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Abstract Let Pk+1 denote a path of length k, C` denote a cycle of length `, and Kn(λ)
denote the complete multigraph on n vertices in which every pair of distinct vertices is joined by
λ edges. In this paper, we proved that the necessary conditions are also sufficient for a {P4, C6}-
decomposition of Kn(λ).

1 Introduction

All graphs considered here are finite and undirected with no loops. For the standard graph-
theoretic terminology the reader is referred to [2]. A simple graph in which every pair of distinct
vertices is joined by an edge is called a complete graph, denoted by Kn. If more than one
edge joining two vertices are allowed, the resulting object is called a multigraph. Let Kn(λ)
denote the complete multigraph on n vertices in which every pair of distinct vertices is joined
by λ edges. A complete bipartite graph is a simple bipartite graph with bipartition (X,Y ) in
which each vertex of X is joined to each vertex of Y ; if |X| = a and |Y | = b, such a graph is
denoted by Ka,b. In Ka,b(λ), we label the vertices in the partite set X as {x1, x2, . . . , xa} and Y
as {xa+1, xa+2, . . . , xa+b}. A cycle is a closed trail with no repeated vertex other than the first
and last vertex. A cycle with ` edges is denoted by C`. A path is an open trail with no repeated
vertex. A path with k edges is denoted by Pk+1. The complete bipartite graph K1,m is called a
star and is denoted by Sm. For m ≥ 3, the vertex of degree m in Sm is called the center and any
vertex of degree 1 in Sm is called an end vertex.

Let G be a graph and let G1 be a subgraph of G. Then G\G1 is obtained from G by deleting
the edges of G1. Let G1 and G2 be subgraphs of G. The union G1 ∪ G2 of G1 and G2 is the
graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). We say that G1 and G2
are edge-disjoint if they have no edge in common. If G1 and G2 are edge-disjoint, we denote
their union by G1 +G2. A decomposition of a graph G is a collection of edge-disjoint subgraphs
G1, G2, . . . , Gn of G such that every edge of G is in exactly one Gi. Here it is said that G is
decomposed or decomposable into G1, G2, . . . , Gn. If G has a decomposition into p1 copies of
G1, . . . , pn copies of Gn, then we say that G has a {p1G1, . . . , pnGn}-decomposition. If such
a decomposition exists for all values of p1, . . . , pn satisfying necessary conditions, then we say
that G has a {G1, . . . , Gn}{p1,...,pn}-decomposition or G is fully {G1, . . . , Gn}-decomposable.

In [8], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the exis-
tence of {pG1, qG2}-decomposition of Kn(λ), when (G1, G2) ∈ {(Pn, Sn−1), (Cn, Sn−1), (Pn,
Cn)}. In [10], Shyu gave the necessary conditions for a {pPk+1, qC`}-decomposition of Kn and
proved that Kn is fully {Pk+1, Ck}-decomposable, when k is even, n is odd, n ≥ 5k + 1 and
settled the case k = 4 completely. In [11], Shyu proved that Kn is fully {P4, C3}-decomposable.
In [7], Jeevadoss and Muthusamy proved that Kn is fully {Pk+1, Ck}-decomposable, when k
is even and n is odd with n > 4k. In [6], Ilayaraja and Muthusamy proved that Kn is fully
{P4, C4}-decomposable. In [4], the authors proved that Kn(λ) is fully {P4, C4}-decomposable.
In [9], Sarvate and Zhang obtained necessary and sufficient conditions for the existence of a
{pP3, qC3}-decomposition of Kn(λ), when p = q. In [12], Shyu gave the necessary condi-
tions for a {pCk, qPk+1, rSk}-decomposition of Kn and proved that Kn is fully {C4, P5, S4}-
decomposable, when n is odd. In [3], the authors gave the necessary conditions for a
{pPk+1, qC`}-decomposition of Kn(λ) and proved that Kn(λ) is fully {P5, C6}-decomposable.
In this paper we prove that Kn(λ) is fully {P4, C6}-decomposable.
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2 Preliminaries

For convenience we denote V (Kn(λ)) = {x1, x2, . . . , xn}. The notation (x1x2 · · ·x`) denotes a
cycle with vertices x1, x2, . . . , x` and edges x1x2, x2x3, . . . , x`−1x`, x`x1, and [x1x2 · · ·xk+1] is
a path with vertices x1, x2, . . . , xk+1 and edges x1x2, x2x3, . . . , xkxk+1.

We recall here some results on Pk+1 and C`-decompositions that are useful for our proofs.

Theorem 2.1. (Bryantet al.[1]) Let λ, n and ` be integers with n, ` ≥ 3 and λ ≥ 1. There exists
a decomposition of Kn(λ) into C` if and only if ` ≤ n, λ(n−1) is even and ` divides λ(n2). There
exists a decomposition of Kn(λ) into C` and a perfect matching if and only if ` ≤ n, λ(n− 1) is
odd and ` divides λ(n2)−

n
2 .

Theorem 2.2. (Tarsi [13]) A necessary and sufficient conditions for the existence of a Pk+1-
decomposition of Kn(λ) is λ(n2) ≡ 0 (mod k) and n ≥ k + 1.

Theorem 2.3. (Hung-Chih Lee[5]) For positive integers λ, a, b and ` with λa ≡ λb ≡ ` ≡ 0
(mod 2) and min{a, b} ≥ `

2 ≥ 2, the multigraph Ka,b(λ) is C`-decomposable if one of the
following conditions holds: (i) λ is odd and ` divides ab, (ii) λ is even and ` divides 2ab (iii) λ is
even and λa or λb is divisible by `.

Theorem 2.4. (Truszczynski[14]) Let k be a positive integer and let a and b be positive even
integers such that a ≥ b. Ka,b(λ) has a Pk+1-decomposition if and only if a ≥ dk+1

2 e, b ≥ d
k
2 e

and λab ≡ 0 (mod k).

In [3], the authors discussed the necessary conditions for a {pPk+1, qC`}-decomposition of
Kn(λ) when λ ≥ 1, which is as follows:

Theorem 2.5. (Chinnavediet al. [3]) Let λ, n, k and ` be positive integers such that n ≥
max{`, k + 1}. If Kn(λ) can be decomposed into p copies of Pk+1 and q copies of C` for
nonnegative integers p and q, then (i) pk + q` = λ(n2) (ii) p 6= 1 if n is odd or n and λ are both
even and (iii) p ≥ n

2 if λ is odd and n is even.

We prove that the above necessary conditions are sufficient for k = 3 and ` = 6 in Theorem
3.5.

3 Main Result

In this section, we discuss a {P4, C6}{p,q}-decomposition of Kn(λ), when λ ≥ 1. By Theorem
2.5, it is enough to consider the {pP4, qC6}-decomposition of Kn(λ), for n ≥ 6.

Remark 3.1. Necessary conditions for the existence of a {P4, C6}{p,q}-decomposition in Kn(λ)
are satisfied when n ≡ 0, 1, 3, 4 (mod 6) if λ ≥ 1 and n ≡ 2, 5 (mod 6) if λ ≡ 0, 3 (mod 6), (or
λ ≡ 0 (mod 3)). i.e., there does not exist nonnegative integers p and q satisfying 3p+6q = λ(n2)
when n ≡ 2, 5 (mod 6) if λ ≡ 1, 2, 4, 5 (mod 6).

Remark 3.2. If G is C`-decomposable and ` ≡ 0 (mod k), then G is fully {Pk+1, C`}- decom-
posable as each C` can be decomposed into `

k copies of Pk+1.

The proof of the following two lemmas are immediate from Theorem 2.3 and Remark 3.2.

Lemma 3.3. If p and q are nonnegative integers such that 3p + 6q = 24, then K6,4 is fully
{P4, C6}-decomposable.

Lemma 3.4. If p and q are nonnegative integers such that 3p + 6q = 36, then K6,6 is fully
{P4, C6}-decomposable.

We now prove our main result.

Theorem 3.5. For any nonnegative integers p and q and any integer n ≥ 6, there exists a
{P4, C6}{p,q}-decomposition of Kn(λ) if and only if (i) 3p + 6q = λ(n2), (ii) p ≥ n

2 , if λ is
odd and n is even (iii) p 6= 1 if otherwise.



Kn(λ) IS FULLY {P4, C6}-DECOMPOSABLE 3

Proof. The necessary part follows from Theorem 2.5. By Theorem 2.1 and Remark 3.2, Kn(λ)
is fully {P4, C6}-decomposable if λ(n2) ≡ 0 (mod 6), n is odd or n and λ are both even. First
we prove the result for 6 ≤ n ≤ 17 with λ is odd; then we use induction to settle the remaining
cases. As we discuss {pP4, qC6}-decompositions of Kn(λ) for all possible choices of p and q,
we have the following cases:
Case 1: n = 6.

If λ = 1, then (p, q) ∈ {(3, 1), (5, 0)}. The graph K6 can be decomposed into 3P4 :
[x2x5x1x3], [x1x4x2x6], [x4x6x3x5] and a C6 : (x1x2x3x4x5x6). By Theorem 2.2, K6 is
{5P4, 0C6}-decomposable.

If λ ≥ 3, then we write K6(λ) = K6(λ− 1) +K6 = λ−1
2 K6(2) +K6. By Theorem 2.1 and

Remark 3.2, the graphK6(2) is {P4, C6}{p,q}-decomposable. ThereforeK6(λ) is fully {P4, C6}-
decomposable.
Case 2: n = 7.

If λ = 1, then (p, q) ∈ {(3, 2), (5, 1), (7, 0)}. The graph K7 can be decomposed into
3P4 : [x3x7x4x6], [x3x1x7x2], [x2x5x7x6] and 2C6 : (x1x2x3x4x5x6), (x1x4x2x6x3x5). For
(p, q) ∈ {(5, 1), (7, 0)}, a {pP4, qC6}-decomposition of K7 follows easily from a {3P4, 2C6}-
decomposition ofK7 as C6 can be decomposed into 2 copies of P4. By Theorem 2.1 and Remark
3.2, the graph K7(2) is fully {P4, C6}-decomposable.

If λ ≥ 3, then we write K7(λ) = K7(λ − 1) +K7 = λ−1
2 K7(2) +K7. Therefore K7(λ) is

fully {P4, C6}-decomposable.
Case 3: n = 8.

If λ = 3, then (p, q) ∈ {(4, 12), (6, 11), (8, 10), . . . , (28, 0)} (we see that the values of p in-
creases by 2 and the values of q decreases by 1). The graph K8(3) can be decomposed into 4P4 :
[x2x3x5x6], [x7x3x8x4], [x8x4x2x3], [x5x6x7x1] and 12C6 : (x7x1x3x2x8x5), (x7x1x5x6x8x4), 2
copies of (x8x2x4x7x3x5), (x8x3x1x5x7x6), 3 copies of (x1x8x7x2x6x4), (x1x2x5x4x3x6). For
(p, q) ∈ {(6, 11), (8, 10), (10, 9), . . . , (28, 0)}, a {pP4, qC6}-decomposition of K8(3) follows
easily from a {4P4, 12C6}-decomposition of K8(3) as C6 can be decomposed into 2 copies of
P4. By Theorem 2.1 and Remark 3.2, the graph K8(6) is fully {P4, C6}-decomposable.

If λ ≥ 9, then we write K8(λ) = K8(λ−3)+K8(3) = λ−3
6 K8(6)+K8(3). Therefore K8(λ)

is fully {P4, C6}-decomposable.
Case 4: n = 9.

By Theorem 2.1 and Remark 3.2, the graph K9(λ) is fully {P4, C6}-decomposable.
Case 5: n = 10.

If λ = 1, then (p, q) ∈ {(5, 5), (7, 4), (9, 3), . . . , (15, 0)}. We write K10 = (K10\K6) +
K6. The graph K10\K6 can be decomposed into 2P4 : [x10x7x8x9], [x8x6x9x7] and 4C6 :
(x10x1x9x2x8x3), (x10x2x7x1x8x4), (x10x5x9x3x7x6), (x10x9x4x7x5x8). By combining these
copies of P4 and C6 along with the copies of P4 and C6 inK6, we get the decompositions (p, q) ∈
{(5, 5), (7, 4)}. For (p, q) ∈ {(9, 3), (11, 2), (13, 1), (15, 0)}, a {pP4, qC6}-decomposition of
K10 follows easily from a {7P4, 4C6}-decomposition of K10 as C6 can be decomposed into 2
copies of P4. By Theorem 2.1 and Remark 3.2, the graphK10(2) is fully {P4, C6}-decomposable.

If λ ≥ 3, then we write K10(λ) = K10(λ− 1)+K10 =
λ−1

2 K10(2)+K10. Therefore K10(λ)
is fully {P4, C6}-decomposable.
Case 6: n = 11.

If λ = 3, then (p, q) ∈ {(3, 26), (5, 25), (7, 24), . . . , (55, 0)}. We write
K11(3) = (K11(3)\K7(3)) +K7(3). The graph K11(3)\K7(3) can be decomposed into 17C6 :
(x8x9x5x10x11x2), (x8x10x4x11x9x7), (x11x9x4x8x10x1), (x3x9x1x8x10x11), (x8x9x11x6x10x3),
(x8x5x11x10x2x9), 3 copies (x11x8x6x9x10x7), 2 copies of (x11x1x10x2x9x3), (x8x4x10x5x9x7),
(x11x2x8x1x9x4), (x10x3x8x5x11x6). By combining these copies of P4 and C6 along with the
copies of P4 and C6 in K7(3), we get the decompositions (p, q) ∈ {(3, 26), (5, 25), (7, 24),
(9, 23), (11, 22), (13, 21), (15, 20), (17, 19), (19, 18), (21, 17)}. For (p, q) ∈ {(23, 16), (25, 15),
(27, 14), . . . , (55, 0)}, a {pP4, qC6}-decomposition ofK11(3) follows easily from a {21P4, 17C6}
-decomposition of K11(3) as C6 can be decomposed into 2 copies of P4. By Theorem 2.1 and
Remark 3.2, the graph K11(6) is fully {P4, C6}-decomposable.

If λ ≥ 9, then we write K11(λ) = K11(λ− 3) +K11(3) = λ−3
6 K11(6) +K11(3). Therefore

K11(λ) is fully {P4, C6}-decomposable.
Case 7: n = 12.

By taking K12(λ) = 2K6(λ) + λK6,6, we get all the possible decompositions.
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Case 8: n = 13.
By Theorem 2.1 and Remark 3.2, the graph K13(λ) is fully {P4, C6}-decomposable.

Case 9: n = 14.
By taking K14(λ) = K8(λ) +K6(λ) + 2λK4,6, we get all the possible decompositions.

Case 10: n = 15.
By taking K15(λ) = K9(λ) +K7(λ) + 2λK4,6, we get all the possible decompositions.

Case 11: n = 16.
By takingK16(λ) = K10(λ)+K6(λ)+λK4,6+λK6,6, we get all the possible decompositions.

Case 12: n = 17.
By Theorem 2.1 and Remark 3.2, the graph K17(λ) is fully {P4, C6}-decomposable.
Now we prove the result for n > 17. We apply by mathematical induction on n and split the

proof into six cases as follows.
n ≡ 0 (mod 6). Let n = 6r, with r ≥ 3. Assume thatK6t(λ) is fully {P4, C6}-decomposable

if 1 ≤ t < r. Write K6r(λ) = K6(r−2)(λ) +K12(λ) +K6(r−2),12(λ) = K6(r−2)(λ) +K12(λ) +
(r − 2)K6,12(λ) = K6(r−2)(λ) + K12(λ) + (3r − 6)λK6,4. Suppose the nonnegative integers
p and q satisfy the obvious necessary conditions for a {pP4, qC6}-decomposition in K6r(λ).
Then we have 3p + 6q = λ(6r)×(6r−1)

2 = λ
2 (36r2 − 6r) = λ(18r2 − 3r) = 18λr2 − 3λr =

18λr2 − 3λr + 144λ − 144λ = 18λr2 − 75λr + 78λ + 66λ + 72λr − 144λ = λ(18r2 −
75r + 78) + 66λ+ 72λr − 144λ = λ

2 (36r2 − 150r + 156) + 66λ+ 72λr − 144λ = λ
2 (36r2 −

78r − 72r + 156) + 66λ + 72λr − 144λ = λ
2 (6r − 12) × (6r − 13) + 66λ + 72λr − 144λ =

λ
2 (6r−12)×(6r−12−1)+66λ+72λr−144λ = λ

2 (6(r−2)×6(r−2)−1)+66λ+24λ(3r−6) =
λ
2 (6(r− 2)× 6(r− 2)− 1) + 132λ

2 + 4× 6λ(3r− 6) = λ
2 (6(r− 2)× 6(r− 2)− 1) + λ

2 (132) +
(3r − 6)λ4 × 6 = λ

2 (6(r − 2) × 6(r − 2) − 1) + λ
2 (12 × 11) + (3r − 6)24λ = (3p1 + 6q1) +

(3p2 + 6q2) + (3p3 + 6q3). By the induction hypothesis and Case 7, the graphs K6(r−2)(λ) and
K12(λ) are fully {P4, C6}-decomposable. By Lemma 3.3 and Remark 3.2, the graph K6,4(λ) is
fully {P4, C6}-decomposable and hence K6r(λ) is fully {P4, C6}-decomposable.

n ≡ 1 (mod 6). Let n = 6r + 1, with r ≥ 3. Assume that K6t+1(λ) is fully {P4, C6}-
decomposable if 1 ≤ t < r. Write K6r+1(λ) = K6(r−2)+1(λ) + K13(λ) + K6(r−2),12(λ) =
K6(r−2)+1(λ) + K13(λ) + (r − 2)K6,12(λ) = K6(r−2)+1(λ) + K13(λ) + (3r − 6)λK6,4. Sup-
pose the nonnegative integers p and q satisfy the obvious necessary conditions for a {pP4, qC6}-
decomposition in K6r+1(λ). Then we have 3p+ 6q = λ(6r+1)×(6r)

2 = λ
2 (36r2 + 6r) = λ(18r2 +

3r) = 18λr2+3λr = 18λr2+3λr+144λ−144λ = 18λr2−69λr+66λ+78λ+72λr−144λ =
λ(18r2 − 69r + 66) + 78λ+ 72λr − 144λ = λ

2 (36r2 − 138r + 132) + 78λ+ 72λr − 144λ =
λ
2 (36r2−72r−66r+132)+78λ+72λr−144λ = λ

2 (6r−11)×(6r−12)+78λ+72λr−144λ =
λ
2 (6r−12+1)×(6r−12)+78λ+24λr−144λ = λ

2 (6(r−2)+1×6(r−2))+78λ+24λ(3r−6) =
λ
2 (6(r − 2) + 1 × 6(r − 2) + 1 − 1) + 156λ

2 + 4 × 6λ(3r − 6) = λ
2 (6(r − 2) + 1 × 6(r − 2) +

1 − 1) + λ
2 (156) + (3r − 6)λ4 × 6 = λ

2 (6(r − 2) + 1 × 6(r − 2) + 1 − 1) + λ
2 (13 × 12) +

(3r − 6)24λ = (3p1 + 6q1) + (3p2 + 6q2) + (3p3 + 6q3). By the induction hypothesis and
Case 8, the graphs K6(r−2)+1(λ) and K13(λ) are fully {P4, C6}-decomposable. By Lemma 3.3
and Remark 3.2, the graph K6,4(λ) is fully {P4, C6}-decomposable and hence K6r+1(λ) is fully
{P4, C6}-decomposable.

n ≡ 2 (mod 6). Let n = 6r + 2, with r ≥ 3. Assume that K6t+2(λ) is fully {P4, C6}-
decomposable if 1 ≤ t < r. Write K6r+2(λ) = K6(r−1)(λ) + K8(λ) + K6(r−1),8(λ) =
K6(r−1)(λ)+K8(λ)+(r−1)K6,8(λ) = K6(r−1)(λ)+K8(λ)+2(r−1)λK6,4. Suppose the nonneg-
ative integers p and q satisfy the obvious necessary conditions for a {pP4, qC6}-decomposition
inK6r+2(λ). Then we have 3p+6q = λ(6r+2)×(6r+1)

2 = λ
2 (36r2+18r+2) = λ(18r2+9r+1) =

18λr2 + 9λr + λ = 18λr2 + 9λr + 49λ− 48λ = 18λr2 − 39λr + 21λ+ 28λ+ 48λr − 48λ =
λ(18r2 − 39r + 21) + 28λ + 48λr − 48λ = λ

2 (36r2 − 78r + 42) + 28λ + 48λr − 48λ =
λ
2 (36r2− 42r− 36r+ 42)+ 28λ+ 48λr− 48λ = λ

2 (6r− 6)× (6r− 7)+ 28λ+ 48λr− 48λ =
λ
2 (6r−6)×((6r−6)−1)+28λ+48λr−48λ = λ

2 (6(r−1)×6(r−1)−1)+28λ+24λ(2(r−1)) =
λ
2 (6(r− 1)× 6(r− 1)− 1) + 56λ

2 + 4× 6λ(2(r− 1)) = λ
2 (6(r− 1)× 6(r− 1)− 1) + λ

2 (56) +
2(r − 1)λ4 × 6 = λ

2 (6(r − 1) × 6(r − 1) − 1) + λ
2 (8 × 7) + 2(r − 1)24λ = (3p1 + 6q1) +

(3p2 + 6q2) + (3p3 + 6q3). By the induction hypothesis and Case 3, the graphs K6(r−1)(λ) and
K8(λ) are fully {P4, C6}-decomposable. By Lemma 3.3 and Remark 3.2, the graph K6,4(λ) is
fully {P4, C6}-decomposable and hence K6r+2(λ) is fully {P4, C6}-decomposable.
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n ≡ 3 (mod 6). Let n = 6r + 3, with r ≥ 3. Assume that K6t+3(λ) is fully {P4, C6}-
decomposable if 1 ≤ t < r. Write K6r+3(λ) = K6(r−1)+1(λ) + K9(λ) + K6(r−1),8(λ) =
K6(r−1)+1(λ) + K9(λ) + (r − 1)K6,8(λ) = K6(r−1)+1(λ) + K9(λ) + 2(r − 1)λK6,4. Sup-
pose the nonnegative integers p and q satisfy the obvious necessary conditions for a {pP4, qC6}-
decomposition in K6r+3(λ). Then we have 3p + 6q = λ(6r+3)×(6r+2)

2 = λ
2 (36r2 + 30r + 6) =

λ(18r2+15r+3) = 18λr2+15λr+3λ = 18λr2+15λr+51λ−48λ = 18λr2−33λr+15λ+36λ+
48λr−48λ = λ(18r2−33r+15)+36λ+48λr−48λ = λ

2 (36r2−66r+30)+36λ+48λr−48λ =
λ
2 (36r2− 36r− 30r+ 30)+ 36λ+ 48λr− 48λ = λ

2 (6r− 5)× (6r− 6)+ 36λ+ 48λr− 48λ =
λ
2 (6r−6+1)×(6r−6)+36λ+48λr−48λ = λ

2 (6(r−1)+1×6(r−1)+1−1)+36λ+24λ(2r−2) =
λ
2 (6(r−1)+1×6(r−1)+1−1)+ 72λ

2 +4×6λ(2r−2) = λ
2 (6(r−1)+1×6(r−1)+1−1)+

λ
2 (72)+(2r−2)λ4×6 = λ

2 (6(r−1)+1×6(r−1)+1−1)+ λ
2 (9×8)+(2r−2)24λ = (3p1 +

6q1)+(3p2+6q2)+(3p3+6q3). By the induction hypothesis and Case 4, the graphsK6(r−1)+1(λ)
and K9(λ) are fully {P4, C6}-decomposable. By Lemma 3.3 and Remark 3.2, the graph K6,4(λ)
is fully {P4, C6}-decomposable and hence K6r+3(λ) is fully {P4, C6}-decomposable.

n ≡ 4 (mod 6). Let n = 6r + 4, with r ≥ 3. Assume that K6t+4(λ) is fully {P4, C6}-
decomposable if 1 ≤ t < r. Write K6r+4(λ) = K2(3r−1)(λ)+K6(λ)+K4,6(λ)+K6(r−1),6(λ) =
K2(3r−1)(λ) +K6(λ) + λK4,6 + (r − 1)λK6,6. Suppose the nonnegative integers p and q satisfy
the obvious necessary conditions for a {pP4, qC6}-decomposition in K6r+4(λ). Then we have
3p+ 6q = λ(6r+4)×(6r+3)

2 = λ
2 (36r2 + 42r+ 12) = λ(18r2 + 21r+ 6) = 18λr2 + 21λr+ 6λ =

18λr2 + 21λr + 42λ − 36λ = 18λr2 − 15λr + 3λ + 15λ + 24λ + 36λr − 36λ = λ(18r2 −
15r + 3) + 15λ + 24λ + 36λr − 36λ = λ

2 (36r2 − 30r + 6) + 15λ + 24λ + 36λr − 36λ =
λ
2 (36r2 − 18r − 12r + 6) + 15λ+ 24λ+ 36λr − 36λ = λ

2 (6r − 2)× (6r − 3) + 15λ+ 24λ+
36λr−36λ = λ

2 (6r−2)× (6r−2)−1+15λ+24λ+36λr−36λ = λ
2 (2(3r−1)×2(3r−1)−

1) + 15λ+ 24λ+ 36λ(r− 1) = λ
2 (2(3r− 1)× 2(3r− 1)− 1) + 30λ

2 + 24λ+ 6× 6λ(r− 1) =
λ
2 (2(3r − 1) × 2(3r − 1) − 1) + λ

2 (30) + 24λ+ (r − 1)λ6 × 6 = λ
2 (2(3r − 1) × 2(3r − 1) −

1) + λ
2 (6× 5) + 24λ+ (r − 1)36λ = (3p1 + 6q1) + (3p2 + 6q2) + (3p3 + 6q3) + (3p4 + 6q4).

By the induction hypothesis and Case 1, the graphs K2(3r−1)(λ) and K6(λ) are fully {P4, C6}-
decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs K6,4(λ) and K6,6(λ) are fully
{P4, C6}-decomposable and hence K6r+4(λ) is fully {P4, C6}-decomposable.

n ≡ 5 (mod 6). Let n = 6r + 5, with r ≥ 3. Assume that K6t+5(λ) is fully {P4, C6}-
decomposable if 1 ≤ t < r. Write K6r+5(λ) = K6(r−1)+1(λ) + K11(λ) + K6(r−1),10(λ) =
K6(r−1)+1(λ) + K11(λ) + (r − 1)K6,10(λ) = K6(r−1)+1(λ) + K11(λ) + (r − 1)λK6,4 + (r −
1)λK6,6. Suppose the nonnegative integers p and q satisfy the obvious necessary conditions for
a {pP4, qC6}-decomposition in K6r+5(λ). Then we have 3p+ 6q = λ(6r+5)×(6r+4)

2 = λ
2 (36r2 +

54r+20) = λ(18r2 +27r+10) = 18λr2 +27λr+10λ = 18λr2 +60λr−33λr+70λ−60λ =
18λr2−33λr+15λ+55λ+24λr−24λ+36λr−36λ = λ(18r2−33r+15)+55λ+24λr−24λ+
36λr− 36λ = λ

2 (36r2− 66r+ 30)+ 55λ+ 24λr− 24λ+ 36λr− 36λ = λ
2 (36r2− 36r− 30r+

30)+55λ+24λr−24λ+36λr−36λ = λ
2 (6r−5)×(6r−6)+55λ+24λr−24λ+36λr−36λ =

λ
2 (6r−6+1)×(6r−6)+55λ+24λr−24λ+36λr−36λ = λ

2 (6(r−1)+1×6(r−1))+55λ+
24λ(r−1)+36λ(r−1) = λ

2 (6(r−1)+1×6(r−1)+1−1)+ 110λ
2 +4×6λ(r−1)+6×6λ(r−1) =

λ
2 (6(r−1)+1×6(r−1)+1−1)+λ

2 (110)+(r−1)λ4×6+(r−1)λ6×6 = λ
2 (6(r−1)+1×6(r−1)+

1−1)+λ
2 (11×10)+(r−1)24λ+(r−1)36λ = (3p1+6q1)+(3p2+6q2)+(3p3+6q3)+(3p4+6q4).

By the induction hypothesis and Case 6, the graphs K6(r−1)+1(λ) and K11(λ) are fully {P4, C6}-
decomposable. By Lemmas 3.3, 3.4 and Remark 3.2, the graphs K6,4(λ) and K6,6(λ) are fully
{P4, C6}-decomposable and hence K6r+5(λ) is fully {P4, C6}-decomposable.
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