x_{3} x_{1} x_{5} x_{7} x_{6}\right), 3$ copies of $\left(x_{1} x_{8} x_{7} x_{2} x_{6} x_{4}\right),\left(x_{1} x_{2} x_{5} x_{4} x_{3} x_{6}\right)$. For $(p, q) \in\{(6,11),(8,10),(10,9), \ldots,(28,0)\}$, a $\left\{p P_{4}, q C_{6}\right\}$-decomposition of $K_{8}(3)$ follows easily from a $\left\{4 P_{4}, 12 C_{6}\right\}$-decomposition of $K_{8}(3)$ as C_{6} can be decomposed into 2 copies of P_{4}. By Theorem 2.1 and Remark 3.2, the graph $K_{8}(6)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

If $\lambda \geq 9$, then we write $K_{8}(\lambda)=K_{8}(\lambda-3)+K_{8}(3)=\frac{\lambda-3}{6} K_{8}(6)+K_{8}(3)$. Therefore $K_{8}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

Case 4: $n=9$.

By Theorem 2.1 and Remark 3.2, the graph $K_{9}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
Case 5: $n=10$.
If $\lambda=1$, then $(p, q) \in\{(5,5),(7,4),(9,3), \ldots,(15,0)\}$. We write $K_{10}=\left(K_{10} \backslash K_{6}\right)+$ K_{6}. The graph $K_{10} \backslash K_{6}$ can be decomposed into $2 P_{4}:\left[x_{10} x_{7} x_{8} x_{9}\right],\left[x_{8} x_{6} x_{9} x_{7}\right]$ and $4 C_{6}$: $\left(x_{10} x_{1} x_{9} x_{2} x_{8} x_{3}\right),\left(x_{10} x_{2} x_{7} x_{1} x_{8} x_{4}\right),\left(x_{10} x_{5} x_{9} x_{3} x_{7} x_{6}\right),\left(x_{10} x_{9} x_{4} x_{7} x_{5} x_{8}\right)$. By combining these copies of P_{4} and C_{6} along with the copies of P_{4} and C_{6} in K_{6}, we get the decompositions $(p, q) \in$ $\{(5,5),(7,4)\}$. For $(p, q) \in\{(9,3),(11,2),(13,1),(15,0)\}$, a $\left\{p P_{4}, q C_{6}\right\}$-decomposition of K_{10} follows easily from a $\left\{7 P_{4}, 4 C_{6}\right\}$-decomposition of K_{10} as C_{6} can be decomposed into 2 copies of P_{4}. By Theorem 2.1 and Remark 3.2, the graph $K_{10}(2)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

If $\lambda \geq 3$, then we write $K_{10}(\lambda)=K_{10}(\lambda-1)+K_{10}=\frac{\lambda-1}{2} K_{10}(2)+K_{10}$. Therefore $K_{10}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

Case 6: $n=11$.

If $\lambda=3$, then $(p, q) \in\{(3,26),(5,25),(7,24), \ldots,(55,0)\}$. We write $K_{11}(3)=\left(K_{11}(3) \backslash K_{7}(3)\right)+K_{7}(3)$. The graph $K_{11}(3) \backslash K_{7}(3)$ can be decomposed into $17 C_{6}$: $\left(x_{8} x_{9} x_{5} x_{10} x_{11} x_{2}\right),\left(x_{8} x_{10} x_{4} x_{11} x_{9} x_{7}\right),\left(x_{11} x_{9} x_{4} x_{8} x_{10} x_{1}\right),\left(x_{3} x_{9} x_{1} x_{8} x_{10} x_{11}\right),\left(x_{8} x_{9} x_{11} x_{6} x_{10} x_{3}\right)$, $\left(x_{8} x_{5} x_{11} x_{10} x_{2} x_{9}\right), 3$ copies $\left(x_{11} x_{8} x_{6} x_{9} x_{10} x_{7}\right), 2$ copies of $\left(x_{11} x_{1} x_{10} x_{2} x_{9} x_{3}\right),\left(x_{8} x_{4} x_{10} x_{5} x_{9} x_{7}\right)$, $\left(x_{11} x_{2} x_{8} x_{1} x_{9} x_{4}\right),\left(x_{10} x_{3} x_{8} x_{5} x_{11} x_{6}\right)$. By combining these copies of P_{4} and C_{6} along with the copies of P_{4} and C_{6} in $K_{7}(3)$, we get the decompositions $(p, q) \in\{(3,26),(5,25),(7,24)$, $(9,23),(11,22),(13,21),(15,20),(17,19),(19,18),(21,17)\}$. For $(p, q) \in\{(23,16),(25,15)$, $(27,14), \ldots,(55,0)\}$, a $\left\{p P_{4}, q C_{6}\right\}$-decomposition of $K_{11}(3)$ follows easily from a $\left\{21 P_{4}, 17 C_{6}\right\}$ -decomposition of $K_{11}(3)$ as C_{6} can be decomposed into 2 copies of P_{4}. By Theorem 2.1 and Remark 3.2, the graph $K_{11}(6)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

If $\lambda \geq 9$, then we write $K_{11}(\lambda)=K_{11}(\lambda-3)+K_{11}(3)=\frac{\lambda-3}{6} K_{11}(6)+K_{11}(3)$. Therefore $K_{11}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
Case 7: $n=12$.
By taking $K_{12}(\lambda)=2 K_{6}(\lambda)+\lambda K_{6,6}$, we get all the possible decompositions.

Case 8: $n=13$.
By Theorem 2.1 and Remark 3.2, the graph $K_{13}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
Case 9: $n=14$.
By taking $K_{14}(\lambda)=K_{8}(\lambda)+K_{6}(\lambda)+2 \lambda K_{4,6}$, we get all the possible decompositions.
Case 10: $n=15$.
By taking $K_{15}(\lambda)=K_{9}(\lambda)+K_{7}(\lambda)+2 \lambda K_{4,6}$, we get all the possible decompositions.
Case 11: $n=16$.
By taking $K_{16}(\lambda)=K_{10}(\lambda)+K_{6}(\lambda)+\lambda K_{4,6}+\lambda K_{6,6}$, we get all the possible decompositions.

Case 12: $n=17$.

By Theorem 2.1 and Remark 3.2, the graph $K_{17}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
Now we prove the result for $n>17$. We apply by mathematical induction on n and split the proof into six cases as follows.
$n \equiv 0(\bmod 6)$. Let $n=6 r$, with $r \geq 3$. Assume that $K_{6 t}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable if $1 \leq t<r$. Write $K_{6 r}(\lambda)=K_{6(r-2)}(\lambda)+K_{12}(\lambda)+K_{6(r-2), 12}(\lambda)=K_{6(r-2)}(\lambda)+K_{12}(\lambda)+$ $(r-2) K_{6,12}(\lambda)=K_{6(r-2)}(\lambda)+K_{12}(\lambda)+(3 r-6) \lambda K_{6,4}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\left\{p P_{4}, q C_{6}\right\}$-decomposition in $K_{6 r}(\lambda)$. Then we have $3 p+6 q=\frac{\lambda(6 r) \times(6 r-1)}{2}=\frac{\lambda}{2}\left(36 r^{2}-6 r\right)=\lambda\left(18 r^{2}-3 r\right)=18 \lambda r^{2}-3 \lambda r=$ $18 \lambda r^{2}-3 \lambda r+144 \lambda-144 \lambda=18 \lambda r^{2}-75 \lambda r+78 \lambda+66 \lambda+72 \lambda r-144 \lambda=\lambda\left(18 r^{2}-\right.$ $75 r+78)+66 \lambda+72 \lambda r-144 \lambda=\frac{\lambda}{2}\left(36 r^{2}-150 r+156\right)+66 \lambda+72 \lambda r-144 \lambda=\frac{\lambda}{2}\left(36 r^{2}-\right.$ $78 r-72 r+156)+66 \lambda+72 \lambda r-144 \lambda=\frac{\lambda}{2}(6 r-12) \times(6 r-13)+66 \lambda+72 \lambda r-144 \lambda=$ $\frac{\lambda}{2}(6 r-12) \times(6 r-12-1)+66 \lambda+72 \lambda r-144 \lambda=\frac{\lambda}{2}(6(r-2) \times 6(r-2)-1)+66 \lambda+24 \lambda(3 r-6)=$ $\frac{\lambda}{2}(6(r-2) \times 6(r-2)-1)+\frac{132 \lambda}{2}+4 \times 6 \lambda(3 r-6)=\frac{\lambda}{2}(6(r-2) \times 6(r-2)-1)+\frac{\lambda}{2}(132)+$ $(3 r-6) \lambda 4 \times 6=\frac{\lambda}{2}(6(r-2) \times 6(r-2)-1)+\frac{\lambda}{2}(12 \times 11)+(3 r-6) 24 \lambda=\left(3 p_{1}+6 q_{1}\right)+$ $\left(3 p_{2}+6 q_{2}\right)+\left(3 p_{3}+6 q_{3}\right)$. By the induction hypothesis and Case 7, the graphs $K_{6(r-2)}(\lambda)$ and $K_{12}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$-decomposable. By Lemma 3.3 and Remark 3.2, the graph $K_{6,4}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable and hence $K_{6 r}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
$n \equiv 1(\bmod 6)$. Let $n=6 r+1$, with $r \geq 3$. Assume that $K_{6 t+1}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}-$ decomposable if $1 \leq t<r$. Write $K_{6 r+1}(\lambda)=K_{6(r-2)+1}(\lambda)+K_{13}(\lambda)+K_{6(r-2), 12}(\lambda)=$ $K_{6(r-2)+1}(\lambda)+K_{13}(\lambda)+(r-2) K_{6,12}(\lambda)=K_{6(r-2)+1}(\lambda)+K_{13}(\lambda)+(3 r-6) \lambda K_{6,4}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\left\{p P_{4}, q C_{6}\right\}$ decomposition in $K_{6 r+1}(\lambda)$. Then we have $3 p+6 q=\frac{\lambda(6 r+1) \times(6 r)}{2}=\frac{\lambda}{2}\left(36 r^{2}+6 r\right)=\lambda\left(18 r^{2}+\right.$ $3 r)=18 \lambda r^{2}+3 \lambda r=18 \lambda r^{2}+3 \lambda r+144 \lambda-144 \lambda=18 \lambda r^{2}-69 \lambda r+66 \lambda+78 \lambda+72 \lambda r-144 \lambda=$ $\lambda\left(18 r^{2}-69 r+66\right)+78 \lambda+72 \lambda r-144 \lambda=\frac{\lambda}{2}\left(36 r^{2}-138 r+132\right)+78 \lambda+72 \lambda r-144 \lambda=$ $\frac{\lambda}{2}\left(36 r^{2}-72 r-66 r+132\right)+78 \lambda+72 \lambda r-144 \lambda=\frac{\lambda}{2}(6 r-11) \times(6 r-12)+78 \lambda+72 \lambda r-144 \lambda=$ $\frac{\lambda}{2}(6 r-12+1) \times(6 r-12)+78 \lambda+24 \lambda r-144 \lambda=\frac{\lambda}{2}(6(r-2)+1 \times 6(r-2))+78 \lambda+24 \lambda(3 r-6)=$ $\frac{\lambda}{2}(6(r-2)+1 \times 6(r-2)+1-1)+\frac{156 \lambda}{2}+4 \times 6 \lambda(3 r-6)=\frac{\lambda}{2}(6(r-2)+1 \times 6(r-2)+$ $1-1)+\frac{\lambda}{2}(156)+(3 r-6) \lambda 4 \times 6=\frac{\lambda}{2}(6(r-2)+1 \times 6(r-2)+1-1)+\frac{\lambda}{2}(13 \times 12)+$ $(3 r-6) 24 \lambda=\left(3 p_{1}+6 q_{1}\right)+\left(3 p_{2}+6 q_{2}\right)+\left(3 p_{3}+6 q_{3}\right)$. By the induction hypothesis and Case 8, the graphs $K_{6(r-2)+1}(\lambda)$ and $K_{13}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$-decomposable. By Lemma 3.3 and Remark 3.2, the graph $K_{6,4}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable and hence $K_{6 r+1}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
$n \equiv 2(\bmod 6)$. Let $n=6 r+2$, with $r \geq 3$. Assume that $K_{6 t+2}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}-$ decomposable if $1 \leq t<r$. Write $K_{6 r+2}(\lambda)=K_{6(r-1)}(\lambda)+K_{8}(\lambda)+K_{6(r-1), 8}(\lambda)=$ $K_{6(r-1)}(\lambda)+K_{8}(\lambda)+(r-1) K_{6,8}(\lambda)=K_{6(r-1)}(\lambda)+K_{8}(\lambda)+2(r-1) \lambda K_{6,4}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\left\{p P_{4}, q C_{6}\right\}$-decomposition in $K_{6 r+2}(\lambda)$. Then we have $3 p+6 q=\frac{\lambda(6 r+2) \times(6 r+1)}{2}=\frac{\lambda}{2}\left(36 r^{2}+18 r+2\right)=\lambda\left(18 r^{2}+9 r+1\right)=$ $18 \lambda r^{2}+9 \lambda r+\lambda=18 \lambda r^{2}+9 \lambda r+49 \lambda-48 \lambda=18 \lambda r^{2}-39 \lambda r+21 \lambda+28 \lambda+48 \lambda r-48 \lambda=$ $\lambda\left(18 r^{2}-39 r+21\right)+28 \lambda+48 \lambda r-48 \lambda=\frac{\lambda}{2}\left(36 r^{2}-78 r+42\right)+28 \lambda+48 \lambda r-48 \lambda=$ $\frac{\lambda}{2}\left(36 r^{2}-42 r-36 r+42\right)+28 \lambda+48 \lambda r-48 \lambda=\frac{\lambda}{2}(6 r-6) \times(6 r-7)+28 \lambda+48 \lambda r-48 \lambda=$ $\frac{\lambda}{2}(6 r-6) \times((6 r-6)-1)+28 \lambda+48 \lambda r-48 \lambda=\frac{\lambda}{2}(6(r-1) \times 6(r-1)-1)+28 \lambda+24 \lambda(2(r-1))=$ $\frac{\lambda}{2}(6(r-1) \times 6(r-1)-1)+\frac{56 \lambda}{2}+4 \times 6 \lambda(2(r-1))=\frac{\lambda}{2}(6(r-1) \times 6(r-1)-1)+\frac{\lambda}{2}(56)+$ $2(r-1) \lambda 4 \times 6=\frac{\lambda}{2}(6(r-1) \times 6(r-1)-1)+\frac{\lambda}{2}(8 \times 7)+2(r-1) 24 \lambda=\left(3 p_{1}+6 q_{1}\right)+$ $\left(3 p_{2}+6 q_{2}\right)+\left(3 p_{3}+6 q_{3}\right)$. By the induction hypothesis and Case 3, the graphs $K_{6(r-1)}(\lambda)$ and $K_{8}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$-decomposable. By Lemma 3.3 and Remark 3.2, the graph $K_{6,4}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable and hence $K_{6 r+2}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
$n \equiv 3(\bmod 6)$. Let $n=6 r+3$, with $r \geq 3$. Assume that $K_{6 t+3}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}-$ decomposable if $1 \leq t<r$. Write $K_{6 r+3}(\lambda)=K_{6(r-1)+1}(\lambda)+K_{9}(\lambda)+K_{6(r-1), 8}(\lambda)=$ $K_{6(r-1)+1}(\lambda)+K_{9}(\lambda)+(r-1) K_{6,8}(\lambda)=K_{6(r-1)+1}(\lambda)+K_{9}(\lambda)+2(r-1) \lambda K_{6,4}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\left\{p P_{4}, q C_{6}\right\}$ decomposition in $K_{6 r+3}(\lambda)$. Then we have $3 p+6 q=\frac{\lambda(6 r+3) \times(6 r+2)}{2}=\frac{\lambda}{2}\left(36 r^{2}+30 r+6\right)=$ $\lambda\left(18 r^{2}+15 r+3\right)=18 \lambda r^{2}+15 \lambda r+3 \lambda=18 \lambda r^{2}+15 \lambda r+51 \lambda-48 \lambda=18 \lambda r^{2}-33 \lambda r+15 \lambda+36 \lambda+$ $48 \lambda r-48 \lambda=\lambda\left(18 r^{2}-33 r+15\right)+36 \lambda+48 \lambda r-48 \lambda=\frac{\lambda}{2}\left(36 r^{2}-66 r+30\right)+36 \lambda+48 \lambda r-48 \lambda=$ $\frac{\lambda}{2}\left(36 r^{2}-36 r-30 r+30\right)+36 \lambda+48 \lambda r-48 \lambda=\frac{\lambda}{2}(6 r-5) \times(6 r-6)+36 \lambda+48 \lambda r-48 \lambda=$ $\frac{\lambda}{2}(6 r-6+1) \times(6 r-6)+36 \lambda+48 \lambda r-48 \lambda=\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+1-1)+36 \lambda+24 \lambda(2 r-2)=$ $\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+1-1)+\frac{72 \lambda}{2}+4 \times 6 \lambda(2 r-2)=\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+1-1)+$ $\frac{\lambda}{2}(72)+(2 r-2) \lambda 4 \times 6=\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+1-1)+\frac{\lambda}{2}(9 \times 8)+(2 r-2) 24 \lambda=\left(3 p_{1}+\right.$ $\left.6 q_{1}\right)+\left(3 p_{2}+6 q_{2}\right)+\left(3 p_{3}+6 q_{3}\right)$. By the induction hypothesis and Case 4 , the graphs $K_{6(r-1)+1}(\lambda)$ and $K_{9}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$-decomposable. By Lemma 3.3 and Remark 3.2, the graph $K_{6,4}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable and hence $K_{6 r+3}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
$n \equiv 4(\bmod 6)$. Let $n=6 r+4$, with $r \geq 3$. Assume that $K_{6 t+4}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}-$ decomposable if $1 \leq t<r$. Write $K_{6 r+4}(\lambda)=K_{2(3 r-1)}(\lambda)+K_{6}(\lambda)+K_{4,6}(\lambda)+K_{6(r-1), 6}(\lambda)=$ $K_{2(3 r-1)}(\lambda)+K_{6}(\lambda)+\lambda K_{4,6}+(r-1) \lambda K_{6,6}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\left\{p P_{4}, q C_{6}\right\}$-decomposition in $K_{6 r+4}(\lambda)$. Then we have $3 p+6 q=\frac{\lambda(6 r+4) \times(6 r+3)}{2}=\frac{\lambda}{2}\left(36 r^{2}+42 r+12\right)=\lambda\left(18 r^{2}+21 r+6\right)=18 \lambda r^{2}+21 \lambda r+6 \lambda=$ $18 \lambda r^{2}+21 \lambda r+42 \lambda-36 \lambda=18 \lambda r^{2}-15 \lambda r+3 \lambda+15 \lambda+24 \lambda+36 \lambda r-36 \lambda=\lambda\left(18 r^{2}-\right.$ $15 r+3)+15 \lambda+24 \lambda+36 \lambda r-36 \lambda=\frac{\lambda}{2}\left(36 r^{2}-30 r+6\right)+15 \lambda+24 \lambda+36 \lambda r-36 \lambda=$ $\frac{\lambda}{2}\left(36 r^{2}-18 r-12 r+6\right)+15 \lambda+24 \lambda+36 \lambda r-36 \lambda=\frac{\lambda}{2}(6 r-2) \times(6 r-3)+15 \lambda+24 \lambda+$ $36 \lambda r-36 \lambda=\frac{\lambda}{2}(6 r-2) \times(6 r-2)-1+15 \lambda+24 \lambda+36 \lambda r-36 \lambda=\frac{\lambda}{2}(2(3 r-1) \times 2(3 r-1)-$ 1) $+15 \lambda+24 \lambda+36 \lambda(r-1)=\frac{\lambda}{2}(2(3 r-1) \times 2(3 r-1)-1)+\frac{30 \lambda}{2}+24 \lambda+6 \times 6 \lambda(r-1)=$ $\frac{\lambda}{2}(2(3 r-1) \times 2(3 r-1)-1)+\frac{\lambda}{2}(30)+24 \lambda+(r-1) \lambda 6 \times 6=\frac{\lambda}{2}(2(3 r-1) \times 2(3 r-1)-$ $1)+\frac{\lambda}{2}(6 \times 5)+24 \lambda+(r-1) 36 \lambda=\left(3 p_{1}+6 q_{1}\right)+\left(3 p_{2}+6 q_{2}\right)+\left(3 p_{3}+6 q_{3}\right)+\left(3 p_{4}+6 q_{4}\right)$. By the induction hypothesis and Case 1 , the graphs $K_{2(3 r-1)}(\lambda)$ and $K_{6}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$ decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs $K_{6,4}(\lambda)$ and $K_{6,6}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$-decomposable and hence $K_{6 r+4}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.
$n \equiv 5(\bmod 6)$. Let $n=6 r+5$, with $r \geq 3$. Assume that $K_{6 t+5}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}-$ decomposable if $1 \leq t<r$. Write $K_{6 r+5}(\lambda)=K_{6(r-1)+1}(\lambda)+K_{11}(\lambda)+K_{6(r-1), 10}(\lambda)=$ $K_{6(r-1)+1}(\lambda)+K_{11}(\lambda)+(r-1) K_{6,10}(\lambda)=K_{6(r-1)+1}(\lambda)+K_{11}(\lambda)+(r-1) \lambda K_{6,4}+(r-$ 1) $\lambda K_{6,6}$. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for a $\left\{p P_{4}, q C_{6}\right\}$-decomposition in $K_{6 r+5}(\lambda)$. Then we have $3 p+6 q=\frac{\lambda(6 r+5) \times(6 r+4)}{2}=\frac{\lambda}{2}\left(36 r^{2}+\right.$ $54 r+20)=\lambda\left(18 r^{2}+27 r+10\right)=18 \lambda r^{2}+27 \lambda r+10 \lambda=18 \lambda r^{2}+60 \lambda r-33 \lambda r+70 \lambda-60 \lambda=$ $18 \lambda r^{2}-33 \lambda r+15 \lambda+55 \lambda+24 \lambda r-24 \lambda+36 \lambda r-36 \lambda=\lambda\left(18 r^{2}-33 r+15\right)+55 \lambda+24 \lambda r-24 \lambda+$ $36 \lambda r-36 \lambda=\frac{\lambda}{2}\left(36 r^{2}-66 r+30\right)+55 \lambda+24 \lambda r-24 \lambda+36 \lambda r-36 \lambda=\frac{\lambda}{2}\left(36 r^{2}-36 r-30 r+\right.$ 30) $+55 \lambda+24 \lambda r-24 \lambda+36 \lambda r-36 \lambda=\frac{\lambda}{2}(6 r-5) \times(6 r-6)+55 \lambda+24 \lambda r-24 \lambda+36 \lambda r-36 \lambda=$ $\frac{\lambda}{2}(6 r-6+1) \times(6 r-6)+55 \lambda+24 \lambda r-24 \lambda+36 \lambda r-36 \lambda=\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1))+55 \lambda+$ $24 \lambda(r-1)+36 \lambda(r-1)=\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+1-1)+\frac{110 \lambda}{2}+4 \times 6 \lambda(r-1)+6 \times 6 \lambda(r-1)=$ $\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+1-1)+\frac{\lambda}{2}(110)+(r-1) \lambda 4 \times 6+(r-1) \lambda 6 \times 6=\frac{\lambda}{2}(6(r-1)+1 \times 6(r-1)+$ $1-1)+\frac{\lambda}{2}(11 \times 10)+(r-1) 24 \lambda+(r-1) 36 \lambda=\left(3 p_{1}+6 q_{1}\right)+\left(3 p_{2}+6 q_{2}\right)+\left(3 p_{3}+6 q_{3}\right)+\left(3 p_{4}+6 q_{4}\right)$. By the induction hypothesis and Case 6, the graphs $K_{6(r-1)+1}(\lambda)$ and $K_{11}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}-$ decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs $K_{6,4}(\lambda)$ and $K_{6,6}(\lambda)$ are fully $\left\{P_{4}, C_{6}\right\}$-decomposable and hence $K_{6 r+5}(\lambda)$ is fully $\left\{P_{4}, C_{6}\right\}$-decomposable.

Acknowledgments

The second author thanks the University Grants Commission, New Delhi for its financial support (NO. F. MRP-6292/15(SERO/UGC)). Further authors thank the anonymous referee for the helpful remarks and suggestions.

References

[1] D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Cycle decompositions of complete multigraphs, J. Combin. Des. 19, 42-69 (2011).
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).
[3] R. Chinnavedi and R. Sangeetha, $K_{n}(\lambda)$ is fully $\left\{P_{5}, C_{6}\right\}$-Decomposable, Contrib. Discrete Math. 17 (1), 1-12 (2022).
[4] R. Chinnavedi and R. Sangeetha, $K_{n}(\lambda)$ is fully $\left\{P_{4}, C_{4}\right\}$-Decomposable, Indian J. Discrete Math. 6 (2), 129-139 (2020).
[5] Hung-Chih Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math. 338, 1362-1369 (2015).
[6] M. Ilayaraja and A. Muthusamy, $\left\{p P_{4}, q C_{4}\right\}$-Decomposition of complete graphs, Indian J. Discrete Math. 4 (2), 13-33 (2018).
[7] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331, 98-108 (2014).
[8] H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λK_{m}, J. Combin. Math. Combin. Comput. 69, 145-150 (2009).
[9] D. G. Sarvate and L. Zhang, Decomposition of a λK_{v} into equal number of K_{3}^{s} and P_{3}^{s}, Bull. Inst. Combin. Appl. 67, 43-48 (2013).
[10] T. W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97, 257-270 (2010).
[11] T. W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combin. 107, 209-224 (2012).
[12] T. W. Shyu, Decompositions of complete bipartite graphs and complete graphs into paths, stars and cycles with four edges each, Discuss. Math. Graph Theory 41, 451-468 (2021).
[13] M. Tarsi, Decomposition of complete multigraph into simple paths: Nonbalanced handcuffed designs, J. Combin. Theory Ser A 34, 60-70 (1983).
[14] M. Truszczynski, Note on the decomposition of $\lambda K_{m, n}\left(\lambda K_{m, n}^{*}\right)$ into paths, Discrete Math. 55, 89-96 (1985).

Author information

R. Chinnavedi and R. Sangeetha, Department of Mathematics, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu, India-613 503.
E-mail: chinnavedi571991@gmail.com, jaisangmaths@yahoo.com

