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Abstract Let P, denote a path of length k, C; denote a cycle of length ¢, and K, ()\)
denote the complete multigraph on n vertices in which every pair of distinct vertices is joined by
A edges. In this paper, we proved that the necessary conditions are also sufficient for a { Py, Cs }-
decomposition of K, ()).

1 Introduction

All graphs considered here are finite and undirected with no loops. For the standard graph-
theoretic terminology the reader is referred to [2]. A simple graph in which every pair of distinct
vertices is joined by an edge is called a complete graph, denoted by K,. If more than one
edge joining two vertices are allowed, the resulting object is called a multigraph. Let K, ()\)
denote the complete multigraph on n vertices in which every pair of distinct vertices is joined
by X edges. A complete bipartite graph is a simple bipartite graph with bipartition (X,Y") in
which each vertex of X is joined to each vertex of Y if | X| = a and |Y| = b, such a graph is
denoted by K, . In K, (), we label the vertices in the partite set X as {z,x2,...,2,} and Y’
as {Tat1,Tat2,-- - Tatb)- A cycle is a closed trail with no repeated vertex other than the first
and last vertex. A cycle with ¢ edges is denoted by Cy. A path is an open trail with no repeated
vertex. A path with k edges is denoted by P . The complete bipartite graph K ,, is called a
star and is denoted by S,,,. For m > 3, the vertex of degree m in \S,, is called the center and any
vertex of degree 1 in .Sy, is called an end vertex.

Let G be a graph and let G; be a subgraph of G. Then G\ G is obtained from G by deleting
the edges of G;. Let G| and G; be subgraphs of G. The union G; U G, of G| and (3, is the
graph with vertex set V(G;) U V(G,) and edge set E(Gy) U E(G,). We say that G| and G,
are edge-disjoint if they have no edge in common. If G| and G, are edge-disjoint, we denote
their union by G; 4+ G,. A decomposition of a graph G is a collection of edge-disjoint subgraphs
G1,Ga, ..., G, of G such that every edge of G is in exactly one GG;. Here it is said that G is

decomposed or decomposable into G1, Gy, ...,G,. If G has a decomposition into p; copies of
G1,...,pn copies of G, then we say that G has a {p|G},...,p,G,}-decomposition. If such
a decomposition exists for all values of py, ..., p, satisfying necessary conditions, then we say

that G has a {G1,...,Gn}{p,,...p,}-decomposition or G is fully {G1, ..., Gy }-decomposable.

In [8], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the exis-
tence of {pG1, ¢G, }-decomposition of K,,(\), when (G, G2) € {(Pn, Sn-1), (CnySn—1), (Pn,
Cy)}. In [10], Shyu gave the necessary conditions for a {pPy 1, ¢C¢ }-decomposition of K, and
proved that K, is fully { Py, Ck}-decomposable, when k is even, n is odd, n > 5k + 1 and
settled the case k = 4 completely. In [11], Shyu proved that K, is fully { P4, Cs }-decomposable.
In [7], Jeevadoss and Muthusamy proved that K, is fully {Py, Ck}-decomposable, when &
is even and n is odd with n > 4k. In [6], llayaraja and Muthusamy proved that K, is fully
{ Py, Cy}-decomposable. In [4], the authors proved that K, () is fully { P4, C4}-decomposable.
In [9], Sarvate and Zhang obtained necessary and sufficient conditions for the existence of a
{pPs, qC3 }-decomposition of K, ()\), when p = ¢. In [12], Shyu gave the necessary condi-
tions for a {pCy, ¢Px+1, 7Sk t-decomposition of K,, and proved that K, is fully {Cy, Ps, S4}-
decomposable, when n is odd. In [3], the authors gave the necessary conditions for a
{pPy+1,qC¢}-decomposition of K, () and proved that K, () is fully {Ps, Cs}-decomposable.
In this paper we prove that K, (\) is fully { P4, Cs }-decomposable.
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2 Preliminaries

For convenience we denote V(K,,(\)) = {z1,22,..., %, }. The notation (xz; - - - x¢) denotes a
cycle with vertices x1, 2, ..., x, and edges x1x2, 2223, . . ., To—1T¢, Ty, and [T1xa - - - Tp11] S
a path with vertices x, x7, . ..,z and edges x 1z, X223, . . ., Tk Tht1-

We recall here some results on Py and Cy-decompositions that are useful for our proofs.

Theorem 2.1. (Bryanter al.[1]) Let A\, n and ¢ be integers with n, ¢ > 3 and \ > 1. There exists
a decomposition of K,,(X) into Cy if and only if ¢ < n, A\(n— 1) is even and { divides \(%;). There
exists a decomposition of K,,(X\) into Cy and a perfect matching if and only if ¢ < n, A(n — 1) is
odd and ( divides \(%) — 5.
Theorem 2.2. (Tarsi [13]) A necessary and sufficient conditions for the existence of a Py -
decomposition of K,,(X\) is A(5) =0 (mod k) and n > k + 1.

Theorem 2.3. (Hung-Chih Lee[5]) For positive integers A, a, b and £ with \a = \b = (¢ =0
(mod 2) and min{a,b} > % > 2, the multigraph K, ,()\) is Cy-decomposable if one of the
following conditions holds: (i) X is odd and ¢ divides ab, (ii) X is even and ¢ divides 2ab (iii) \ is
even and \a or \b is divisible by (.

Theorem 2.4. (Truszczynski[14]) Let k be a positive integer and let a and b be positive even
integers such that a > b. K, (\) has a Py,.1-decomposition if and only if a > [51],b > [£]
and Aab =0 (mod k).

In [3], the authors discussed the necessary conditions for a {pPy1, ¢Cy}-decomposition of
K,()\) when X > 1, which is as follows:

Theorem 2.5. (Chinnavedier al. [3]) Let A\, n, k and { be positive integers such that n >
max{f,k + 1}. If K,(\) can be decomposed into p copies of Px.1 and q copies of Cy for
nonnegative integers p and q, then (i) pk + ¢ = )\(g) (ii) p # 1 if n is odd or n and X\ are both
even and (iii) p > % if X is odd and n is even.

We prove that the above necessary conditions are sufficient for £ = 3 and ¢ = 6 in Theorem
3.5.

3 Main Result

In this section, we discuss a { Py, Cs } {4} -decomposition of K, ()), when X\ > 1. By Theorem
2.5, it is enough to consider the {pPs, ¢Ce }-decomposition of K, (\), for n > 6.

Remark 3.1. Necessary conditions for the existence of a { P4, Cs} 4} -decomposition in K, (\)
are satisfied whenn =0, 1,3,4 (mod 6) if A > l andn =2,5 (mod 6) if A = 0,3 (mod 6), (or
A =0 (mod 3)). i.e., there does not exist nonnegative integers p and ¢ satisfying 3p+6q = A(%)
whenn =2,5 (mod 6) if A\ =1,2,4,5 (mod 6).

Remark 3.2. If G is Cy-decomposable and £ = 0 (mod k), then G is fully {Py11, C¢}- decom-
posable as each Cy can be decomposed into % copies of Py .

The proof of the following two lemmas are immediate from Theorem 2.3 and Remark 3.2.

Lemma 3.3. If p and q are nonnegative integers such that 3p + 6q = 24, then Ke 4 is fully
{ Py, Cg }-decomposable.

Lemma 3.4. If p and q are nonnegative integers such that 3p + 6q = 36, then K¢ is fully
{Ps, Cs}-decomposable.

We now prove our main result.

Theorem 3.5. For any nonnegative integers p and q and any integer n. > 6, there exists a
{ P4, Cs}p,qy-decomposition of K, (X\) if and only if (i) 3p + 6q = X(5), (ii) p > %, if X is
odd and n is even (iii) p # 1 if otherwise.
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Proof. The necessary part follows from Theorem 2.5. By Theorem 2.1 and Remark 3.2, K,,()\)
is fully { P, Cs}-decomposable if A(7) = 0 (mod 6), n is odd or n and A are both even. First
we prove the result for 6 < n < 17 with X is odd; then we use induction to settle the remaining
cases. As we discuss {pPy, ¢Cs }-decompositions of K, () for all possible choices of p and ¢,
we have the following cases:

Casel: n =6.

If A\ = 1, then (p,q) € {(3,1),(5,0)}. The graph K¢ can be decomposed into 3P :
[xz.rsx]l‘g,], [l‘11‘4$2$6], [x4x6x3x5] and a 06 . ($11‘2$3$4$5$6). By Theorem 2.2, K6 is
{5P4,0C¢}-decomposable.

If A > 3, then we write K¢()\) = K¢(A — 1) + K¢ = 251 K4(2) + K¢. By Theorem 2.1 and
Remark 3.2, the graph K(2) is { Py, Cs} p,q}-decomposable. Therefore K(X) is fully { Py, Cs }-
decomposable.

Case2: n=17.

If A = 1, then (p,q) € {(3,2),(5,1),(7,0)}. The graph K5 can be decomposed into
3Py : [m3m724%86), [T3717722), [T2x577736] and 2Cs : (z1m273747576), (T1T4T2T6235). For
(p,q) € {(5,1),(7,0)}, a {pPs, gC¢ }-decomposition of K7 follows easily from a {3Fs,2Cs}-
decomposition of K7 as Cg can be decomposed into 2 copies of Py. By Theorem 2.1 and Remark
3.2, the graph K7(2) is fully { Py, Cs}-decomposable.

If A > 3, then we write K7(\) = K7(A — 1) + K7 = %K7(2) + K. Therefore K7()\) is
fully { Py, Cs }-decomposable.

Case3: n =8.

If A = 3, then (p,q) € {(4,12),(6,11),(8,10),...,(28,0)} (we see that the values of p in-
creases by 2 and the values of ¢ decreases by 1). The graph K(3) can be decomposed into 4P :
[x2x3x59:6], [x7x3x89:4], [I8I4SC2I3], [15x6:c79:1] and 1206 . (I7$1I3I2:€8I5), (l’7l‘|175£1761‘8$4>, 2
copies of (wgz274m72737%5), (L3237 57776), 3 copies of (z1287772764), (T1T275T47376). For
(p,q) € {(6,11),(8,10),(10,9),...,(28,0)}, a {pPs, ¢Cs}-decomposition of Ks(3) follows
easily from a {4 Py, 12C }-decomposition of Kg(3) as Cgs can be decomposed into 2 copies of
P4. By Theorem 2.1 and Remark 3.2, the graph K3(6) is fully { P4, Cs }-decomposable.

If A > 9, then we write K3(\) = Kg(A—3)+ K3(3) = 222 K3(6) + K3(3). Therefore Kg()\)
is fully { Py, Cs}-decomposable.

Cased4: n=09.

By Theorem 2.1 and Remark 3.2, the graph Ko(\) is fully { P4, Cg }-decomposable.
Case 5: n = 10.

If A = 1, then (p,q) € {(5,5),(7,4),(9,3),...,(15,0)}. We write K19 = (K10\Ks) +
K. The graph Kjo\Kg can be decomposed into 2P, : [zj9z77879], [T3T62T977] and 4Cs :
(.2310.231.7;93;21‘81‘3), (l‘]ol‘zx7l‘1$g$4), (1‘101‘5379333377336)’ ($10$9$41‘7$5$8). By COl’Ilbil’liIlg these
copies of Py and Cq along with the copies of P, and Cs in K4, we get the decompositions (p,q) €
{(5,5),(7,4)}. For (p,q) € {(9,3),(11,2),(13,1),(15,0)}, a {pPs, qCs}-decomposition of
K follows easily from a {7 Py, 4Cs}-decomposition of Ky as Cs can be decomposed into 2
copies of P;. By Theorem 2.1 and Remark 3.2, the graph K1 (2) is fully { P4, Cs }-decomposable.

If A > 3, then we write Kl()(/\) = KIO(/\ - 1) + Ko = %Klo(z) + Kjo. Therefore KIO(/\)
is fully { P4, C¢}-decomposable.

Case 6: n = 11.

If A = 3, then (p,q) € {(3,26),(5,25),(7,24),...,(55,0)}. We write
K11 (3) = (K11 (3)\K7(3)) + K7(3). The graph K;,(3)\K7(3) can be decomposed into 17Cs :
(wgwomsT1021122), (8T 1042 11T9T7), (T11T9T4T8T10%1), (T3TT 28T 10T 11 ), (TTOT11T6T10T3),
(3381’5I11I10I21’9), 3 copies (I]1I8$6$9$10$7), 2 COpiCS of (x“x]:cm:czxgag), (:I}gl’4l’101’51’91‘7),
(11727871794, (T107378T5711T6). By combining these copies of P, and Cy along with the
copies of P4 and Cg in K7(3), we get the decompositions (p,q) € {(3,26),(5,25),(7,24),
(9,23),(11,22),(13,21),(15,20), (17,19), (19, 18), (21,17)}. For (p,q) € {(23,16),(25,15),
(27,14),...,(55,0)}, a {pPs, qCs }-decomposition of K;(3) follows easily from a {21F,, 17C¢}
-decomposition of K7;(3) as Cs can be decomposed into 2 copies of P;. By Theorem 2.1 and
Remark 3.2, the graph K, (6) is fully { P4, Cs }-decomposable.

If A > 9, then we write K11(\) = K11(A —3) + K11(3) = 222K, (6) + K11(3). Therefore
K11 ()) is fully { Py, Ce }-decomposable.

Case7: n = 12.
By taking K»(\) = 2K¢(\) + MK 6, we get all the possible decompositions.
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Case 8: n = 13.

By Theorem 2.1 and Remark 3.2, the graph K3(\) is fully { P4, C¢ }-decomposable.
Case 9: n = 14.

By taking K4(\) = Kg(\) + Ke(\) + 2AK4 6, we get all the possible decompositions.
Case 10: n = 15.

By taking K5(A\) = Ko(A) + K7(A\) + 2XK4 6, we get all the possible decompositions.
Case 11: n = 16.

By taking Kj6(\) = Kjo(A)+Ke(A)+AK4 6+ AKe 6, we get all the possible decompositions.
Case 12: n = 17.

By Theorem 2.1 and Remark 3.2, the graph K7 () is fully { P, Cs}-decomposable.

Now we prove the result for n > 17. We apply by mathematical induction on n and split the
proof into six cases as follows.

n=0 (mod 6). Letn = 6r, with r > 3. Assume that K¢ (\) is fully { Py, Cs }-decomposable
if 1 <t<r. Write Kér(/\) = Ké(r_z)(A) + K]Q()\) + Kﬁ(r—z),lz()\) = K6(r—2)(>‘) + K]z()\) +
(r = 2)Kg12(A) = Kgr—2)(A) + K12(A) + (37 — 6)A\Kg 4. Suppose the nonnegative integers
p and ¢ satisfy the obvious necessary conditions for a {pPs, ¢Cs }-decomposition in Kg,(A).
Then we have 3p + 6q = 260X6=D — 2(36;2 — 6r) = A(1872 — 3r) = 18\12 — 3Ar =
18Ar2 — 3Ar + 144\ — 144X\ = 18\ — T5Ar + 78X + 66 + T2Ar — 144\ = A(18r% —
751 4 78) 4 66X + T2Ar — 144X = 3(36r? — 1507 + 156) + 66\ + 72\ — 144\ = 5(36r% —
78r — 721 + 156) 4 66A + T2Ar — 144X = 2 (6r — 12) x (61 — 13) + 66X + T2)r — 144\ =
2(6r—12)x (6r—12—1)+66A+72\r — 144X = 5(6(r—2) x6(r—2)—1)+66A+24A(3r—6) =
2(6(r—2) x6(r—2)—1)+ B2 + 4 x 6A(3r—6) = 3(6(r —2) x 6(r —2) — 1) + 3(132) +
(Br—6)Mx 6 =3(6(r—2) x6(r—2)—1)+ 5(12 x 11) + (3r — 6)24X = (3p; + 6¢;) +
(3p2 + 6¢2) + (3p3 + 64¢3). By the induction hypothesis and Case 7, the graphs Kg(, ) () and
Ki>()) are fully { Py, Cs}-decomposable. By Lemma 3.3 and Remark 3.2, the graph K 4(\) is
fully { P, Ce }-decomposable and hence K, (1)) is fully {Ps, Cs }-decomposable.

n =1 (mod 6). Let n = 6r + 1, with r > 3. Assume that Ke;11(A) is fully {Ps, Ce}-
decomposable if 1 < t < r. Write Ko 11(A\) = Kgr_2)11(A) + K13(\) + Kgr_2),12(N) =
K6(7"—2)+1(>‘) + K13()\) + (T - 2)K67]2()\) = Kﬁ(r—2)+l(/\) + K13()\) + (37’ — 6))\K674. Sup-
pose the nonnegative integers p and ¢ satisfy the obvious necessary conditions for a {pPy, ¢Cs }-
decomposition in Kg, 41 (). Then we have 3p + 6q = 26rX61) — A(36,2 4 6r) = A(1872 +
3r) = 18Ar2 4+3Ar = 182+ 3\ + 144\ — 144\ = 1812 — 69\ + 66\ + T8N+ T2\r — 144\ =
A(182 — 691 + 66) + T8\ + T2Ar — 144X\ = (3672 — 1387 + 132) + 78X + 72)r — 144\ =
2 (3612 —72r — 667+ 132)+ 78X+ T72Ar — 144X\ = 3 (6r—11) x (6r—12)+78\+72\r — 144X =
2(6r—1241) x (6r—12)+78X+24\r — 144X = 5(6(r—2)+1x6(r—2))+78A+24A(3r—6) =
26(r—2)+1x6(r—2)+1—1)+182 44 x6)X3r—6)=2(6(r—2)+1x6(r—2)+
1—1)4 5(156) + Br —6)M x 6 = 3(6(r —2) + 1 x 6(r —2) + 1 — 1) + (13 x 12) +
(3r — 6)24X = (3p1 + 6q1) + (3p2 + 642) + (3ps + 6¢3). By the induction hypothesis and
Case 8, the graphs Kg(,_5),1(\) and Ki3(A) are fully {4, Cs}-decomposable. By Lemma 3.3
and Remark 3.2, the graph K 4()) is fully { P, Cs }-decomposable and hence K¢, () is fully
{ P4, Cg}-decomposable.

n = 2 (mod 6). Let n = 6r + 2, with r > 3. Assume that Ke;2()) is fully {Py, Ce}-
decomposable if 1 < ¢ < r. Write Ke12(\) = Kepon)(A) + Ks(\) + Kgr1)3(A) =
Ko(r—1)(A)+EKg(A\)+(r—1)Keg(A) = Kegr—1)(A)+Kg(A)+2(r—1)AKg 4. Suppose the nonneg-
ative integers p and ¢ satisfy the obvious necessary conditions for a {pPy, ¢C¢ }-decomposition
in K¢ 12(\). Then we have 3p+6q = w = 3(36r*+18r+2) = A(18r24+9r+1) =
18Ar% + 9N 4+ A = 18A72 + 9\r + 49\ — 48\ = 18A\r? — 39Ar + 21\ + 28\ + 48 \r — 48\ =
A(18r% — 397 + 21) + 28X + 48\ — 48X = 3(36r% — 78r + 42) + 28\ + 48\r — 48\ =
2(36r2 — 42r — 361 +42) + 28X + 48Ar — 48X\ = 5(6r — 6) x (6r —7) + 28X + 48\r — 48\ =
2(6r—6)x ((6r—6)—1)+28X+48\r—48\ = 3(6(r—1)x6(r—1)—1)+28X+24\(2(r—1)) =
26(r—1)x6(r—1)—1)+ 32 +4x6A2(r—1)) = 3(6(r — 1) x 6(r — 1) — 1) + 5(56) +
2r — DM x 6 = 3(6(r —1) x 6(r — 1) — 1) + 3(8 x 7) +2(r — 1)24X = (3p1 + 6q1) +
(3p2 + 6¢2) + (3p3 + 643). By the induction hypothesis and Case 3, the graphs Kg(,_1)()\) and
Kg(\) are fully { Py, Cs}-decomposable. By Lemma 3.3 and Remark 3.2, the graph K¢ 4(\) is
fully { P4, Cg }-decomposable and hence Kg,12()) is fully { Py, Cg }-decomposable.
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n = 3 (mod 6). Let n = 6r + 3, with » > 3. Assume that Ke;+3()) is fully {Ps, Ce}-
decomposable if 1 < ¢t < 7. Write Ke13(A) = Kgr—1)11(A) + Ko(A) + Kepro1)8(A) =
Ko(r—1)+1(A) + Ko(A) + (r — ) Kes(A) = Ker1)41(A) + Ko(A) + 2(r — 1)AKg4. Sup-
pose the nonnegative integers p and g satisfy the obvious necessary conditions for a {pPs, ¢Cs }-
decomposition in Kg,13()\). Then we have 3p + 6¢ = w = 2(36r2 + 30r + 6) =
A(1872+15r43) = 18Ar?+15Ar+3X = 18Ar2+ 15 A7+51A—48) = 18 2 =33 \r+15A+36)7+
48\r—48\ = A(18r2—33r+15)+36A+48\r—48\ = 5 (361> —66r+30)+36A+48\r —48) =
2(36r2 — 36r — 30r +30) + 36\ + 48Ar — 48\ = 5(6r —5) x (6r — 6) -+ 36 + 48\r — 48\ =
2(6r—6+1)x (6r—6)+36A+48Ar—48\ = 5 (6(r—1)+1x6(r—1)+1-1)+36A+24A(2r-2) =
26(r—1)+1x6(r—1)+1-1)+22 +4x6X2r—2) = 3(6(r—1)+1x6(r—1)+1-1)+
2(72)+ (2r—=2)M x6 = 3(6(r—1)+1x6(r—1)+1—1)+ (9% 8) + (2r —2)24X = (3p; +
6q1)+ (3p2+6¢2)+(3p3+6¢3). By the induction hypothesis and Case 4, the graphs Kg(,_1)11 ()
and Ko () are fully { P4, Cs }-decomposable. By Lemma 3.3 and Remark 3.2, the graph K 4()\)
is fully { Py, C6 }-decomposable and hence Kg,3()) is fully { P, Cs}-decomposable.

n = 4 (mod 6). Let n = 6r + 4, with r > 3. Assume that Ke;+4()) is fully {Ps, Ce}-
decomposable if 1 < ¢ < 7. Write Ke4(\) = K3,—1)(A) + Ke(A) + Ka.6(A) + Ker—1),6(A) =
Ky@r—1)(A) + K6(A) + AKy 6 + (r — 1)A\Kg 6. Suppose the nonnegative integers p and ¢ satisfy
the obvious necessary conditions for a {pPs, ¢Cs }-decomposition in Ke,+4(A). Then we have
3p + 6g = MOrHAXOE) _ A(36,2 142 4 12) = A(187% + 217 +6) = 18Ar2 + 21Ar + 6 =
18AT2 + 21Ar + 42X — 36X = 18\ — 15X + 3\ + 15X + 24\ + 36)r — 36) = A(1872 —
157 +3) 4+ 15X + 24X + 36Ar — 36X = 5(36r? — 30r + 6) + 15X + 24X + 36\ — 36\ =
2(36r2 — 187 — 127 + 6) + 15X 4 24X + 36Ar — 361 = 5 (6r —2) x (6r —3) + 15X + 24\ +
36Ar —36A = 5(6r—2) x (6r —2) — 1+ 15X+ 24X+ 36 r —361 = 3(2(3r— 1) x2(3r— 1) —
1)+ 15X+ 2404 36A(r — 1) = 2(2(3r — 1) x2(3r — 1) = 1) + 32 1 24\ + 6 x 6A(r — 1) =
323@r —1) x2(3r—1) = 1)+ 3(30) + 24X+ (r — A6 x 6 = 3(2(3r — 1) x 2(3r — 1) —
1)+ 3(6 x5) 4+ 24X+ (r — 1)36A = (3p1 + 6q1) + (3p2 + 6¢2) + (3p3 + 63) + (3ps + 64s).
By the induction hypothesis and Case 1, the graphs Ky(3,_1)()\) and K¢()) are fully {Ps, Cs}-
decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs K¢ 4(\) and K¢ () are fully
{ P4, Cg}-decomposable and hence Kg,14(A) is fully { Py, Cs }-decomposable.

n =5 (mod 6). Let n = 6r + 5, with r > 3. Assume that K¢;5()) is fully {Ps, C}-
decomposable if 1 < t < r. Write Ke.15(A\) = Ker—1)11(A) + Ki1(A) + Kgr—1),10(A) =
K6(r71)+1(>‘) + Kll()\) + (7‘ — 1)K6710(>\) = K6(r71)+1 ()\) + KU()\) + (T’ — 1))\K674 + (7” —
1)AKs 6. Suppose the nonnegative integers p and ¢ satisfy the obvious necessary conditions for
a {pPy, qCs }-decomposition in Kg,;5()\). Then we have 3p + 6¢ = w = 2(36r* +
54r +20) = A\(18724-27r +10) = 18Ar% +27Ar + 10X = 1812 +60Ar — 33\r 4 70\ — 60\ =
18A72 —33Ar+ 15A+55A+24Ar — 24X +36 7 — 36\ = \(1872 =337+ 15)+55\+24\r — 24\ +
36Ar — 36X = 5 (3612 — 667 +30) + 55\ 4+ 24\r — 24\ + 36Ar — 36) = 5(36r% —36r —30r +
30) 4550+ 24\ — 24X +36Ar —36) = 2 (61 —5) x (67 —6) +55A+24Ar — 24\ +36Ar —36) =
2(6r —6+1) x (6r —6) + 55X+ 24Ar — 24X+ 36 r —36A = 5 (6(r— 1)+ 1 x 6(r—1)) +55 1+
24A(r—1)+36A(r—1) = 3(6(r—1)+1x6(r—1)+1—-1)+ 12 +4x6A(r—1)+6x6A(r—1) =
2(6(r—1)+1x6(r—1)+1-1)+2 (110)+(r—1)Adx6+(r—1)A6x6 = 5 (6(r—1)+1x6(r—1)+
1-1)42(11x10)+(r—1)24X+(r—1)36A = (3p1+64¢1)+ (3p2+6¢2)+ (3p3+643) +(3ps+6qs).
By the induction hypothesis and Case 6, the graphs Kg(,_1)11(A) and K () are fully { Py, C }-
decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs K¢ 4(\) and K¢ () are fully
{ P4, Cg}-decomposable and hence Kg,+5(A) is fully {Ps, Cs }-decomposable. O
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