Domination in k-zero-divisor hypergraph of some class of commutative rings

K. Selvakumar and J. Beautlin Jemi
Communicated by T. Tamizh Chelvam

MSC 2010 Classifications: Primary 05C65; 05C25; C25, 05C75; Secondary 13A15, 16N40.
Keywords and phrases: local rings; hypergraph; zero-divisor graph; domination.

Abstract

Let R be a commutative ring with identity and let $Z(R, k)$ be the set of all k-zerodivisors in R and $k>2$ an integer. The k-zero-divisor hypergraph of R, denoted by $\mathcal{H}_{k}(R)$, is a hypergraph with vertex set $Z(R, k)$, and for distinct elements $x_{1}, x_{2}, \ldots, x_{k}$ in $Z(R, k)$, the set $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is an edge of $\mathcal{H}_{k}(R)$ if and only if $\prod_{i=1}^{k} x_{i}=0$ and the product of any $(k-1)$ elements of $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is nonzero. In this paper, we determine the domination number of

 $\mathcal{H}_{k}(R)$ for some commutative rings.
1 Introduction

Attaching various graphs to an algebraic structure to understand its properties is a classical and useful technique. In this direction, various graph parameters can be related to algebraic properties of the structure under consideration and lead to a better understanding of its theory. For example, one can attach a graph to a commutative ring R with unity by considering its non-zero zero-divisors as its vertices and connect two of them by an edge if their product is zero [6]. This graph is called the zero-divisor graph of R, denoted by $\Gamma(R)$, and is well-studied in the literature [4]. In view of this, Ch. Eslahchi and A. M. Rahimi [9] have introduced and investigated a graph called the k-zero-divisor hypergraph of a commutative ring and later was studied extensively in [11, 12]. For $k=2$, the graph is exactly the same as the zero-divisor graph of a ring.

A hypergraph \mathcal{H} is a pair $(V(\mathcal{H}), E(\mathcal{H}))$ of disjoint sets, where $V(\mathcal{H})$ is a non empty finite set whose elements are called vertices and the elements of $E(\mathcal{H})$ are nonempty subsets of $V(\mathcal{H})$ called edges. The hypergraph \mathcal{H} is called k-uniform whenever every edge e of \mathcal{H} is of size k. The number of edges containing a vertex $v \in V(\mathcal{H})$ is its degree $d_{\mathcal{H}}(v)$. For basic definitions on hypergraphs, one may refer [3]. A set D of vertices in a hypergraph \mathcal{H} is a dominating set if for every $x \in V \backslash D$ there exists $y \in D$ such that x and y are adjacent i.e., there exists $e \in E$ such that $x, y \in e$. The minimum cardinality of a dominating set is called the domination number of \mathcal{H} and is denoted by $\gamma(\mathcal{H})$, one may refer [1].

Throughout this paper, we assume that R is a commutative ring with identity, $Z(R)$, its set of zero-divisors and R^{\times}, its group of units and F is a field. For any set X, let X^{*} denote the nonzero elements of X. For basic definitions on rings, one may refer [7, 10].

2 Domination of $\mathcal{H}_{k}(\boldsymbol{R})$

In this section, we determine the domination number of the k-zero-divisor hypergraph of some classes of commutative rings. From the definition, we have the following observations.

Remark 2.1. [11, Remark 2.1] Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$, where each F_{i} is a field and $3 \leq k \leq n$.

If $\mathbb{A}_{\ell}=\left\{x=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R:\right.$ exactly ℓ components in the n tuples of x are zero $\}$ for $1 \leq \ell \leq n-k+1$. Then $Z(R, k)=\bigcup_{\ell=1}^{n-k+1} \mathbb{A}_{\ell}$.

Remark 2.2. Let $m=p^{n}$ be a positive integer and $A_{d}=\left\{x \in \mathbb{Z}_{m}:(x, m)=d\right\}$ where p is prime, d divides m and $n \geq 3$. Then
(i) $Z\left(\mathbb{Z}_{m}, 3\right)=\bigcup_{i=1}^{n-2} A_{p^{i}}$,
(ii) $Z(R, k)=\bigcup_{i=1}^{n-k+1} A_{p^{i}}$ and $A_{p^{i}} \cap A_{p^{j}}=\emptyset$ for all $i \neq j$.

Proposition 2.3. Let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a local ring with $\mathfrak{m}_{i} \neq\{0\}$ for $1 \leq i \leq n$ and let $R=R_{1} \times \cdots \times$ R_{n}. Let $z_{i} \in \mathfrak{m}_{i}^{*}$ for $1 \leq i \leq n$. Then $z_{i} \in Z\left(R_{i}, 3\right)$ if and only if $z=\left(0, \ldots, 0, z_{i}, 0 \ldots, 0\right) \in$ $Z(R, 3)$

Proof. Suppose that $z_{i} \in Z\left(R_{i}, 3\right)$. Then by definition of $Z\left(R_{i}, 3\right)$, there exists distinct elements x_{i}, y_{i} of R_{i} other than z_{i} such that $x_{i} y_{i} z_{i}=0$ and $x_{i} y_{i}, x_{i} z_{i}, y_{i} z_{i}$ are nonzero elements of R_{i}. Let $x=\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right), y=\left(0, \ldots, 0, y_{i}, 0, \ldots, 0\right), z=\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right) \in R$. Then $x y z=0$ and $x y, x z, y z$ are nonzero elements of R. Hence $z \in Z(R, 3)$.

Suppose that $z=\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right) \in Z(R, 3)$. Then there exists distinct elements $x=\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right), y=\left(0, \ldots, 0, b_{i}, 0, \ldots, 0\right) \in Z(R, 3)$ such that $x y z=0$ and so $a_{i} b_{i} z_{i}=0$. By definition of $Z(R, 3), x y, x z, y z$ are nonzero elements of R and so $a_{i} b_{i}, b_{i} z_{i}$ and $a_{i} z_{i}$ are nonzero elements of R_{i}. From this, we get $z_{i} \in Z\left(R_{i}, 3\right)$.

Proposition 2.4. Let (R, \mathfrak{m}) be a finite local ring with $\mathfrak{m}^{t}=0$. If $t=2$, then $Z(R, k)=\emptyset$ for any $k \geq 3$.

Proof. Suppose $Z(R, k) \neq \emptyset$ for any $k \geq 3$. Let $x_{1} \in Z(R, k)$. Then there exists $x_{2}, x_{3}, \ldots, x_{k} \in$ $Z(R, k)$ such that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is an edge. i.e., $x_{1} x_{2} \ldots x_{k}=0$. Since $t=2$, the product of two vertices from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is zero, which is a contradiction. Hence $Z(R, k)=\emptyset$.

Proposition 2.5. Let (R, \mathfrak{m}) be a finite local ring with $\mathfrak{m}^{t}=0$, then $Z(R, k)=\emptyset$ for all $t<k$.
Proof. Suppose $Z(R, k) \neq \emptyset$ for any $t<k$. Let $x_{1} \in Z(R, k)$. Then there exists $x_{2}, x_{3}, \ldots, x_{k} \in$ $Z(R, k)$ such that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is an edge. i.e., $x_{1} x_{2} \ldots x_{k}=0$. Since $t<k$, the product of t vertices from $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is zero, which is a contradiction. Hence $Z(R, k)=\emptyset$.

The next theorem shows that k-zero-divisor hypergraph of a local ring $\mathbb{Z}_{p^{t}}$ is connected.
Theorem 2.6. Let $R=\mathbb{Z}_{p^{t}}$, where $t \geq 3$. For $k \leq t$, then $\mathcal{H}_{k}(R)$ is connected, $\operatorname{diam}\left(\mathcal{H}_{k}(R)\right) \leq$ 2 and $\operatorname{gr}\left(\mathcal{H}_{k}(R)\right)=2$ or ∞.

Proof. Let $x, y \in Z(R, k)$ such that $x \neq y$. If $x, y \in e$ for some edge e in $\mathcal{H}_{k}(R)$, then $d(x, y)=1$. Suppose $x, y \notin e$ for every edge e in $\mathcal{H}_{k}(R)$. Since $x, y \in Z(R, k), x \in A_{p^{i}}$ and $y \in A_{p^{j}}$ for some i, j. For each $w \in Z(R, k)$ and $w \neq z, w, z \in e$ for some edge e in $\mathcal{H}_{k}(R)$, where $z \in A_{p}$. From this, we get $x \neq z$ and $y \neq z$ and so there exists $x_{i} \in A_{p^{l}}$, for some $1 \leq l \leq t-k+1$ and $1 \leq i \leq t-2$ such that $\left\{z, x, x_{1}, x_{2}, \ldots, x_{k-2}\right\},\left\{z, y, x_{1}, x_{2}, \ldots, x_{k-2}\right\}$ are edges in $\mathcal{H}_{k}(R)$ and so $d(x, y)=2$. Hence it is clear that $\operatorname{diam}\left(\mathcal{H}_{k}(R)\right) \leq 2$.

Suppose $3 \leq k<t$. Let $e_{1}=\left\{x_{1}, x_{2}, \ldots, x_{k-2}, z, z^{\prime}\right\}, e_{2}=\left\{x_{1}, x_{2}, \ldots, x_{k-2}, z, z^{\prime}\right\}$ are two edges in $\mathcal{H}_{k}(R)$, where $z, z^{\prime} \in A_{p}, x_{i} \in A_{p^{l}}$, for some $1 \leq l \leq t-k+1$ and hence $z^{\prime}-e_{1}-z-e_{2}-z^{\prime}$ form a cycle of length two and so $\operatorname{gr}\left(\mathcal{H}_{k}(R)\right)=2$.

Suppose $k=t$. If $|Z(R, k)| \geq t+1$, then $e_{1}=\left\{x_{1}, x_{2}, \ldots, x_{k-2}, z, z^{\prime}\right\}$ and $e_{2}=\left\{x_{1}, x_{2}, \ldots, x_{k-2}, z, z^{\prime}\right\}$ are two edges in $\mathcal{H}_{k}(R)$, where $z, z^{\prime}, x_{i} \in A_{p}$ and hence $z^{\prime}-$ $e_{1}-z-e_{2}-z^{\prime}$ form a cycle of length two and so $\operatorname{gr}\left(\mathcal{H}_{k}(R)\right)=2$. If $|Z(R, k)|=t$, then $e=\left\{x_{1}, x_{2}, \ldots, x_{k-2}, x_{k-1}, x_{k}\right\}$ is the only edge in $\mathcal{H}_{k}(R)$. Hence $\operatorname{gr}\left(\mathcal{H}_{k}(R)\right)=\infty$.

Note that if $R=\mathbb{Z}_{p^{2}}, \mathbb{Z}_{8}$ or $F_{1} \times F_{2}$, where p is prime and F_{i} 's are field, then $Z(R, 3)=\emptyset$. We exclude these rings while studying 3-zero-divisor hypergraph.

Theorem 2.7. Let $R=\mathbb{Z}_{p^{n}}$, where p is prime and $n \geq 3$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=1$
Proof. For any $x \in Z(R, 3),\{x, y, a\}$ is an edge of $\mathcal{H}_{3}(R)$ for all $a \in A_{p}$ and some $y \in Z(R, 3)$. Hence $\{a\}$ is a dominating set of $\mathcal{H}_{3}(R)$ for some $a \in A_{p}$ and so $\gamma\left(\mathcal{H}_{3}(R)\right)=1$.

Theorem 2.8. Let $R=\mathbb{Z}_{p^{n}} \times F$ be a commutative ring, where p is prime, $n \geq 2, F$ is a field and $Z\left(\mathbb{Z}_{p^{n}}, 3\right) \neq \emptyset$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=1$.

Proof. Consider the set $D=\{x=(z, u)\} \subset Z(R, 3)$, where $u \in F^{*}$ and $z \in A_{p}$. Suppose that $y \in Z(R, 3) \backslash D$. If $y=(0, v) \in Z(R, 3)$, where $v \in F^{*}$, then there exists $w=(a, u) \in Z(R, 3)$, where $a \in A_{p^{n-1}}$, such that $x y w=0$ and none of $x y, x w$ and $y w$ are zero. Hence x dominates every element of $(0) \times F^{*}$.

If $y=(z, 0) \in Z(R, 3)$, where $z \in Z\left(\mathbb{Z}_{p^{n}}, 3\right)$, then there exists $w=(a, u) \in Z(R, 3)$, where $a \in A_{p^{i}}, 1 \leq i \leq n-2$, such that $\{x, y, w\}$ is an edge and so x dominates $Z\left(\mathbb{Z}_{p^{n}}, 3\right) \times(0)$.

Consider the cases when $y=\left(z, u^{\prime}\right) \in Z(R, 3)$, where $u^{\prime} \in F^{*}, z \in Z\left(\mathbb{Z}_{p^{n}}\right)^{*}$, and when $y=\left(z, u^{\prime}\right) \in Z(R, 3)$, where $u^{\prime} \in F^{*}, z \in Z\left(\mathbb{Z}_{p^{n}}\right)^{*}$. In the former case, there exists $w=$ $(v, 0) \in Z(R, 3)$, where $v \in \mathbb{Z}_{p^{n}}^{\times}$, such that $\{x, y, w\}$ is an edge. In the later case, there exists $w=(a, 0) \in Z(R, 3)$, where $a \in Z\left(\mathbb{Z}_{p^{n}}, 3\right)$, such that the product $x y w=0$ and $x y, x w, y w$ are non-zero. Thus, we conclude that x dominates every element of $Z(R, 3)$. Hence D is a dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right)=1$.

Theorem 2.9. Let $R=\mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}}$, where p_{1}, p_{2} are prime and $n_{1}, n_{2} \geq 2$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.
Proof. Let $a=\left(a_{1}, a_{2}\right) \in Z(R, 3)$, where $a_{i} \in A_{p_{i}}$ for $i=1,2$. Then a dominates $Z(R, 3) \backslash B$, where $B=\left\{\left(b_{1}, b_{2}\right): b_{i} \in A_{p_{i}^{n_{i}-1}}\right.$, for $\left.i=1,2\right\}$. In order to find a vertex which dominates the set B, let us consider the vertex $c=\left(c_{1}, c_{2}\right) \in Z(R, 3)$, where $c_{1} \in Z\left(\mathbb{Z}_{p_{1}^{n_{1}}}\right)^{*}$ and $c_{2} \in \mathbb{Z}_{p_{2}^{n_{2}}}^{\times}$. For each $d \in B$, there exist $f=\left(f_{1}, f_{2}\right) \in Z(R, 3)$, where $f_{1} \in \mathbb{Z}_{p_{1}^{n_{1}}}^{\times}$and $f_{2} \in Z\left(\mathbb{Z}_{p_{2}^{n_{2}}}\right)^{*}$ such that the product $c d f$ is zero and none of $c d, c f, d f$ are zero and so c dominates the set B. Hence $\{a, c\}$ is a dominating set of $\mathcal{H}_{3}(R)$ and $\gamma\left(\mathcal{H}_{3}(R)\right) \leq 2$.

Suppose that $\gamma\left(\mathcal{H}_{3}(R)\right)=1$. Then there exists a subset S of $Z(R, 3)$ such that S is a dominating set of $\mathcal{H}_{3}(R)$ and $|S|=1$.

Let $z_{1} \in A_{p_{1}^{i}}, z_{2} \in A_{p_{2}^{j}}$ for some $i \in\left\{1,2, \ldots, n_{1}-1\right\}$ and $j \in\left\{1,2, \ldots, n_{2}-1\right\}$.
If $\left(z_{1}, z_{2}\right) \in S$, then there exists a vertex $(a, b) \in Z(R, 3), a \in A_{p_{1}^{n_{1}-i}}, b \in A_{p_{2}^{n_{2}-j}}$, such that the product $\left(z_{1}, z_{2}\right)(a, b)=(0,0)$ and so the vertices of this nature do not fall under any edge of $\mathcal{H}_{3}(R)$.

Consider the vertex in S of the form $(z, v) \in Z\left(\mathbb{Z}_{p_{1}^{n_{1}}}\right) \times \mathbb{Z}_{p_{2}^{n_{2}}}^{\times}$. Then the vertices (z, v) and $\left(0, v^{\prime}\right)$ are not adjacent in $\mathcal{H}_{3}(R)$, for all $v^{\prime} \in \mathbb{Z}_{p_{2}^{n_{2}}}^{\times}$.

Finally let us consider the vertex in S of the form $(z, 0) \in Z(R, 3)$, where $z \in Z\left(\mathbb{Z}_{p_{1}^{n_{1}}}, 3\right)$. Then vertices $(z, 0)$ and $\left(0, v^{\prime}\right)$ are not adjacent in $\mathcal{H}_{3}(R)$, for all $v^{\prime} \in \mathbb{Z}_{p_{2}^{n_{2}}}^{\times}$. Thus there does not exist a dominating set of cardinality one and so $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Theorem 2.10. Let $R=F_{1} \times F_{2} \times F_{3}$, where each F_{i} is a field. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=1$ if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times F_{3}$, where F_{3} is a field.

Proof. Suppose $\gamma\left(\mathcal{H}_{3}(R)\right)=1$. Let us assume that at least two of F_{1}, F_{2}, F_{3} are of cardinality more than 2. Note that $Z(R, 3)=B_{1} \cup B_{2} \cup B_{3}$, where $B_{1}=F_{1}^{*} \times F_{2}^{*} \times 0, B_{2}=0 \times F_{2}^{*} \times F_{3}^{*}$, $B_{3}=F_{1}^{*} \times 0 \times F_{3}^{*}$. Clearly $\left|B_{i}\right| \geq 2$ for all $i \in\{1,2,3\}$.

Let x be any element of $Z(R, 3)$. Then $x \in B_{i}$ for some $i \in\{1,2,3\}$ and x dominates every element of B_{j} for $j \neq i$ and x does not dominate the set B_{i}, a contradiction. Hence $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times F_{3}$.

Conversely, assume that $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times F_{3}$, where F_{3} is a field. Then $Z(R, 3)=\{(1,1,0)$, $\left.(0,1, w),(1,0, w): w \in F_{3}^{*}\right\}$. Consider the set $D=\{x=(1,1,0)\}$. If $y=(0,1, w) \in Z(R, 3)$, where $w \in F_{3}^{*}$, then there exists $z=(1,0, w) \in Z(R, 3)$ such that $\{x, y, z\}$ is an edge. Hence D is a dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right)=1$.

Theorem 2.11. Let $R=F_{1} \times F_{2} \times F_{3}$ be a commutative ring and $R \nsubseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times F_{3}$, where each F_{i} is a field. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Proof. By Theorem 2.10, $\gamma\left(\mathcal{H}_{3}(R)\right) \geq 2$. Since $R \not \not \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times F_{3}$, at least two F_{i} 's have cardinality more than two. Without loss of generality, we assume that $\left|F_{i}\right| \geq 3$ for $i \in\{2,3\}$. Note that $Z(R, 3)=B_{1} \cup B_{2} \cup B_{3}$, where $B_{1}=F_{1}^{*} \times F_{2}^{*} \times 0, B_{2}=0 \times F_{2}^{*} \times F_{3}^{*}, B_{3}=F_{1}^{*} \times 0 \times F_{3}^{*}$.

Consider the set $D=\{a=(u, v, 0), b=(0, v, w)\}$, where $a \in B_{1}$ and $b \in B_{2}$. Then a dominates every element of $B_{2} \cup B_{3}$ and b dominates every element of B_{1}. Hence D is a domination set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Theorem 2.12. Let $R=F_{1} \times F_{2} \times \mathbb{Z}_{p^{n}}$ be a commutative ring, where each F_{i} is a field, p is prime and $n \geq 2$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Proof. Consider $D=\{x=(u, v, z), y=(0, v, z)\}$, where $u \in F_{1}^{*}, v \in F_{2}^{*}, z \in A_{p}$. Then the vertex x dominates $Z(R, 3) \backslash B$ where $B=\left\{(u, v, 0): u \in F_{1}^{*}, v \in F_{2}^{*}\right\}$. Also the vertex $y \in D$ dominates B. Hence D is a dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right) \leq 2$.

Let $g=(1,1, z) \in Z(R, 3)$, for some $z \in Z\left(\mathbb{Z}_{p^{n}}\right)^{*}$. Then the vertex g does not dominate any element of B. Clearly the vertices $(0,1,1)$ and $(1,0,1)$ do not dominate any element of the sets $\left\{(0, v, w): v \in F_{2}^{*}, w \in \mathbb{Z}_{p^{n}}^{\times}\right\}$and $\left\{(u, 0, w): u \in F_{1}^{*}, w \in \mathbb{Z}_{p^{n}}^{\times}\right\}$respectively.

Let $z \in Z\left(\mathbb{Z}_{p^{n}}\right)^{*}$ with $z d=0$ for some $d \in Z\left(\mathbb{Z}_{p^{n}}\right)^{*}$. Then vertices $(1,0, z)$ and $(0,1, d)$ are not adjacent in $\mathcal{H}_{3}(R)$. Also the vertex $(0,0,1)$ does not dominate any element of the set $\left\{\left(0,0, z^{\prime}\right): z^{\prime} \in Z\left(\mathbb{Z}_{p^{n}}, 3\right)\right\}$. Thus we conclude that any dominating set of $\mathcal{H}_{3}(R)$ must contain more than one element and hence $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Theorem 2.13. Let $R=F \times \mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}}$ be a commutative ring, where F is a field, p_{1}, p_{2} are prime and $n_{1}, n_{2} \geq 2$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Proof. Consider $D=\{x=(u, a, b), y=(u, v, b)\}$, where $u \in F^{*}, v \in \mathbb{Z}_{p_{1}^{n_{1}}}^{\times}, a \in A_{p_{1}}, b \in A_{p_{2}}$. Then the vertex x is adjacent to every element of the set $Z(R, 3) \backslash\left\{(0, z, w): z \in A_{p_{1}^{n_{1}-1}}, w \in\right.$ $\left.A_{p_{2}^{n_{2}-1}}\right\}$. Also the vertex y dominates the set $\left\{(0, p, q): p \in A_{p_{1}^{n_{1}-1}}, q \in A_{p_{2}^{n_{2}-1}}\right\}$. Hence D is a dominating set of $\mathcal{H}_{3}(R)$ and by using similar arguments given in Theorem 2.12, we get $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Theorem 2.14. Let $R=\mathbb{Z}_{p_{1}^{n_{1}}} \times \mathbb{Z}_{p_{2}^{n_{2}}} \times \mathbb{Z}_{p_{3}^{n_{3}}}$ be a commutative ring, where each p_{i} 's are prime and $n_{i} \geq 2$ for $i=\{1,2,3\}$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Proof. Let $D=\{x=(u, b, c), y=(a, v, 0)\} \subseteq Z(R, 3)$, where $a \in A_{p_{1}}, b \in A_{p_{2}}, c \in A_{p_{3}}$, $u \in \mathbb{Z}_{p_{1}^{n_{1}}}^{\times}, v \in \mathbb{Z}_{p_{2}^{n_{2}}}^{\times}$. Then the vertex x dominates the set $Z(R, 3) \backslash(P \cup Q \cup S)$, where $P=\mathbb{Z}_{p_{1}^{n_{1}}}^{\times} \times 0 \times 0, Q=Z\left(\mathbb{Z}_{p_{1}^{n_{1}}}, 3\right) \times 0 \times 0$, and $S=\left\{\left(0, b^{\prime}, c^{\prime}\right): b^{\prime} \in A_{p_{2}^{n_{2}-1}}, c^{\prime} \in A_{p_{3}^{n_{3}-1}}\right\}$. Also the vertex y dominates the $\operatorname{set} P \cup Q \cup S$ in $\mathcal{H}_{3}(R)$. From this, we get D is a dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right) \leq 2$.

Note that $\mathcal{H}_{3}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$ is a subhypergraph of $\mathcal{H}_{3}(R)$. By Theorem 2.11, $\gamma\left(\mathcal{H}_{3}\left(\mathbb{Z}_{3} \times\right.\right.$ $\left.\left.\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right) \geq 2$ and hence $\gamma\left(\mathcal{H}_{3}(R)\right)=2$.

Theorem 2.15. Let R be an Artinian reduced ring and F be a field and $|\operatorname{Max}(R)| \geq 3$. If $k=|\operatorname{Max}(R)|$, then

$$
\gamma\left(\mathcal{H}_{k}(R)\right)= \begin{cases}1 & \text { if } R=\underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{(n-1) \text { times }} \times F \\ 2 & \text { otherwise }\end{cases}
$$

Proof. Since R is reduced, $R \cong F_{1} \times \cdots \times F_{n}$, where each F_{i} is a field and $|\operatorname{Max}(R)|=n$. By Remark 2.2, $Z(R, k)=\bigcup_{\ell=1}^{n-k+1} \mathbb{A}_{\ell}$.
Case 1: $R=\underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{(n-1) \text { times }} \times F$.
Let $x=(1,1, \ldots, 1,0) \in Z(R, k)$. For any $y \in Z(R, k)$ and $y \neq x$, there is an edge e of $\mathcal{H}_{k}(R)$ such that $x, y \in e$. Hence $\{x\}$ is a dominating set of $\mathcal{H}_{k}(R)$ and so $\gamma\left(\mathcal{H}_{k}(R)\right)=1$.
Case 2: $R \nsubseteq \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{(n-1) \text { times }} \times F$. Then at least two F_{i} 's have more than two elements. Without loss of generality, we assume that $\left|F_{\ell}\right| \geq 3$ and $\left|F_{t}\right| \geq 3$ for some $\ell \neq t$.

Consider the set $D=\{x=(1,1, \ldots, 1,0), y=(0,1,1, \ldots, 1,1)\}$. Then the vertex x dominates the set $Z(R, 3) \backslash B$ where $B=\left\{\left(u_{1}, u_{2}, \ldots, u_{n-1}, 0\right): u_{i} \in F_{i}^{*}\right\}$. Also the vertex y dominates the set B. Hence D is a dominating set of $\mathcal{H}_{k}(R)$ and so $\gamma\left(\mathcal{H}_{k}(R)\right) \leq 2$.

Suppose that $\gamma\left(\mathcal{H}_{k}(R)\right)=1$. Then there exists a subset S of $Z(R, k)$ such that S is a dominating set of $\mathcal{H}_{k}(R)$ and $|S|=1$. If $x=\left(u_{1}, \ldots, u_{j-1}, 0, u_{j+1}, \ldots, u_{n}\right) \in S$, where $u_{i} \in F_{i}^{*}$ for all $i \neq j$, then the vertices x and $\left(v_{1}, \ldots, v_{\ell}, \ldots, v_{j-1}, 0, v_{j+1}, \ldots, v_{t}, \ldots, v_{n}\right) \in Z(R, k)$ are not adjacent in $\mathcal{H}_{k}(R)$, where $v_{i} \in F_{i}^{*}$, which is a contradiction. Hence any dominating set of $\mathcal{H}_{k}(R)$ contains at least two elements. Hence $\gamma\left(\mathcal{H}_{k}(R)\right)=2$.

Theorem 2.16. Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$ be a ring, where each F_{i} is a field and $3 \leq k<n$. Let D be any dominating set in $\mathcal{H}_{k}(R)$ with minimum cardinality among all dominating sets. Then, for every $1 \leq \ell \leq n-k+1, D$ must contain at least one vertex from \mathbb{A}_{ℓ}, where

$$
A_{\ell}=\left\{x=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R: \text { exactly } \ell \text { components in the } n \text { tuples of } x \text { are zero }\right\} .
$$

Proof. Let $x=(u_{1}, \ldots, u_{\ell}, \underbrace{0,0, \ldots, 0}_{\ell \text { terms }}, u_{2 \ell+1}, \ldots, u_{n}) \in \mathbb{A}_{\ell}$, where $u_{i} \in F_{i}^{*}$.

$$
\text { Now } \mathbb{B}_{\ell}=\{(a_{1}, \ldots, a_{\ell}, \underbrace{b_{\ell+1}, \ldots, b_{2 \ell}}_{\ell \text { terms }}, a_{2 \ell+1}, \ldots, a_{n}) \in R: a_{s} \in F_{s}, b_{j} \in F_{j}\} \backslash
$$

$\left.R: a_{i} \in F_{i}\right\} \cup\{(u_{1}, \ldots, u_{\ell}, \underbrace{b_{\ell+1}, \ldots, b_{2 \ell}}_{\ell \text { terms }}, u_{2 \ell+1}, \ldots, u_{n}) \in R: u_{i} \in F_{i}^{*}, b_{j} \in F_{j}\}\}$. Since $n>3$, the vertices in \mathbb{B}_{ℓ} contains at least two vertices that are adjacent only to vertices in \mathbb{A}_{ℓ}. Suppose that D does not contain any vertex from \mathbb{A}_{t} for some t. Since D is a dominating set, D will contain vertices of \mathbb{B}_{t}. Consider $D^{\prime}=\left(D-\mathbb{B}_{t}\right) \cup\{y\}$ where y is an element of \mathbb{A}_{t}. Then $\left|D^{\prime}\right|<|D|$ and D^{\prime} is a dominating set of $\mathcal{H}_{k}(R)$, a contradiction. Hence D will contain at least one element from \mathbb{A}_{ℓ} for every ℓ.

Theorem 2.17. Let R be an Artinian reduced ring, F be a field and $n=|M a x(R)| \geq 3$. If $3 \leq k<n$, then

$$
\gamma\left(\mathcal{H}_{k}(R)\right)= \begin{cases}n-k+1 & \text { if } R \cong \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{(n-1) \text { times }} \times F \\ n-k+2 \quad \text { if otherwise }\end{cases}
$$

Proof. Since R is reduced, $R \cong F_{1} \times \cdots \times F_{n}$, where each F_{i} is a field and $|\operatorname{Max}(R)|=n$. By Remark 2.1, $Z(R, k)=\bigcup_{\ell=1}^{n-k+1} \mathbb{A}_{\ell}$.
Case 1: $R \cong \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}^{\ell=1}}_{(n-1) \text { times }} \times F$.
Consider the set $D=\left\{x_{1}, x_{2}, \ldots, x_{n-k+1}\right\} \subseteq Z(R, k)$, where $x_{1}=(1, \ldots, 1,0), x_{2}=$ $(1, \ldots, 1,0,0), \ldots, x_{n-k}=(\underbrace{1, \ldots, 1}_{k \text { terms }}, 0, \ldots, 0), x_{n-k+1}=(\underbrace{1, \ldots, 1}_{k-1 \text { terms }}, 0, \ldots, 0)$. Then the vertex x_{1} dominates the set $\left\{\left(y_{1}, y_{2}, \ldots, y_{n-1}, u_{n}\right) \in Z(R, k): y_{i} \in \mathbb{Z}_{2}, u_{n} \in F_{n}^{*}\right\}$ and the vertex x_{1} does not dominate any elements of the set B_{1}, where $B_{1}=\left\{\left(y_{1}, \ldots, y_{n-1}, 0\right) \in Z(R, k): y_{i} \in\right.$ $\left.\mathbb{Z}_{2}\right\}$. Now the vertex x_{2} dominates the set $\left\{\left(y_{1}, \ldots, y_{n-2}, 1,0\right) \in Z(R, k): y_{i} \in \mathbb{Z}_{2}\right\}$ and the vertex x_{2} does not dominate any vertex in $B_{2}=\left\{\left(y_{1}, \ldots, y_{n-2}, 0,0\right) \in Z(R, k): y_{i} \in \mathbb{Z}_{2}\right\}$. Proceeding like this, finally the vertex x_{n-k+1} dominates $\left\{\left(y_{1}, \ldots, y_{k-1}, 1,0, \ldots, 0\right): y_{i} \in \mathbb{Z}_{2}, y_{i} \neq\right.$ 0 for all $i\}$. Hence D is the dominating set of $\mathcal{H}_{k}(R)$ and so $\gamma\left(\mathcal{H}_{k}(R)\right) \leq n-k+1$.

In view of Theorem 2.16, we have $\gamma\left(\mathcal{H}_{k}(R)\right) \geq n-k+1$ and hence $\gamma\left(\mathcal{H}_{k}(R)\right)=n-k+1$. Case 2: $R \nsubseteq \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{(n-1) \text { times }} \times F$.
Consider the set $D=\left\{y_{1}, y_{2}, \ldots, y_{n-k+2}\right\}$, where $y_{1}=(1, \ldots, 1,0), y_{2}=(1, \ldots, 1,0,0), \ldots$, $y_{n-k}=(\underbrace{1, \ldots, 1}_{k \text { terms }}, 0, \ldots, 0), y_{n-k+1}=(\underbrace{1, \ldots, 1}_{k-1 \text { terms }}, 0, \ldots, 0), y_{n-k+2}=(0,1, \ldots, 1) \in Z(R, k)$.

Then the vertex y_{1} dominates the set $\left\{\left(w_{1}, w_{2}, \ldots, w_{n-1}, u_{n}\right) \in Z(R, k): w_{i} \in F_{i}, u_{n} \in F_{n}^{*}\right\}$ and the vertex y_{1} does not dominate any elements in the set $\left\{\left(w_{1}, w_{2}, \ldots, w_{n-1}, 0\right) \in Z(R, k)\right.$: $\left.w_{i} \in F_{i}\right\}$. Now the vertex y_{2} dominates the set $\left\{\left(w_{1}, w_{2}, \ldots, w_{n-2}, u_{n-1}, 0\right) \in Z(R, k): w_{i} \in\right.$ $\left.F_{i}, u_{n-1} \in F_{n-1}^{*}\right\}$ and the vertex y_{2} does not dominate any vertex in $\left\{\left(w_{1}, w_{2}, \ldots, w_{n-2}, 0,0\right) \in\right.$ $\left.Z(R, k): w_{i} \in F_{i}\right\} \cup\left\{\left(w_{1}, w_{2}, \ldots, w_{n-1}, 0\right) \in Z(R, k): w_{i} \in F_{i}\right\}$. Proceeding like this, y_{n-k+1} dominates the set $\left\{\left(w_{1}, w_{2}, \ldots, w_{k-1}, u_{k}, 0, \ldots, 0\right): w_{i} \in F_{i}, u_{k} \in F_{k}^{*}, w_{i} \neq 0\right.$ for all $\left.i\right\}$ and the vertex y_{ℓ} does not dominate any elements in the set P, where $P=\left\{\left(w_{1}, \ldots, w_{k-1}, 0, \ldots, 0\right)\right.$: $w_{i} \in F_{i}$ and at least two w_{i} 's are non-zero $\} \cup \ldots \cup$
$\left\{\left(w_{1}, \ldots, w_{n-2}, 0,0\right): w_{i} \in F_{i}\right.$ and at least two w_{i} 's are non-zero $\} \cup\left\{\left(w_{1}, \ldots, w_{n-1}, 0\right): w_{i} \in\right.$ F_{i} and at least two w_{i} 's are non-zero $\}$, where $1 \leq \ell \leq n-k+1$. Now the vertex y_{n-k+2} dominates the set P. Hence D is a dominating set of $\mathcal{H}_{k}(R)$ and so $\gamma\left(\mathcal{H}_{k}(R)\right) \leq n-k+2$.

Suppose that $\gamma\left(\mathcal{H}_{k}(R)\right) \leq n-k+1$. Then by Theorem 2.16, there exists a dominating set $D^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{n-k+1}\right\}$, where $x_{\ell}=(a_{1}, \ldots, a_{\ell-1}, \underbrace{0,0, \ldots, 0}_{\ell \text { terms }}, a_{\ell+\ell-1}, \ldots, a_{n-1}, a_{n}) \in$
\mathbb{A}_{ℓ} and $1 \leq \ell \leq n-k+1$. Since $\left|F_{i}\right| \geq 3$, vertices in D^{\prime} do not dominate vertices in $\{(a_{1}, \ldots, a_{\ell-1}, \underbrace{0,0, \ldots, 0}_{\ell \text { terms }}, a_{\ell+\ell-1}, \ldots, a_{n-1}, a_{n}): 1 \leq \ell \leq n-k+1\}$, a contradiction. Hence $\gamma\left(\mathcal{H}_{k}(R)\right)=n-k+2$.

Theorem 2.18. Let $R=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{\alpha_{n}}}$ be a commutative ring with identity, where each p_{i} is prime and $\alpha_{i} \geq 2, n \geq 3$, $p_{1}^{\alpha_{1}} \leq p_{2}^{\alpha_{2}} \leq \cdots \leq p_{n}^{\alpha_{n}}$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=n-1$.
Proof. Consider the set $D=\left\{x_{1}, \ldots, x_{n-1}\right\}$ where $x_{i}=\left(z_{1}, z_{2}, \ldots, z_{i-1}, u_{i}, z_{i+1}, \ldots, z_{n}\right)$, $z_{i} \in A_{p_{i}}, u_{i} \in \mathbb{Z}_{p_{i}^{\alpha_{i}}}^{\times}$for $1 \leq i \leq n-1$. Then the vertex x_{1} dominates the set $Z(R, 3) \backslash$ $\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)$, where $B^{\prime}=\bigcup_{i=2}^{n-1}\left\{\left(0,0, \ldots, 0, a_{i}, a_{i+1}, \ldots, a_{n-1}, a_{n}\right): a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}, C^{\prime}=$ $\left\{\left(a_{1}, 0, \ldots, 0,0\right): a_{1} \in Z\left(\mathbb{Z}_{p_{1}^{\alpha_{1}}}, 3\right)\right\}$ and $A^{\prime}=\left\{\left(u_{1}, 0, \ldots, 0,0\right): u_{1} \in \mathbb{Z}_{p_{1}^{\alpha_{1}}}^{\times}\right\}$. Also the vertex x_{2} dominates the set $C^{\prime} \cup A^{\prime} \cup\left\{\left(0, a_{2}, \ldots, a_{n-1}, a_{n}\right) \in B^{\prime}: a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$ and $\left\{x_{1}, x_{2}\right\}$ does not dominate any elements in the set $\bigcup_{i=3}^{n-1}\left\{\left(0,0, \ldots, 0, a_{i}, a_{i+1}, \ldots, a_{n-1}, a_{n}\right): a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$. Now the vertex x_{3} dominates the set $\left\{\left(0,0, a_{3}, a_{4}, \ldots, a_{n-1}, a_{n}\right) \in B^{\prime}: a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$ does not dominate any elements in the set $\bigcup_{i=4}^{n-1}\left\{\left(0, \ldots, 0, a_{i}, a_{i+1}, \ldots, a_{n-1}, a_{n}\right): a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$. Proceeding like this, the vertex x_{n-2} dominates the set $\left\{\left(0,0, \ldots, 0, a_{n-2}, a_{n-1}, a_{n}\right) \in B^{\prime}\right.$: $\left.a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$ and $\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\}$ does not dominate any elements of the set H, where $H=$ $\left\{\left(0,0, \ldots, 0, a_{n-1}, a_{n}\right) \in B^{\prime}: a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$ but x_{n-1} dominates the set H. Hence D is a dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right) \leq n-1$.

Since $\mathcal{H}_{3}\left(\mathbb{Z}_{3}^{n}\right)$ is a subhypergraph of $\mathcal{H}_{3}(R)$ and by Theorem 2.17, $\gamma\left(\mathcal{H}_{3}\left(\mathbb{Z}_{3}^{n}\right)\right) \geq n-1$. Hence $\gamma\left(\mathcal{H}_{3}(R)\right)=n-1$.

Theorem 2.19. Let $R=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{\alpha_{n}}} \times F_{1} \times F_{2} \times \cdots \times F_{m}$ be a finite commutative non-local ring, where each F_{j} is field, $\alpha_{i} \geq 2, m \geq 1, n \geq 2$ and $n+m \geq 3$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=$ $n+m-1$.

Proof. Consider the set $D=\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m-1}\right\}$, where $x_{1}=\left(z_{1}, z_{2}, \ldots, z_{n}\right.$, $\left.u_{1}, u_{2} \ldots, u_{m}\right), x_{2}=\left(u_{1}, u_{2}, \ldots, u_{n-1}, 0,0, \ldots, 0\right), x_{3}=\left(u_{1}, u_{2}, \ldots, u_{n-2}, 0,0, \ldots, 0\right), \ldots$, $x_{n-1}=\left(u_{1}, u_{2}, 0, \ldots, 0,0, \ldots, 0\right), x_{n}=\left(u_{1}, 0, \ldots, 0,0, \ldots, 0\right), y_{1}=\left(0, \ldots, 0, z_{n}, u_{1}, u_{2}, \ldots\right.$, $\left.u_{m-1}, 0\right), y_{2}=\left(0, \ldots, 0, z_{n}, u_{1}, u_{2}, \ldots, u_{m-2}, 0,0\right), \ldots, y_{m-2}=\left(0, \ldots, 0, z_{n}, u_{1}, u_{2}, 0, \ldots, 0\right)$, $\left.y_{m-1}=\left(0, \ldots, 0, z_{n}, u_{1}, 0, \ldots, 0,0\right)\right\}$, where $z_{i} \in A_{p_{i}}$ and u_{i} 's are units.

Then the vertex x_{1} dominates the set $Z(R, 3) \backslash\left(P^{\prime} \cup Q^{\prime} \cup S^{\prime}\right)$, where $P^{\prime}=\left\{\left(0, \ldots, 0, b_{1}, b_{2}\right.\right.$, $\left.\ldots, b_{m-1}, b_{m}\right): b_{i}=0$ or $\left.b_{i} \in F_{i}^{\times}\right\}, S^{\prime}=\left\{\left(a_{1}, \ldots, a_{n-1}, a_{n}, 0, \ldots, 0\right): a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$ and $Q^{\prime}=$ $\left\{\left(a_{1}, \ldots, a_{n-1}, a_{n}, 0, \ldots, 0\right)\right.$: at least one $a_{i}=0$ and at least two $\left.a_{i}^{\prime} s \in A_{p_{i}^{\alpha_{i}-1}}\right\}$. Also the vertex x_{2} dominates the set $S^{\prime} \cup\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}, 0, \ldots, 0\right) \in Q^{\prime}: 0 \neq a_{n} \in A_{p_{n}^{\alpha_{n}-1}}\right\}$ and vertices
$\left\{x_{1}, x_{2}\right\}$ do not dominate any elements in the set P^{\prime} and $\left\{\left(a_{1}, a_{2}, \ldots, a_{n-1}, 0,0, \ldots, 0\right) \in Q^{\prime}\right.$: $\left.a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$. Proceeding like this, the vertex x_{n-1} dominates the set $\left\{\left(a_{1}, a_{2}, a_{3}, 0, \ldots, 0\right) \in\right.$ $\left.Q^{\prime}: 0 \neq a_{3} \in A_{p_{3}^{\alpha_{3}-1}}\right\}$ and vertices $\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ do not dominate any elements in the set P^{\prime} and H, where $H=\left\{\left(a_{1}, a_{2}, 0,0, \ldots, 0\right) \in Q^{\prime}: a_{i} \in A_{p_{i}^{\alpha_{i}-1}}\right\}$ but x_{n} dominates the set H. Now the vertex y_{1} dominates the set $\left\{\left(0, \ldots, 0, b_{1}, \ldots, b_{m-1}, u_{m}\right) \in P^{\prime}: u_{m} \in F_{m}^{\times}\right\}$and the vertices $\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}\right\}$ do not dominate any elements in the set $\left\{\left(0, \ldots, 0, b_{1}, b_{2}, \ldots, b_{m-1}, 0\right) \in\right.$ $P^{\prime}: b_{i}=0$ or $\left.b_{i} \in F_{i}^{\times}\right\}$. The vertex y_{2} dominates the set $\left\{\left(0, \ldots, 0, b_{1}, b_{2}, \ldots, u_{m-1}, 0\right) \in\right.$ $\left.P^{\prime}: u_{m-1} \in F_{m-1}^{\times}\right\}$and vertices $\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}\right\}$ do not dominate any elements in the set $\left\{\left(0, \ldots, 0, b_{1}, b_{2}, \ldots, b_{m-2}, 0,0\right) \in P^{\prime}: b_{i}=0\right.$ or $\left.b_{i} \in F_{i}^{\times}\right\}$. Proceeding like this, the vertex y_{m-2} dominates the set $\left\{\left(0, \ldots, 0, b_{1}, b_{2}, u_{3}, 0 \ldots, 0\right) \in P^{\prime}: u_{3} \in F_{3}^{\times}\right\}$and the vertices $\left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m-2}\right\}$ do not dominate any elements in the set H^{\prime}, where $H^{\prime}=\left\{\left(0, \ldots, 0, b_{1}, b_{2}, 0, \ldots, 0,0\right) \in P^{\prime}: b_{i} \in F_{i}^{\times}\right\}$but y_{m-1} dominates the set H^{\prime}. Hence D is the dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right) \leq n+m-1$.

Since $\mathcal{H}_{3}\left(\mathbb{Z}_{3}^{n} \times \mathbb{Z}_{2}^{m}\right)$ is a subhypergraph of $\mathcal{H}_{3}(R)$. By Theorem 2.17, $\gamma\left(\mathcal{H}_{3}\left(\mathbb{Z}_{3}^{n} \times \mathbb{Z}_{2}^{m}\right)\right) \geq$ $n+m-1$. Hence $\gamma\left(\mathcal{H}_{3}(R)\right)=n+m-1$.

Theorem 2.20. Let $R=\mathbb{Z}_{p^{n}} \times F_{1} \times F_{2} \times \cdots \times F_{m}$ be a finite commutative non-local ring, where each F_{j} is field, p is prime, $n \geq 2$ and $m \geq 3$. Then $\gamma\left(\mathcal{H}_{3}(R)\right)=m-1$.

Proof. Consider the set $D=\left\{y_{1}, y_{2}, \ldots, y_{m-1}\right\}$, where $y_{1}=\left(z, u_{1}, \ldots, u_{m-1}, 0\right), y_{2}=\left(z, u_{1}\right.$, $\left.\ldots, u_{m-2}, 0, u_{m}\right), \ldots, y_{m-2}=\left(z, u_{1}, u_{2}, 0, u_{4}, \ldots, u_{m}\right), y_{m-1}=\left(z, u_{1}, 0, u_{3}, \ldots, u_{m}\right)$, where $z \in A_{p}$ and u_{i} 's are units.

Then y_{1} dominates the set $Z(R, 3) \backslash\left\{P \cup P^{\prime}\right\}$, where $P=\left\{\left(0, b_{1}, \ldots, b_{m-1}, 0\right): b_{i}=\right.$ 0 or $\left.b_{i} \in F_{i}^{\times}\right\}$and $P^{\prime}=\left\{\left(v, u_{1}, \ldots, u_{m-1}, 0\right): v \in \mathbb{Z}_{p^{n}}^{\times} u_{i} \in F_{i}^{\times}\right\} \cup\left\{\left(z^{\prime}, 0 \ldots, 0, u_{m}\right)\right.$: $\left.z^{\prime} \in A_{p^{n-1}}, u_{m} \in F_{m}^{\times}\right\}$. Now the vertex y_{2} dominates the set $\left\{\left(0, b_{1}, \ldots, b_{m-2}, u_{m-1}, 0\right) \in\right.$ $\left.P: u_{m-1} \in F_{m-1}^{\times}\right\} \cup P^{\prime}$ and the vertices $\left\{y_{1}, y_{2}\right\}$ does not dominate any elements in the set $\left\{\left(0, b_{1}, \ldots, b_{m-2}, 0,0\right) \in P: b_{i}=0\right.$ or $\left.b_{i} \in F_{i}^{\times}\right\}$. The vertex y_{3} dominates the set $\left\{\left(0, b_{1}, \ldots, b_{m-3}, u_{m-2}, 0,0\right) \in P: u_{m-2} \in F_{m-2}^{\times}\right\}$and $\left\{y_{1}, y_{2}, y_{3}\right\}$ does not dominate any elements in the set $\left\{\left(0, b_{1}, \ldots, b_{m-3}, 0,0,0\right) \in P: b_{i}=0\right.$ or $\left.b_{i} \in F_{i}^{\times}\right\}$. Proceeding like this, the vertex y_{m-2} dominates the set $\left\{\left(0, b_{1}, b_{2}, u_{3}, 0 \ldots, 0\right) \in P: u_{3} \in F_{3}^{\times}\right\}$and $\left\{y_{1}, y_{2}, \ldots, y_{m-2}\right\}$ does not dominate any elements in the set H, where $H=\left\{\left(0, b_{1}, b_{2}, 0, \ldots, 0,0\right) \in P: b_{i} \in F_{i}^{\times}\right\}$ but y_{m-1} dominates the set H. Hence D is the dominating set of $\mathcal{H}_{3}(R)$ and so $\gamma\left(\mathcal{H}_{3}(R)\right) \leq$ $m-1$.

Since $\mathcal{H}_{3}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{m}\right)$ is a subhypergraph of $\mathcal{H}_{3}(R)$. By Theorem 2.17, $\gamma\left(\mathcal{H}_{3}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{m}\right)\right) \geq$ $m-1$. Hence $\gamma\left(\mathcal{H}_{3}(R)\right)=m-1$.

Acknowledgments

This research work is supported by the DST-SERB Project No. EEQ/2016/000367 of Science and Engineering Research Board, Government of India for the first author.

References

[1] B. D. Acharya, Domination in hypergraphs, AKCE J. Graphs Combin., 4 (2) (2007), 117-126.
[2] B. D. Acharya, Domination in hypergraphs, II-New directions, Proc. Int. Conf.-ICDM, (2008) 1-16.
[3] Alain Bretto, Hypergraph Theory An Introduction, Springer, New York, 2013.
[4] D.F. Anderson, T. Asir, A. Badawi, T. Tamizh Chelvam, Graphs from rings, First ed., Springer Nature Switzerland.
[5] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, The zero-divisor graph of a commutative ring, II. In: Anderson, D. D., Patrick, I. J., eds. Ideal Theoretic Methods in Commutative Algebra, Dekker, New York, (2001), pp. 61-72.
[6] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[7] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co, Londan, 1969.
[8] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, Londan, 2003.
[9] Ch. Eslahchi, A. M. Rahimi, The k-zero divisor hypergraph of a commutative ring, Int. J. Math. Math. Sciences, 2007 (2007), 15 (article ID 50875).
[10] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago, Chicago, 1974.
[11] T. Tamizh Chelvam, K. Selvakumar, V. Ramanathan, On the planarity of the k-zero-divisor hypergraphs, AKCE Inter. J. Graphs Combin, 12 (2) (2015), 169-176.
[12] K. Selvakumar, V. Ramanathan, Classification of non-local rings with genus one 3-zero-divisor hypergraphs, Comm. Algebra, 45 (1) (2017), 275-284.
[13] K. Selvakumar, V. Ramanathan, Classification of non-local rings with projective 3-zero-divisor hypergraph, Ricerche Mat., 66 (2017), 457-468.
[14] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam., 1973.

Author information

K. Selvakumar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
E-mail: selva_158@yahoo.co.in
J. Beautlin Jemi, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
E-mail: beautlinjemi09@gmail.com

