C-AVERAGE ECCENTRIC GRAPHS

T. Sathiyanandham and S. Arockiaraj
Communicated by S. Monikandan

MSC 2010 Classifications: 05C12.
Keywords and phrases: C-average eccentric vertex, C-average eccentric graph.

Abstract

The C-average eccentric graph $A E_{C}(G)$ of a graph G has the vertex set as in G and any two vertices u and v are adjacent in $A E_{C}(G)$ if either they are at a distance $\left\lceil\frac{e(u)+e(v)}{2}\right\rceil$ while G is connected or they belong to different components while G is disconnected. A graph G is called a C-average eccentric graph if $A E_{C}(H) \cong G$ for some graph H. The main aim of this paper is to find a necessary and sufficient condition for a graph to be a C-average eccentric graph.

1 Introduction

Throughout this paper, a graph means a non trivial simple graph. For other graph theoretic notation and terminology, we follow [3,5]. The distance $d(u, v)$ between a pair of vertices u and v in a graph G is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is the minimum eccentricity among the eccentricities of the vertices of G and the diameter $d(G)$ of G is the maximum eccentricity among the eccentricities of the vertices of G. The concept of average eccentricity (also called as eccentric mean) was introduced by Buckley and Harary [3]. A graph G for which $r(G)=d(G)$ is called a self-centered graph of radius $r(G)$. A vertex v is called an eccentric vertex of a vertex u if $d(u, v)=e(u)$. A vertex v of G is called an eccentric vertex of G if it is the eccentric vertex of some vertex of G. The concept of antipodal graph was initially introduced by Singleton [6] and was further expanded by Aravamuthan and Rajendran [1, 2]. The antipodal graph of a graph G, denoted by $A(G)$, is the graph on the same vertices as of G, two vertices being adjacent if the distance between them is equal to the diameter of G. A graph is said to be antipodal if it is the antipodal $A(H)$ of some graph H. The concept of radial graph was introduced by Kathiresan and Marimuthu [4]. The radial graph $R(G)$ based on G has the vertex set as in G and two vertices are adjacent if the distance between them is equal to the radius of G while G is connected. If G is disconnected, then two vertices are adjacent in $R(G)$ if they belong to different components of G. A graph G is called a radial graph if $R(H)=G$ for some graph H. Motivated by these works, we introduce a new graph called C-average eccentric graph. Two vertices u and v of a graph are said to be C-average eccentric to each other if $d(u, v)=\left\lceil\frac{e(u)+e(v)}{2}\right\rceil$. The C-average eccentric graph of a graph G, denoted by $A E_{C}(G)$, has the vertex set as in G and any two vertices u and v are adjacent in $A E_{C}(G)$ if either they are at a distance $d(u, v)=\left\lceil\frac{e(u)+e(v)}{2}\right\rceil$ while G is connected or they belong to different components while G is disconnected. A graph G is called a C-average eccentric graph if $A E_{C}(H) \cong G$ for some graph $H . K_{1} \cup\left(K_{4}-e\right)$ is neither an antipodal graph nor a radial graph but it is a C-average eccentric graph since $A E_{C}\left(K_{1,4} \cup\{e\}\right)$ is isomorphic to $K_{1} \cup\left(K_{4}-e\right)$. So the notion of C-average eccentric graph, radial graph and antipodal graph are different.

In this paper, we obtain a necessary and sufficient condition for a graph to be a C-average eccentric graph.
Theorem 1.1. [5] If G is a simple graph with diameter at least 3 , then \bar{G} has diameter at most 3 .
Theorem 1.2. [5] If G is a simple graph with diameter at least 4 , then \bar{G} has diameter at most 2 .

Theorem 1.3. [5] If G is a simple graph with radius at least 3 , then \bar{G} has radius at most 2 .
Theorem 1.4. [3] If G is a self centered graph with radius at least 3 , then \bar{G} is a self centered graph of radius 2.

Theorem 1.5. [4] Let C_{n} be any cycle on $n \geq 4$ vertices. Then $R\left(C_{n}\right)=\frac{n}{2} K_{2}$ if n is even and $R\left(C_{n}\right) \cong C_{n}$ if n is odd.

Theorem 1.6. [2] $A(G)=G$ if and only if G is complete.
Let $F_{11}, F_{12}, F_{22}, F_{23}, F_{24}, F_{3}$ denote the set of all connected graphs G for which $r(G)=$ $d(G)=1, r(G)=1$ and $d(G)=2, r(G)=d(G)=2, r(G)=2$ and $d(G)=3, r(G)=2$ and $d(G)=4, r(G) \geq 3$ respectively and F_{4} denote the set of all disconnected graphs.

$2 C$-average eccentric graph of some classes of graphs

Remark 2.1. If G is either a self centered graph or a disconnected graph, then $A E_{C}(G)=$ $R(G)=A(G)$.

Proposition 2.2. Let P_{n} be any path on $n \geq 1$ vertices. Then

$$
A E_{C}\left(P_{n}\right)= \begin{cases}P_{n}, & \text { if } n=1,2 \\ P_{2} \cup \bar{K}_{n-2}, & \text { if } n \geq 3\end{cases}
$$

Proof. When $n=1,2, A E_{C}\left(P_{n}\right)=P_{n}$. Let G be a path $v_{1} v_{2} v_{3} \ldots v_{n}$ with $n \geq 3$ vertices. Then $e\left(v_{i}\right)=n-i$ for $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, e\left(v_{i}\right)=i-1$ for $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n$ and $d\left(v_{i}, v_{j}\right)=j-i$ for $1 \leq i, j \leq n$. This implies that the C-average eccentric pairs in G is $\left(v_{1}, v_{n}\right)$ and the remaining pairs are not C-average eccentric pairs in G. Hence the C-average eccentric pair of vertices v_{1} and v_{n} form the graph $A E_{C}(G)$. In $A E_{C}(G), v_{1} v_{n}$ is a path on 2 vertices and the remaining vertices form \bar{K}_{n-2}.

Proposition 2.3. Let C_{n} be any cycle on $n \geq 3$ vertices. Then

$$
A E_{C}\left(C_{n}\right) \cong \begin{cases}\frac{n}{2} K_{2}, & \text { if } n \text { is even } \\ C_{n}, & \text { if } n \text { is odd }\end{cases}
$$

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices of the cycle C_{n}. If $n=3$, then $r\left(C_{3}\right)=1$ and $e\left(v_{i}\right)=1$ for $i=1,2,3$. Hence $A E_{C}\left(C_{3}\right) \cong C_{3}$. If $n \geq 4$, then the result follows from Remark 2.1 and Theorem 1.5.

Remark 2.4. Let G_{i} be a connected graph with r_{i} vertices for $i=1,2, \ldots, n$. If G is the union of $G_{1}, G_{2}, \ldots, G_{n}$, then $A E_{C}(G)=K_{r_{1}, r_{2}, \ldots, r_{n}}$.

Proposition 2.5. $A E_{C}\left(K_{r_{1}, r_{2}, \ldots, r_{n}}\right)=K_{r_{1}} \cup K_{r_{2}} \cup \ldots \cup K_{r_{n}}$ where $r_{1}, r_{2}, \ldots, r_{n} \geq 2$.
Proof. Since radius and diameter are 2, any two vertices are non adjacent in $A E_{C}\left(K_{r_{1}, r_{2}, \ldots, r_{n}}\right)$ whenever the vertices are in different partitions and adjacent whenever they are in same partition.

Proposition 2.6. $A E_{C}\left(K_{r}+K_{r_{1}, r_{2}, \ldots, r_{n}}\right)=K_{r} \cup K_{r_{1}} \cup K_{r_{2}} \cup \ldots \cup K_{r_{n}}$ where $r_{1}, r_{2}, \ldots, r_{n} \geq 2$ and $r \geq 1$.

Proof. Let $G=K_{r}+K_{r_{1}, r_{2}, \ldots, r_{n}}$ and $u_{1}, u_{2}, \ldots, u_{r}$ be the full degree vertices in G. By definition, u_{i} and u_{j} are adjacent in $A E_{C}(G)$ for $1 \leq i, j \leq r$. For each non full degree vertex v in G, each $u_{i}, 1 \leq i \leq r$ is non adjacent to v in $A E_{C}(G)$. For any two non full degree vertices v and w in $G,\left\lceil\frac{e(v)+e(w)}{2}\right\rceil=2 \neq d(v, w)$ while $v w \in E(G)$ and is equal to $d(v, w)$ while $v w \neq E(G)$. Thus $A E_{C}(G)=K_{r} \cup K_{r_{1}} \cup K_{r_{2}} \cup \ldots \cup K_{r_{n}}$

Lemma 2.7. If G is a connected graph having no full degree vertex, then $A E_{C}(G)$ has no full degree vertex.

Proof. Since G has no full degree vertex, $e(u) \geq 2$ for all $u \in V(G)$. uv $\notin E\left(A E_{C}(G)\right)$ whenever $u v \in E(G)$. Hence $A E_{C}(G)$ has no full degree vertex.
Theorem 2.8. Let G be a graph on n vertices. Then a vertex is a full degree vertex in $A E_{C} G$) if and only if either it is an isolated vertex in G or G is complete.
Proof. If v is an isolated vertex in G, then by definition, v is the full degree vertex in $A E_{C}(G)$. If G is complete, then by Remark 2.1 and Theorem 1.6, $A E_{C}(G)=G$.

Suppose v is a full degree vertex in $A E_{C}(G)$. If G is a disconnected graph having m components say $H_{1}, H_{2}, \ldots, H_{m}$ with $\left|H_{i}\right|=n_{i}>1$ for $i=1,2, \ldots, m$, then by Remark 2.4, $A E_{C}(G)=K_{n_{1}, n_{2}, \ldots, n_{m}}$, a contracdiction. So G is disconnected with at least one isolated vertex and v is one among them. Suppose G is a connected graph with no full degree vertex. Then by Lemma 2.7, $A E_{C}(G)$ has no full degree vertex, a contradiction. Hence G should have a full degree vertex. Let w be a full degree vertex in G. If v is not a full degree vertex in G, then $e(w)=1$ and $e(v)=2$ in G. Hence $1=d(v, w) \neq\left\lceil\frac{e(v)+e(w)}{2}\right\rceil$, a contradiction to the fact that $v w \in A E_{C}(G)$. If v is a full degree vertex in G and w is a non full degree vertex in G, then $e(v)=1$ and $e(w)=2$ in G and hence $v w \notin E\left(A E_{C}(G)\right)$, a contradiction. Hence all the vertices in G are the full degree vertices in G.

Theorem 2.9. Let G be a graph on $n \geq 3$ vertices and m is any positive integer less than n. Then $A E_{C}(G)$ has exactly m full degree vertices if and only if G has exactly m isolated vertices.
Proof. Suppose $A E_{C}(G)$ has exactly m full degree vertices. Let $v_{1}, v_{2}, \ldots, v_{m}$ be the full degree vertices in $A E_{C}(G)$. Then by Theorem 2.8, either G is complete or $v_{1}, v_{2}, \ldots, v_{m}$ are the isolated vertices in G. If G is complete, then by Theorem $1.6, A E_{C}(G)$ is complete, a contradiction. If $w \neq v_{i}$ is an isolated vertex in G for $i=1,2, \ldots, m$, then by Theorem 2.8, w is a full degree vertex in $A E_{C}(G)$. So $A E_{C}(G)$ has $m+1$ full degree vertices, a contradiction. Hence G has exactly m isolated vertices.

Suppose G has exactly m isolated vertices, say $v_{1}, v_{2}, \ldots, v_{m}$. Then by Theorem $2.8, v_{1}, v_{2}, \ldots$, v_{m} are the full degree vertices in $A E_{C}(G)$. If $w \neq v_{i}$ is a full degree vertex in $A E_{C}(G)$ for $i=1,2, \ldots, m$, then by Theorem 2.8, w is an isolated vertex in G or G is complete. So G has more than m isolated vertices, a contradiction. Hence $A E_{C}(G)$ has exactly m full degree vertices.

Theorem 2.10. Let G be a graph on n vertices. If G has $r(<n)$ number of full degree vertices $v_{1}, v_{2}, \ldots, v_{r}$, then $A E_{C}(G)=K_{r} \cup\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{r}$ be the full degree vertices and $v_{r+1}, v_{r+2} \ldots, v_{n}$ be the remaining vertices of G. Let $w v \in E\left(A E_{C}(G)\right)$. If $w, v \in\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, then $w v=v_{i} v_{j} \in E(G)$ for some i and j. If none of w and v is in $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, then $e(w)=e(v)=2$. This implies that $w v \notin E(G)$. Therefore $w v \notin E\left(G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}\right)$ and hence $w v \in E\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$

Suppose $w v \in E\left(K_{r} \cup\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)\right)=E\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right) \cup E\left(K_{r}\right)$. If $w v \in$ $E\left(K_{r}\right)$, then $w v \in E\left(A E_{C}(G)\right)$. If $w v \in E\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right), w v \notin E\left(G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}\right)$. This implies that $w v \notin E(G)$. Then $d(w, v)=2=\left\lceil\frac{e(w)+e(v)}{2}\right\rceil$ and hence $w v \in E\left(A E_{C}(G)\right)$. Thus $A E_{C}(G)=K_{r} \cup\left(\overline{G-\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}}\right)$.
Corollary 2.11. If $G \in F_{12}$ has at least two full degree vertices, then $\bar{G} \subset A E_{C}(G)$.
Theorem 2.12. Let G be a graph on n vertices. Then for any positive integer $l \leq n, A E_{C}(G)=$ $K_{l}+\bar{K}_{n-l}$ if and only if any one of the following conditions hold
(1) G is totally disconnected
(2) G is complete
(3) G is $l K_{1} \cup H$ where H is a connected component with $|H|=n-l \geq 2$.

Proof. If (1) holds, then by definition, $A E_{C}(G)=K_{n}$. If (2) holds, then by Remark 2.1 and Theorem 1.6, $A E_{C}(G)=K_{n}$. If (3) holds, then by Remark 2.4, $A E_{C}(G)=K_{l}+\bar{K}_{n-l}$.

Suppose $A E_{C}(G)=K_{l}+\bar{K}_{n-l}$. If $l=n$, then by Theorem 2.8, either G or G is K_{n}. Assume that $l<n$. By Theorem 2.9, G has exactly l isolated vertices. Then G is disconnected with $r<n$ components out of which exactly l components are K_{1}. Let $H_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq l$, $H_{l+1}, H_{l+2}, \ldots, H_{r}$ be the components of G. If $r>l+1$, then the vertices of H_{l+1} are adjacent to the vertices of H_{l+2} in $A E_{C}(G)$, a contradiction. Thus $r=l+1$.

$3 C$-average eccentric graphs

Proposition 3.1. If $r(G) \geq 2$, then $A E_{C}(G) \subseteq \bar{G}$.
Proof. By definition, $V\left(A E_{C}(G)\right)=V(\bar{G})=V(G)$. If $e=u v \in E\left(A E_{C}(G)\right)$ but does not belong to $E(\bar{G})$, then $u v \in E(G)$ and by definition, $e(u)=1=e(v)$, a contradiction. So $E\left(A E_{C}(G)\right) \subseteq E(\bar{G})$. Hence $A E_{C}(G) \subseteq \bar{G}$.

Theorem 3.2. Let G be a graph of order n. Then $A E_{C}(G)=G$ if and only if $G \in F_{11}$.
Proof. Suppose $A E_{C}(G)=G$. If G is disconnected with $r \geq 2$ components, then by Remark 2.4, $A E_{C}(G)$ is a complete r partite graph, a contradiction. So G is connected. If $r(G) \geq 2$, then by Proposition 3.1, $A E_{C}(G) \subseteq \bar{G}$, a contradiction. If $G \in F_{12}$, then by Theorem 2.10, $A E_{C}(G) \neq G$, a contradiction.

If $G \in F_{11}$, then by Remark 2.1 and Theorem 1.6, $A E_{C}(G)=G$.
Proposition 3.3. If either G has only one full degree vertex or $G \in F_{22}$, then $A E_{C}(G)=\bar{G}$.
Proof. If G has only one full degree vertex, then by Theorem $2.10, A E_{C}(G)=\bar{G}$. If $G \in F_{22}$, by Proposition 3.1, $A E_{C}(G) \subseteq \bar{G}$. If $u v \in E(\bar{G})$, then u and v are at a distance 2 in G so that $d(u, v)=\left\lceil\frac{e(u)+e(v)}{2}\right\rceil$. Hence $u v \in A E_{C}(G)$.
Proposition 3.4. For any positive integer $n \neq 4$, path P_{n} is a C-average eccentric graph.
Proof. When $n=1,2, P_{n}$ is a C-average eccentric graph of itself. When $n=3, A E_{C}\left(K_{1} \cup\right.$ $\left.K_{2}\right)=P_{3}$. It has been found P_{4} is not a C-average eccentric graph of any graph on four vertices. If $n \geq 5, d\left(P_{n}\right)=n-1$ and by Theorem $1.2, d\left(\bar{P}_{n}\right) \leq 2$. Also \bar{P}_{n} has no full degree vertex. So $\bar{P}_{n} \in F_{22}$ and by Proposition 3.3, $A E_{C}\left(\bar{P}_{n}\right)=P_{n}$.

Proposition 3.5. For any positive integer $n \geq 3$, cycle C_{n} is a C-average eccentric graph.
Proof. If $n=3$ and $H=C_{3}$ or \bar{K}_{3}, then by Proposition 2.3 and Remark 2.4, $A E_{C}(H)=C_{3}$. If $n \geq 4$, then for a cycle $C_{n}, e(u)=2$ for all $u \in V\left(\bar{C}_{n}\right)$. By Proposition 3.3, $A E_{C}\left(\bar{C}_{n}\right)=C_{n}$.

$4 C$-average eccentric graphs

Theorem 4.1. Let G be a graph on n vertices. Then $A E_{C}(G)=\bar{G}$ if and only if either of the following conditions holds.
(1) G has only one full degree vertex;
(2) $G \in F_{22}$; and
(3) G is disconnected with each component complete.

Proof. If either (1) or (2) hold, then by Proposition 3.3, $A E_{C}(G)=\bar{G}$. Suppose (3) holds. If G is totally disconnected, then by definition, $A E_{C}(G)=K_{n}=\bar{G}$. Suppose G has at least one component H with $|H| \geq 2$. Then $u v \in E\left(A E_{C}(G)\right)$ if and only if u and v belong to different components of G if and only if $u v \in E(\bar{G})$. Hence $A E_{C}(G)=\bar{G}$.

Suppose $A E_{C}(G)=\bar{G}$. If $G \in F_{11}$, then by Theorem $3.2, A E_{C}(G) \neq \bar{G}$. If G has at least two full degree vertices, then by Theorem $2.10, A E_{C}(G) \neq \bar{G}$. If $G \in F_{23}$ (or F_{24} or F_{3}, respectively), then there exists two non adjacent vertices u and v in G such that $e(u)=2$, $e(v)=3$ and $d(u, v)=2$. So $u v \notin E\left(A E_{C}(G)\right)$ but $u v \in E(\bar{G})$, a contradiction. If G is disconnected with at least one non complete component H, then every pair of non adjacent vertices u and v in H are adjacent in \bar{G}. But by definition, $u v \notin E\left(A E_{C}(G)\right)$, a contradiction.

Corollary 4.2. If $G \in F_{24} \cup F_{3}$, then G is a C average eccentric graph.
Corollary 4.3. If $G, \bar{G} \in F_{22}$, then G and \bar{G} are C-average eccentric graphs.
Corollary 4.4. Let G be a connecded graph with $r(G)>1$. If \bar{G} is disconnected with each component complete, then G is a C average eccentric graph.

Corollary 4.5. If $G \in F_{4}$ without isolated vertices, then G is a C-average eccentric graph.

Corollary 4.6. If G is disconnected with exactly one isolated vertex, then G is a C-average eccentric graph.

Lemma 4.7. If G is disconnected, then $\overline{A E_{C}(G)}$ is also a disconnected graph with each component complete.

Proof. By Remark 2.4, the result follows.
Theorem 4.8. Let G be a connected graph with $r(G) \geq 1$ and $d(G) \geq 2$. If \bar{G} is disconnected with at least one non complete component, then G is not a C-average eccentric graph.

Proof. Suppose there exists a graph H such that $A E_{C}(H)=G$. If H is disconnected, then by Lemma 4.7, $\overline{A E_{C}(H)}$ is disconnected with each component complete which is a contradiction to the fact that \bar{G} is disconnected with at least one non complete component. Hence H must be connected. If $r(H)=1$ and $d(H)=1$, then $A E_{C}(H)=H=G$, a contradiction. If $r(H)=1$ and $d(H)=2$, then by Theorem 2.10, $A E_{C}(H)$ is a disconnected graph, a contradiction. So $r(H)>1$. By Proposition 3.1, $A E_{C}(H) \subseteq \bar{H}$. Hence H is isomorphic to a spanning subgraph of \bar{G}. Since \bar{G} is disconnected, H is disconnected, a contradiction to $r(H)>1$.

Theorem 4.9. If $G \in F_{22}$ and $\bar{G} \in F_{23}$, then G is not a C-average eccentric graph.
Proof. Suppose there exists a graph H such that $A E_{C}(H)=G$. If H is disconnected, then by Lemma 4.7, $\overline{A E_{C}(H)}$ is disconnected, a contradiction to \bar{G} is connected. Hence H must be connected. If $H \in F_{11} \cup F_{12}$, then by Theorem 3.2 and Theorem 2.10, $A E_{C}(H)$ is either a complete graph or a disconnected graph, a contradiction to $G \in F_{22}$. So $r(H)>1$. By Proposition 3.1, $A E_{C}(H) \subseteq \bar{H}$. Hence H is isomorphic to a spanning subgraph of \bar{G}. Since $r(\bar{G})=2$ and $d(\bar{G})=3, r(H) \geq 2$ and $d(H) \geq 3$. Let $u \in V(\bar{G})$. Then u is adjacent to all the vertices v in G such that $d_{\bar{G}}(u, v) \geq 2$. $d_{H}(u, v) \geq 2$ whenever $d_{\bar{G}}(u, v) \geq 2$. So there exists a pair of non adjacent vertices u and v in \bar{G} such that $u v \notin E\left(A E_{C}(H)\right)$, a contradiction to $u v \in E(G)$. From these, we conclude that $A E_{C}(H)$ is not equal to G, a contradiction.

Using the same proof technique used in Theorem 4.9, the following propositions have been obtained.

Proposition 4.10. If $G \in F_{22}$ and $\bar{G} \in F_{24}$, then G is not a C-average eccentric graph.
Proposition 4.11. If $G \in F_{22}$ and $\bar{G} \in F_{3}$, then G is not a C-average eccentric graph.
Proposition 4.12. If $G \in F_{23}$ and $\bar{G} \in F_{23}$, then G is not a C-average eccentric graph.
Theorem 4.13. If $G \in F_{22}$ and $\bar{G} \in F_{22}$, then G is a C-average eccentric graph.
Proof. By Theorem 4.1, the result follows.
Lemma 4.14. If G is a totally disconnected graph on $n \geq 2$ vertices, then G is not a C-average eccentric graph.

Proof. Suppose there exists a graph H such that $A E_{C}(H)=G$. If H is disconnected, by definition, $A E_{C}(H)$ has at least one edge, a contradiction. So H is to be connected. For any connected graph, there is a pair of peripheral vertices, say u and v. Also $d(u, v)=\left\lceil\frac{e(u)+e(v)}{2}\right\rceil$ and hence $u v \in E\left(A E_{C}(H)\right)$, a contradiction.

Theorem 4.15. Let G be any graph such that \bar{G} is either connected with at most one full degree vertex or disconnected with each component complete. Then G is a C-average eccentric graph if and only if G is a C-average eccentric graph of itself or its complement.

Proof. If G is a C-average eccentric graph of itself or its complement, then G is a C-average eccentric graph.

Suppose G is a C-average eccentric graph.
Case 1. G is connected and \bar{G} is connected.

Subcase 1.1. Suppose $G \in F_{22}$. Then by Theorem 4.9, Proposition 4.10 and Proposition 4.11, $\bar{G} \notin F_{23}, \bar{G} \notin F_{24}$ and $\bar{G} \notin F_{3}$, respectively. If $\bar{G} \in F_{22}$, then by Theorem 4.1, $A E_{C}(\bar{G})=G$.
Subcase 1.2. Suppose $G \in F_{23}$. Then by Proposition $4.12, \bar{G} \notin F_{23}$. If $\bar{G} \in F_{22}$, then by Theorem 4.1, $A E_{C}(\bar{G})=G$.
Subcase 1.3. Suppose $G \in F_{24}$. Then $\bar{G} \in F_{22}$ and by Theorem 4.1, $A E_{C}(\bar{G})=G$.
Subcase 1.4. Suppose $G \in F_{3}$. Then $\bar{G} \in F_{22}$ and by Theorem 4.1, $A E_{C}(\bar{G})=G$.
Case 2. G is connected and \bar{G} is disconnected. In this case, $G \in F_{11} \cup F_{12} \cup F_{22}$
Subcase 2.1. Suppose $G \in F_{11}$. Then by Theorem 3.2, $A E_{C}(G)=G$.
Subcase 2.2. Suppose $G \in F_{12} \cup F_{22}$ Then by assumption, \bar{G} is disconnected in which each component is complete. By Theorem 4.1, $A E_{C}(\bar{G})=G$.
Case 3. G is disconnected. Then $\bar{G} \in F_{11} \cup F_{12} \cup F_{22}$. If $\bar{G} \in F_{11}$, then G is totally disconnected and by Lemma 4.14, G is not a C-average eccentric graph, a contradiction. Hence $\bar{G} \in F_{12} \cup F_{22}$. If $\bar{G} \in F_{22}$, by Theorem 4.1, $A E_{C}(\bar{G})=G$. If $\bar{G} \in F_{12}$ has only one full degree vertex, then by Theorem 4.1, $A E_{C}(\bar{G})=G$. If $\bar{G} \in F_{12}$ has more than one full degree vertices, then by Theorem 4.14, G is not a C-average eccentric graph, a contradiction.

Thus in all the cases, if G is a C-average eccentric graph, then G is a C-average eccentric graph of itself or its complement.

References

[1] R. Aravamuthan and B. Rajendran, Graph equations involving antipodal graphs, Presented at the Seminar on Combinatories and Applications held at ISI, Culcutta during 14-17 December, 40-43 (1982).
[2] R. Aravamuthan and B. Rajendran, On antipodal graphs, Discrete Math., 49, 193-195 (1984).
[3] F. Buckley and F. Harary, Distance in graphs, Addition-Wesley, Reading, 1990.
[4] KM. Kathiresan and G. Marimuthu, A study on radial graphs, Ars Combin., 96, 353-360 (2010).
[5] D.B. West, Introduction to graph theory, Prentice-Hall of India, New Delhi, 2003.
[6] R.R. Singleton, There is no irregular moore graph, Amer. Math. Monthly, 75, 42-43 (1968).

Author information

T. Sathiyanandham and S. Arockiaraj, Department of Mathematics, Government Arts and Science College, Sivakasi 626124, Tamilnadu, India.
E-mail: sathiyan.maths@gmail.com, psarockiaraj@gmail.com

