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Abstract The C-average eccentric graph AEC(G) of a graph G has the vertex set as in G

and any two vertices u and v are adjacent in AEC(G) if either they are at a distance
⌈
e(u)+e(v)

2

⌉
while G is connected or they belong to different components while G is disconnected. A graph
G is called a C-average eccentric graph if AEC(H) ∼= G for some graph H . The main aim of
this paper is to find a necessary and sufficient condition for a graph to be a C-average eccentric
graph.

1 Introduction

Throughout this paper, a graph means a non trivial simple graph. For other graph theoretic
notation and terminology, we follow [3, 5]. The distance d(u, v) between a pair of vertices u and
v in a graph G is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is
the distance to a vertex farthest from u. The radius r(G) of G is the minimum eccentricity among
the eccentricities of the vertices of G and the diameter d(G) of G is the maximum eccentricity
among the eccentricities of the vertices of G. The concept of average eccentricity (also called as
eccentric mean) was introduced by Buckley and Harary [3]. A graph G for which r(G) = d(G)
is called a self-centered graph of radius r(G). A vertex v is called an eccentric vertex of a vertex
u if d(u, v) = e(u). A vertex v of G is called an eccentric vertex of G if it is the eccentric vertex
of some vertex of G. The concept of antipodal graph was initially introduced by Singleton [6]
and was further expanded by Aravamuthan and Rajendran [1, 2]. The antipodal graph of a graph
G, denoted by A(G), is the graph on the same vertices as of G, two vertices being adjacent if the
distance between them is equal to the diameter of G. A graph is said to be antipodal if it is the
antipodal A(H) of some graph H. The concept of radial graph was introduced by Kathiresan and
Marimuthu [4]. The radial graph R(G) based on G has the vertex set as in G and two vertices
are adjacent if the distance between them is equal to the radius of G while G is connected. If G
is disconnected, then two vertices are adjacent in R(G) if they belong to different components of
G. A graph G is called a radial graph if R(H) = G for some graph H. Motivated by these works,
we introduce a new graph called C-average eccentric graph. Two vertices u and v of a graph are
said to be C-average eccentric to each other if d(u, v) =

⌈
e(u)+e(v)

2

⌉
. The C-average eccentric

graph of a graph G, denoted by AEC(G), has the vertex set as in G and any two vertices u

and v are adjacent in AEC(G) if either they are at a distance d(u, v) =
⌈
e(u)+e(v)

2

⌉
while G is

connected or they belong to different components while G is disconnected. A graph G is called
a C-average eccentric graph if AEC(H) ∼= G for some graph H . K1 ∪ (K4 − e) is neither an
antipodal graph nor a radial graph but it is a C-average eccentric graph since AEC(K1,4 ∪ {e})
is isomorphic to K1 ∪ (K4 − e). So the notion of C-average eccentric graph, radial graph and
antipodal graph are different.

In this paper, we obtain a necessary and sufficient condition for a graph to be a C-average
eccentric graph.

Theorem 1.1. [5] If G is a simple graph with diameter at least 3, then G has diameter at most 3.

Theorem 1.2. [5] If G is a simple graph with diameter at least 4, then G has diameter at most 2.
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Theorem 1.3. [5] If G is a simple graph with radius at least 3, then G has radius at most 2.

Theorem 1.4. [3] If G is a self centered graph with radius at least 3, then G is a self centered
graph of radius 2.

Theorem 1.5. [4] Let Cn be any cycle on n ≥ 4 vertices. Then R(Cn) =
n
2 K2 if n is even and

R(Cn) ∼= Cn if n is odd.

Theorem 1.6. [2] A(G) = G if and only if G is complete.

Let F11, F12, F22, F23, F24, F3 denote the set of all connected graphs G for which r(G) =
d(G) = 1, r(G) = 1 and d(G) = 2, r(G) = d(G) = 2, r(G) = 2 and d(G) = 3, r(G) = 2 and
d(G) = 4, r(G) ≥ 3 respectively and F4 denote the set of all disconnected graphs.

2 C-average eccentric graph of some classes of graphs

Remark 2.1. If G is either a self centered graph or a disconnected graph, then AEC(G) =
R(G) = A(G).

Proposition 2.2. Let Pn be any path on n ≥ 1 vertices. Then

AEC(Pn) =

{
Pn, if n = 1, 2
P2 ∪Kn−2, if n ≥ 3.

Proof. When n = 1, 2, AEC(Pn) = Pn. Let G be a path v1v2v3...vn with n ≥ 3 vertices. Then
e(vi) = n − i for 1 ≤ i ≤

⌈
n
2

⌉
, e(vi) = i − 1 for

⌈
n
2

⌉
+ 1 ≤ i ≤ n and d(vi, vj) = j − i for

1 ≤ i, j ≤ n. This implies that the C-average eccentric pairs in G is (v1, vn) and the remaining
pairs are not C-average eccentric pairs in G. Hence the C-average eccentric pair of vertices v1
and vn form the graph AEC(G). In AEC(G), v1vn is a path on 2 vertices and the remaining
vertices form Kn−2.

Proposition 2.3. Let Cn be any cycle on n ≥ 3 vertices. Then

AEC(Cn) ∼=

{
n
2 K2, if n is even
Cn, if n is odd.

Proof. Let v1, v2, ..., vn be the n vertices of the cycle Cn. If n = 3, then r(C3) = 1 and e(vi) = 1
for i = 1, 2, 3. Hence AEC(C3) ∼= C3. If n ≥ 4, then the result follows from Remark 2.1 and
Theorem 1.5.

Remark 2.4. Let Gi be a connected graph with ri vertices for i = 1, 2, ..., n. If G is the union of
G1, G2, ..., Gn, then AEC(G) = Kr1,r2,...,rn .

Proposition 2.5. AEC(Kr1,r2,...,rn) = Kr1 ∪Kr2 ∪ ... ∪Krn where r1, r2, ..., rn ≥ 2.

Proof. Since radius and diameter are 2, any two vertices are non adjacent in AEC(Kr1,r2,...,rn)
whenever the vertices are in different partitions and adjacent whenever they are in same partition.

Proposition 2.6. AEC(Kr +Kr1,r2,...,rn) = Kr ∪Kr1 ∪Kr2 ∪ ... ∪Krn where r1, r2, ..., rn ≥ 2
and r ≥ 1.

Proof. Let G = Kr+Kr1,r2,...,rn and u1, u2, ..., ur be the full degree vertices in G. By definition,
ui and uj are adjacent in AEC(G) for 1 ≤ i, j ≤ r. For each non full degree vertex v in G, each
ui, 1 ≤ i ≤ r is non adjacent to v in AEC(G). For any two non full degree vertices v and w

in G,
⌈
e(v)+e(w)

2

⌉
= 2 6= d(v, w) while vw ∈ E(G) and is equal to d(v, w) while vw 6= E(G).

Thus AEC(G) = Kr ∪Kr1 ∪Kr2 ∪ ... ∪Krn

Lemma 2.7. If G is a connected graph having no full degree vertex, then AEC(G) has no full
degree vertex.



22 T. Sathiyanandham and S. Arockiaraj

Proof. Since G has no full degree vertex, e(u) ≥ 2 for all u ∈ V (G). uv 6∈ E(AEC(G))
whenever uv ∈ E(G). Hence AEC(G) has no full degree vertex.

Theorem 2.8. Let G be a graph on n vertices. Then a vertex is a full degree vertex in AECG) if
and only if either it is an isolated vertex in G or G is complete.

Proof. If v is an isolated vertex in G, then by definition, v is the full degree vertex in AEC(G).
If G is complete, then by Remark 2.1 and Theorem 1.6, AEC(G) = G.

Suppose v is a full degree vertex in AEC(G). If G is a disconnected graph having m
components say H1, H2, ...,Hm with |Hi| = ni > 1 for i = 1, 2, ...,m, then by Remark 2.4,
AEC(G) = Kn1,n2,...,nm , a contracdiction. So G is disconnected with at least one isolated vertex
and v is one among them. Suppose G is a connected graph with no full degree vertex. Then
by Lemma 2.7, AEC(G) has no full degree vertex, a contradiction. Hence G should have a full
degree vertex. Let w be a full degree vertex in G. If v is not a full degree vertex in G, then
e(w) = 1 and e(v) = 2 in G. Hence 1 = d(v, w) 6=

⌈
e(v)+e(w)

2

⌉
, a contradiction to the fact

that vw ∈ AEC(G). If v is a full degree vertex in G and w is a non full degree vertex in G,
then e(v) = 1 and e(w) = 2 in G and hence vw 6∈ E(AEC(G)), a contradiction. Hence all the
vertices in G are the full degree vertices in G.

Theorem 2.9. Let G be a graph on n ≥ 3 vertices and m is any positive integer less than n.
Then AEC(G) has exactly m full degree vertices if and only if G has exactly m isolated vertices.

Proof. Suppose AEC(G) has exactly m full degree vertices. Let v1, v2, ..., vm be the full degree
vertices in AEC(G). Then by Theorem 2.8, either G is complete or v1, v2, ..., vm are the isolated
vertices in G. If G is complete, then by Theorem 1.6, AEC(G) is complete, a contradiction. If
w 6= vi is an isolated vertex in G for i = 1, 2, ...,m, then by Theorem 2.8, w is a full degree
vertex in AEC(G). So AEC(G) has m + 1 full degree vertices, a contradiction. Hence G has
exactly m isolated vertices.

Suppose G has exactly m isolated vertices, say v1, v2, ..., vm. Then by Theorem 2.8, v1, v2, ...,
vm are the full degree vertices in AEC(G). If w 6= vi is a full degree vertex in AEC(G) for
i = 1, 2, ...,m, then by Theorem 2.8, w is an isolated vertex in G or G is complete. So G
has more than m isolated vertices, a contradiction. Hence AEC(G) has exactly m full degree
vertices.

Theorem 2.10. Let G be a graph on n vertices. If G has r(< n) number of full degree vertices
v1, v2, ..., vr, then AEC(G) = Kr ∪ (G− {v1, v2, ..., vr}).
Proof. Let v1, v2, ..., vr be the full degree vertices and vr+1, vr+2..., vn be the remaining vertices
of G. Let wv ∈ E(AEC(G)). If w, v ∈ {v1, v2, ..., vr}, then wv = vivj ∈ E(G) for some i and
j. If none of w and v is in {v1, v2, ..., vr}, then e(w) = e(v) = 2. This implies that wv 6∈ E(G).
Therefore wv 6∈ E(G− {v1, v2, ..., vr}) and hence wv ∈ E(G− {v1, v2, ..., vr})

Suppose wv ∈ E(Kr ∪ (G− {v1, v2, ..., vr}))=E(G− {v1, v2, ..., vr}) ∪ E(Kr). If wv ∈
E(Kr), then wv ∈ E(AEC(G)). If wv ∈ E(G− {v1, v2, ..., vr}), wv 6∈ E(G− {v1, v2, ..., vr}).
This implies that wv 6∈ E(G). Then d(w, v) = 2 =

⌈
e(w)+e(v)

2

⌉
and hence wv ∈ E(AEC(G)).

Thus AEC(G) = Kr ∪ (G− {v1, v2, ..., vr}).
Corollary 2.11. If G ∈ F12 has at least two full degree vertices, then G ⊂ AEC(G).

Theorem 2.12. Let G be a graph on n vertices. Then for any positive integer l ≤ n, AEC(G) =
Kl +Kn−l if and only if any one of the following conditions hold
(1) G is totally disconnected
(2) G is complete
(3) G is lK1 ∪H where H is a connected component with |H| = n− l ≥ 2.

Proof. If (1) holds, then by definition, AEC(G) = Kn. If (2) holds, then by Remark 2.1 and
Theorem 1.6, AEC(G) = Kn. If (3) holds, then by Remark 2.4, AEC(G) = Kl +Kn−l.

Suppose AEC(G) = Kl + Kn−l. If l = n, then by Theorem 2.8, either G or G is Kn.
Assume that l < n. By Theorem 2.9, G has exactly l isolated vertices. Then G is disconnected
with r < n components out of which exactly l components are K1. Let Hi = {vi} for 1 ≤ i ≤ l,
Hl+1, Hl+2, ...,Hr be the components of G. If r > l + 1, then the vertices of Hl+1 are adjacent
to the vertices of Hl+2 in AEC(G), a contradiction. Thus r = l+ 1.
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3 C-average eccentric graphs

Proposition 3.1. If r(G) ≥ 2, then AEC(G) ⊆ G.

Proof. By definition, V (AEC(G)) = V (G) = V (G). If e = uv ∈ E(AEC(G)) but does not
belong to E(G), then uv ∈ E(G) and by definition, e(u) = 1 = e(v), a contradiction. So
E(AEC(G)) ⊆ E(G). Hence AEC(G) ⊆ G.

Theorem 3.2. Let G be a graph of order n. Then AEC(G) = G if and only if G ∈ F11.

Proof. Suppose AEC(G) = G. If G is disconnected with r ≥ 2 components, then by Re-
mark 2.4, AEC(G) is a complete r partite graph, a contradiction. So G is connected. If r(G) ≥ 2,
then by Proposition 3.1, AEC(G) ⊆ G, a contradiction. If G ∈ F12, then by Theorem 2.10,
AEC(G) 6= G, a contradiction.

If G ∈ F11, then by Remark 2.1 and Theorem 1.6, AEC(G) = G.

Proposition 3.3. If either G has only one full degree vertex or G ∈ F22, then AEC(G) = G.

Proof. If G has only one full degree vertex, then by Theorem 2.10, AEC(G) = G. If G ∈ F22,
by Proposition 3.1, AEC(G) ⊆ G. If uv ∈ E(G), then u and v are at a distance 2 in G so that
d(u, v) =

⌈
e(u)+e(v)

2

⌉
. Hence uv ∈ AEC(G).

Proposition 3.4. For any positive integer n 6= 4, path Pn is a C-average eccentric graph.

Proof. When n = 1, 2, Pn is a C-average eccentric graph of itself. When n = 3, AEC(K1 ∪
K2) = P3. It has been found P4 is not a C-average eccentric graph of any graph on four vertices.
If n ≥ 5, d(Pn) = n− 1 and by Theorem 1.2, d(Pn) ≤ 2. Also Pn has no full degree vertex. So
Pn ∈ F22 and by Proposition 3.3, AEC(Pn) = Pn.

Proposition 3.5. For any positive integer n ≥ 3, cycle Cn is a C-average eccentric graph.

Proof. If n = 3 and H = C3 or K3, then by Proposition 2.3 and Remark 2.4, AEC(H) = C3. If
n ≥ 4, then for a cycle Cn, e(u) = 2 for all u ∈ V (Cn). By Proposition 3.3, AEC(Cn) = Cn.

4 C-average eccentric graphs

Theorem 4.1. Let G be a graph on n vertices. Then AEC(G) = G if and only if either of the
following conditions holds.
(1) G has only one full degree vertex;
(2) G ∈ F22; and
(3) G is disconnected with each component complete.

Proof. If either (1) or (2) hold, then by Proposition 3.3, AEC(G) = G. Suppose (3) holds. If
G is totally disconnected, then by definition, AEC(G) = Kn = G. Suppose G has at least one
component H with |H| ≥ 2. Then uv ∈ E(AEC(G)) if and only if u and v belong to different
components of G if and only if uv ∈ E(G). Hence AEC(G) = G.

Suppose AEC(G) = G. If G ∈ F11, then by Theorem 3.2, AEC(G) 6= G. If G has at
least two full degree vertices, then by Theorem 2.10, AEC(G) 6= G. If G ∈ F23 (or F24 or
F3, respectively), then there exists two non adjacent vertices u and v in G such that e(u) = 2,
e(v) = 3 and d(u, v) = 2. So uv 6∈ E(AEC(G)) but uv ∈ E(G), a contradiction. If G
is disconnected with at least one non complete component H , then every pair of non adjacent
vertices u and v in H are adjacent in G. But by definition, uv 6∈ E(AEC(G)), a contradiction.

Corollary 4.2. If G ∈ F24 ∪ F3, then G is a C average eccentric graph.

Corollary 4.3. If G,G ∈ F22, then G and G are C-average eccentric graphs.

Corollary 4.4. Let G be a connecded graph with r(G) > 1. If G is disconnected with each
component complete, then G is a C average eccentric graph.

Corollary 4.5. If G ∈ F4 without isolated vertices, then G is a C-average eccentric graph.
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Corollary 4.6. If G is disconnected with exactly one isolated vertex, then G is a C-average
eccentric graph.

Lemma 4.7. If G is disconnected, then AEC(G) is also a disconnected graph with each compo-
nent complete.

Proof. By Remark 2.4, the result follows.

Theorem 4.8. Let G be a connected graph with r(G) ≥ 1 and d(G) ≥ 2. If G is disconnected
with at least one non complete component, then G is not a C-average eccentric graph.

Proof. Suppose there exists a graph H such that AEC(H) = G. If H is disconnected, then by
Lemma 4.7, AEC(H) is disconnected with each component complete which is a contradiction
to the fact that G is disconnected with at least one non complete component. Hence H must be
connected. If r(H) = 1 and d(H) = 1, then AEC(H) = H = G, a contradiction. If r(H) = 1
and d(H) = 2, then by Theorem 2.10, AEC(H) is a disconnected graph, a contradiction. So
r(H) > 1. By Proposition 3.1, AEC(H) ⊆ H. Hence H is isomorphic to a spanning subgraph
of G. Since G is disconnected, H is disconnected, a contradiction to r(H) > 1.

Theorem 4.9. If G ∈ F22 and G ∈ F23, then G is not a C-average eccentric graph.

Proof. Suppose there exists a graph H such that AEC(H) = G. If H is disconnected, then
by Lemma 4.7, AEC(H) is disconnected, a contradiction to G is connected. Hence H must
be connected. If H ∈ F11 ∪ F12, then by Theorem 3.2 and Theorem 2.10, AEC(H) is either
a complete graph or a disconnected graph, a contradiction to G ∈ F22. So r(H) > 1. By
Proposition 3.1, AEC(H) ⊆ H. Hence H is isomorphic to a spanning subgraph of G. Since
r(G) = 2 and d(G) = 3, r(H) ≥ 2 and d(H) ≥ 3. Let u ∈ V (G). Then u is adjacent to all the
vertices v in G such that dG(u, v) ≥ 2. dH(u, v) ≥ 2 whenever dG(u, v) ≥ 2. So there exists
a pair of non adjacent vertices u and v in G such that uv 6∈ E(AEC(H)), a contradiction to
uv ∈ E(G). From these, we conclude that AEC(H) is not equal to G, a contradiction.

Using the same proof technique used in Theorem 4.9, the following propositions have been
obtained.

Proposition 4.10. If G ∈ F22 and G ∈ F24, then G is not a C-average eccentric graph.

Proposition 4.11. If G ∈ F22 and G ∈ F3, then G is not a C-average eccentric graph.

Proposition 4.12. If G ∈ F23 and G ∈ F23, then G is not a C-average eccentric graph.

Theorem 4.13. If G ∈ F22 and G ∈ F22, then G is a C-average eccentric graph.

Proof. By Theorem 4.1, the result follows.

Lemma 4.14. If G is a totally disconnected graph on n ≥ 2 vertices, then G is not a C-average
eccentric graph.

Proof. Suppose there exists a graph H such that AEC(H) = G. If H is disconnected, by
definition, AEC(H) has at least one edge, a contradiction. So H is to be connected. For any
connected graph, there is a pair of peripheral vertices, say u and v. Also d(u, v) =

⌈
e(u)+e(v)

2

⌉
and hence uv ∈ E(AEC(H)), a contradiction.

Theorem 4.15. Let G be any graph such that G is either connected with at most one full degree
vertex or disconnected with each component complete. Then G is a C-average eccentric graph
if and only if G is a C-average eccentric graph of itself or its complement.

Proof. If G is a C-average eccentric graph of itself or its complement, then G is a C-average
eccentric graph.

Suppose G is a C-average eccentric graph.
Case 1. G is connected and G is connected.
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Subcase 1.1. Suppose G ∈ F22. Then by Theorem 4.9, Proposition 4.10 and Proposition 4.11,
G 6∈ F23, G 6∈ F24 and G 6∈ F3, respectively. If G ∈ F22, then by Theorem 4.1, AEC(G) = G.
Subcase 1.2. Suppose G ∈ F23. Then by Proposition 4.12, G 6∈ F23. If G ∈ F22, then by
Theorem 4.1, AEC(G) = G.
Subcase 1.3. Suppose G ∈ F24. Then G ∈ F22 and by Theorem 4.1, AEC(G) = G.
Subcase 1.4. Suppose G ∈ F3. Then G ∈ F22 and by Theorem 4.1, AEC(G) = G.
Case 2. G is connected and G is disconnected. In this case, G ∈ F11 ∪ F12 ∪ F22
Subcase 2.1. Suppose G ∈ F11. Then by Theorem 3.2, AEC(G) = G.
Subcase 2.2. Suppose G ∈ F12 ∪ F22 Then by assumption, G is disconnected in which each
component is complete. By Theorem 4.1, AEC(G) = G.
Case 3. G is disconnected. Then G ∈ F11 ∪F12 ∪F22. If G ∈ F11, then G is totally disconnected
and by Lemma 4.14, G is not a C-average eccentric graph, a contradiction. Hence G ∈ F12∪F22.
If G ∈ F22, by Theorem 4.1, AEC(G) = G. If G ∈ F12 has only one full degree vertex, then
by Theorem 4.1, AEC(G) = G. If G ∈ F12 has more than one full degree vertices, then by
Theorem 4.14, G is not a C-average eccentric graph, a contradiction.

Thus in all the cases, if G is a C-average eccentric graph, then G is a C-average eccentric
graph of itself or its complement.
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