Domination in k-zero-divisor hypergraph of some class of commutative rings

K. Selvakumar and J. Beautlin Jemi

Communicated by T. Tamizh Chelvam

MSC 2010 Classifications: Primary 05C65; 05C25; C25, 05C75; Secondary 13A15, 16N40.

Keywords and phrases: local rings; hypergraph; zero-divisor graph; domination.

Abstract Let R be a commutative ring with identity and let Z(R, k) be the set of all k-zerodivisors in R and k > 2 an integer. The k-zero-divisor hypergraph of R, denoted by $\mathcal{H}_k(R)$, is a hypergraph with vertex set Z(R, k), and for distinct elements $x_1, x_2, ..., x_k$ in Z(R, k), the set

 $\{x_1, x_2, ..., x_k\}$ is an edge of $\mathcal{H}_k(R)$ if and only if $\prod_{i=1}^k x_i = 0$ and the product of any (k-1)

elements of $\{x_1, x_2, ..., x_k\}$ is nonzero. In this paper, we determine the domination number of $\mathcal{H}_k(R)$ for some commutative rings.

1 Introduction

Attaching various graphs to an algebraic structure to understand its properties is a classical and useful technique. In this direction, various graph parameters can be related to algebraic properties of the structure under consideration and lead to a better understanding of its theory. For example, one can attach a graph to a commutative ring R with unity by considering its non-zero zero-divisors as its vertices and connect two of them by an edge if their product is zero [6]. This graph is called the zero-divisor graph of R, denoted by $\Gamma(R)$, and is well-studied in the literature [4]. In view of this, Ch. Eslahchi and A. M. Rahimi [9] have introduced and investigated a graph called the *k-zero-divisor hypergraph* of a commutative ring and later was studied extensively in [11, 12]. For k = 2, the graph is exactly the same as the zero-divisor graph of a ring.

A hypergraph \mathcal{H} is a pair $(V(\mathcal{H}), E(\mathcal{H}))$ of disjoint sets, where $V(\mathcal{H})$ is a non empty finite set whose elements are called vertices and the elements of $E(\mathcal{H})$ are nonempty subsets of $V(\mathcal{H})$ called edges. The hypergraph \mathcal{H} is called k-uniform whenever every edge e of \mathcal{H} is of size k. The number of edges containing a vertex $v \in V(\mathcal{H})$ is its degree $d_{\mathcal{H}}(v)$. For basic definitions on hypergraphs, one may refer [3]. A set D of vertices in a hypergraph \mathcal{H} is a dominating set if for every $x \in V \setminus D$ there exists $y \in D$ such that x and y are adjacent i.e., there exists $e \in E$ such that $x, y \in e$. The minimum cardinality of a dominating set is called the domination number of \mathcal{H} and is denoted by $\gamma(\mathcal{H})$, one may refer [1].

Throughout this paper, we assume that R is a commutative ring with identity, Z(R), its set of zero-divisors and R^{\times} , its group of units and F is a field. For any set X, let X^* denote the nonzero elements of X. For basic definitions on rings, one may refer [7, 10].

2 Domination of $\mathcal{H}_k(R)$

In this section, we determine the domination number of the *k*-zero-divisor hypergraph of some classes of commutative rings. From the definition, we have the following observations.

Remark 2.1. [11, Remark 2.1] Let $R = F_1 \times F_2 \times \cdots \times F_n$, where each F_i is a field and $3 \le k \le n$.

If $\mathbb{A}_{\ell} = \{x = (a_1, a_2, \dots, a_n) \in \mathbb{R} : \text{exactly } \ell \text{ components in the } n \text{ tuples of } x \text{ are zero} \}$ for $1 < \ell < n - k + 1$. Then $Z(\mathbb{R}, k) = | \cdot | A_{\ell}$.

$$1 \leq \ell \leq n-k+1$$
. Then $Z(R,k) = \bigcup_{\ell=1}^{n-1} \mathbb{A}_{\ell}$

Remark 2.2. Let $m = p^n$ be a positive integer and $A_d = \{x \in \mathbb{Z}_m : (x,m) = d\}$ where p is prime, d divides m and $n \ge 3$. Then

(i)
$$Z(\mathbb{Z}_m, 3) = \bigcup_{i=1}^{n-2} A_{p^i}$$
,
(ii) $Z(R, k) = \bigcup_{i=1}^{n-k+1} A_{p^i}$ and $A_{p^i} \cap A_{p^j} = \emptyset$ for all $i \neq j$.

Proposition 2.3. Let (R_i, \mathfrak{m}_i) be a local ring with $\mathfrak{m}_i \neq \{0\}$ for $1 \leq i \leq n$ and let $R = R_1 \times \cdots \times R_n$. Let $z_i \in \mathfrak{m}_i^*$ for $1 \leq i \leq n$. Then $z_i \in Z(R_i, 3)$ if and only if $z = (0, \ldots, 0, z_i, 0, \ldots, 0) \in Z(R, 3)$

Proof. Suppose that $z_i \in Z(R_i, 3)$. Then by definition of $Z(R_i, 3)$, there exists distinct elements x_i, y_i of R_i other than z_i such that $x_iy_iz_i = 0$ and x_iy_i, x_iz_i, y_iz_i are nonzero elements of R_i . Let $x = (0, \ldots, 0, x_i, 0, \ldots, 0), y = (0, \ldots, 0, y_i, 0, \ldots, 0), z = (0, \ldots, 0, z_i, 0, \ldots, 0) \in R$. Then xyz = 0 and xy, xz, yz are nonzero elements of R. Hence $z \in Z(R, 3)$.

Suppose that $z = (0, ..., 0, z_i, 0, ..., 0) \in Z(R, 3)$. Then there exists distinct elements $x = (0, ..., 0, a_i, 0, ..., 0)$, $y = (0, ..., 0, b_i, 0, ..., 0) \in Z(R, 3)$ such that xyz = 0 and so $a_ib_iz_i = 0$. By definition of Z(R, 3), xy, xz, yz are nonzero elements of R and so a_ib_i, b_iz_i and a_iz_i are nonzero elements of R_i . From this, we get $z_i \in Z(R_i, 3)$.

Proposition 2.4. Let (R, \mathfrak{m}) be a finite local ring with $\mathfrak{m}^t = 0$. If t = 2, then $Z(R, k) = \emptyset$ for any $k \ge 3$.

Proof. Suppose $Z(R,k) \neq \emptyset$ for any $k \ge 3$. Let $x_1 \in Z(R,k)$. Then there exists $x_2, x_3, \ldots, x_k \in Z(R,k)$ such that $\{x_1, x_2, \ldots, x_k\}$ is an edge. i.e., $x_1x_2 \ldots x_k = 0$. Since t = 2, the product of two vertices from $\{x_1, x_2, \ldots, x_k\}$ is zero, which is a contradiction. Hence $Z(R,k) = \emptyset$. \Box

Proposition 2.5. Let (R, \mathfrak{m}) be a finite local ring with $\mathfrak{m}^t = 0$, then $Z(R, k) = \emptyset$ for all t < k.

Proof. Suppose $Z(R, k) \neq \emptyset$ for any t < k. Let $x_1 \in Z(R, k)$. Then there exists $x_2, x_3, \ldots, x_k \in Z(R, k)$ such that $\{x_1, x_2, \ldots, x_k\}$ is an edge. i.e., $x_1x_2 \ldots x_k = 0$. Since t < k, the product of t vertices from $\{x_1, x_2, \ldots, x_k\}$ is zero, which is a contradiction. Hence $Z(R, k) = \emptyset$. \Box

The next theorem shows that k-zero-divisor hypergraph of a local ring \mathbb{Z}_{p^t} is connected.

Theorem 2.6. Let $R = \mathbb{Z}_{p^t}$, where $t \ge 3$. For $k \le t$, then $\mathcal{H}_k(R)$ is connected, $diam(\mathcal{H}_k(R)) \le 2$ and $gr(\mathcal{H}_k(R)) = 2$ or ∞ .

Proof. Let $x, y \in Z(R, k)$ such that $x \neq y$. If $x, y \in e$ for some edge e in $\mathcal{H}_k(R)$, then d(x, y) = 1. Suppose $x, y \notin e$ for every edge e in $\mathcal{H}_k(R)$. Since $x, y \in Z(R, k), x \in A_{p^i}$ and $y \in A_{p^j}$ for some i, j. For each $w \in Z(R, k)$ and $w \neq z, w, z \in e$ for some edge e in $\mathcal{H}_k(R)$, where $z \in A_p$. From this, we get $x \neq z$ and $y \neq z$ and so there exists $x_i \in A_{p^i}$, for some $1 \leq l \leq t - k + 1$ and $1 \leq i \leq t - 2$ such that $\{z, x, x_1, x_2, \dots, x_{k-2}\}, \{z, y, x_1, x_2, \dots, x_{k-2}\}$ are edges in $\mathcal{H}_k(R)$ and so d(x, y) = 2. Hence it is clear that $diam(\mathcal{H}_k(R)) \leq 2$.

Suppose $3 \le k < t$. Let $e_1 = \{x_1, x_2, \dots, x_{k-2}, z, z'\}$, $e_2 = \{x_1, x_2, \dots, x_{k-2}, z, z'\}$ are two edges in $\mathcal{H}_k(R)$, where $z, z' \in A_p$, $x_i \in A_{p^l}$, for some $1 \le l \le t - k + 1$ and hence $z' - e_1 - z - e_2 - z'$ form a cycle of length two and so $gr(\mathcal{H}_k(R)) = 2$.

Suppose k = t. If $|Z(R,k)| \ge t+1$, then $e_1 = \{x_1, x_2, \dots, x_{k-2}, z, z'\}$ and $e_2 = \{x_1, x_2, \dots, x_{k-2}, z, z'\}$ are two edges in $\mathcal{H}_k(R)$, where $z, z', x_i \in A_p$ and hence $z' - e_1 - z - e_2 - z'$ form a cycle of length two and so $gr(\mathcal{H}_k(R)) = 2$. If |Z(R,k)| = t, then $e = \{x_1, x_2, \dots, x_{k-2}, x_{k-1}, x_k\}$ is the only edge in $\mathcal{H}_k(R)$. Hence $gr(\mathcal{H}_k(R)) = \infty$. \Box

Note that if $R = \mathbb{Z}_{p^2}$, \mathbb{Z}_8 or $F_1 \times F_2$, where p is prime and F_i 's are field, then $Z(R, 3) = \emptyset$. We exclude these rings while studying 3-zero-divisor hypergraph.

Theorem 2.7. Let $R = \mathbb{Z}_{p^n}$, where p is prime and $n \geq 3$. Then $\gamma(\mathcal{H}_3(R)) = 1$

Proof. For any $x \in Z(R,3)$, $\{x, y, a\}$ is an edge of $\mathcal{H}_3(R)$ for all $a \in A_p$ and some $y \in Z(R,3)$. Hence $\{a\}$ is a dominating set of $\mathcal{H}_3(R)$ for some $a \in A_p$ and so $\gamma(\mathcal{H}_3(R)) = 1$. \Box **Theorem 2.8.** Let $R = \mathbb{Z}_{p^n} \times F$ be a commutative ring, where p is prime, $n \ge 2$, F is a field and $Z(\mathbb{Z}_{p^n}, 3) \neq \emptyset$. Then $\gamma(\mathcal{H}_3(R)) = 1$.

Proof. Consider the set $D = \{x = (z, u)\} \subset Z(R, 3)$, where $u \in F^*$ and $z \in A_p$. Suppose that $y \in Z(R, 3) \setminus D$. If $y = (0, v) \in Z(R, 3)$, where $v \in F^*$, then there exists $w = (a, u) \in Z(R, 3)$, where $a \in A_{p^{n-1}}$, such that xyw = 0 and none of xy, xw and yw are zero. Hence x dominates every element of $(0) \times F^*$.

If $y = (z, 0) \in Z(R, 3)$, where $z \in Z(\mathbb{Z}_{p^n}, 3)$, then there exists $w = (a, u) \in Z(R, 3)$, where $a \in A_{p^i}, 1 \le i \le n-2$, such that $\{x, y, w\}$ is an edge and so x dominates $Z(\mathbb{Z}_{p^n}, 3) \times (0)$.

Consider the cases when $y = (z, u') \in Z(R, 3)$, where $u' \in F^*$, $z \in Z(\mathbb{Z}_{p^n})^*$, and when $y = (z, u') \in Z(R, 3)$, where $u' \in F^*$, $z \in Z(\mathbb{Z}_{p^n})^*$. In the former case, there exists $w = (v, 0) \in Z(R, 3)$, where $v \in \mathbb{Z}_{p^n}^{\times}$, such that $\{x, y, w\}$ is an edge. In the later case, there exists $w = (a, 0) \in Z(R, 3)$, where $a \in Z(\mathbb{Z}_{p^n}, 3)$, such that the product xyw = 0 and xy, xw, yw are non-zero. Thus, we conclude that x dominates every element of Z(R, 3). Hence D is a dominating set of $\mathcal{H}_3(R)$ and so $\gamma(\mathcal{H}_3(R)) = 1$.

Theorem 2.9. Let $R = \mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}}$, where p_1, p_2 are prime and $n_1, n_2 \ge 2$. Then $\gamma(\mathcal{H}_3(R)) = 2$.

Proof. Let $a = (a_1, a_2) \in Z(R, 3)$, where $a_i \in A_{p_i}$ for i = 1, 2. Then a dominates $Z(R, 3) \setminus B$, where $B = \{(b_1, b_2) : b_i \in A_{p_i^{n_i-1}}, \text{ for } i = 1, 2\}$. In order to find a vertex which dominates the set B, let us consider the vertex $c = (c_1, c_2) \in Z(R, 3)$, where $c_1 \in Z(\mathbb{Z}_{p_1^{n_1}})^*$ and $c_2 \in \mathbb{Z}_{p_2^{n_2}}^\times$. For each $d \in B$, there exist $f = (f_1, f_2) \in Z(R, 3)$, where $f_1 \in \mathbb{Z}_{p_1^{n_1}}^\times$ and $f_2 \in Z(\mathbb{Z}_{p_2^{n_2}})^*$ such that the product cdf is zero and none of cd, cf, df are zero and so c dominates the set B. Hence $\{a, c\}$ is a dominating set of $\mathcal{H}_3(R)$ and $\gamma(\mathcal{H}_3(R)) \leq 2$.

Suppose that $\gamma(\mathcal{H}_3(R)) = 1$. Then there exists a subset S of Z(R, 3) such that S is a dominating set of $\mathcal{H}_3(R)$ and |S| = 1.

Let $z_1 \in A_{p_1^i}, z_2 \in A_{p_2^j}$ for some $i \in \{1, 2, \dots, n_1 - 1\}$ and $j \in \{1, 2, \dots, n_2 - 1\}$.

If $(z_1, z_2) \in S$, then there exists a vertex $(a, b) \in Z(R, 3)$, $a \in A_{p_1^{n_1-i}}$, $b \in A_{p_2^{n_2-j}}$, such that the product $(z_1, z_2)(a, b) = (0, 0)$ and so the vertices of this nature do not fall under any edge of $\mathcal{H}_3(R)$.

Consider the vertex in S of the form $(z, v) \in Z(\mathbb{Z}_{p_1^{n_1}}) \times \mathbb{Z}_{p_2^{n_2}}^{\times}$. Then the vertices (z, v) and (0, v') are not adjacent in $\mathcal{H}_3(R)$, for all $v' \in \mathbb{Z}_{p_2^{n_2}}^{\times}$.

Finally let us consider the vertex in S of the form $(z,0) \in Z(R,3)$, where $z \in Z(\mathbb{Z}_{p_1^{n_1}},3)$. Then vertices (z,0) and (0,v') are not adjacent in $\mathcal{H}_3(R)$, for all $v' \in \mathbb{Z}_{p_2^{n_2}}^{\times}$. Thus there does not exist a dominating set of cardinality one and so $\gamma(\mathcal{H}_3(R)) = 2$.

Theorem 2.10. Let $R = F_1 \times F_2 \times F_3$, where each F_i is a field. Then $\gamma(\mathcal{H}_3(R)) = 1$ if and only if $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times F_3$, where F_3 is a field.

Proof. Suppose $\gamma(\mathcal{H}_3(R)) = 1$. Let us assume that at least two of F_1 , F_2 , F_3 are of cardinality more than 2. Note that $Z(R, 3) = B_1 \cup B_2 \cup B_3$, where $B_1 = F_1^* \times F_2^* \times 0$, $B_2 = 0 \times F_2^* \times F_3^*$, $B_3 = F_1^* \times 0 \times F_3^*$. Clearly $|B_i| \ge 2$ for all $i \in \{1, 2, 3\}$.

Let x be any element of Z(R,3). Then $x \in B_i$ for some $i \in \{1,2,3\}$ and x dominates every element of B_j for $j \neq i$ and x does not dominate the set B_i , a contradiction. Hence $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{F}_3$.

Conversely, assume that $R = \mathbb{Z}_2 \times \mathbb{Z}_2 \times F_3$, where F_3 is a field. Then $Z(R,3) = \{(1,1,0), (0,1,w), (1,0,w) : w \in F_3^*\}$. Consider the set $D = \{x = (1,1,0)\}$. If $y = (0,1,w) \in Z(R,3)$, where $w \in F_3^*$, then there exists $z = (1,0,w) \in Z(R,3)$ such that $\{x, y, z\}$ is an edge. Hence D is a dominating set of $\mathcal{H}_3(R)$ and so $\gamma(\mathcal{H}_3(R)) = 1$.

Theorem 2.11. Let $R = F_1 \times F_2 \times F_3$ be a commutative ring and $R \ncong \mathbb{Z}_2 \times \mathbb{Z}_2 \times F_3$, where each F_i is a field. Then $\gamma(\mathcal{H}_3(R)) = 2$.

Proof. By Theorem 2.10, $\gamma(\mathcal{H}_3(R)) \geq 2$. Since $R \ncong \mathbb{Z}_2 \times \mathbb{Z}_2 \times F_3$, at least two F_i 's have cardinality more than two. Without loss of generality, we assume that $|F_i| \geq 3$ for $i \in \{2, 3\}$. Note that $Z(R, 3) = B_1 \cup B_2 \cup B_3$, where $B_1 = F_1^* \times F_2^* \times 0$, $B_2 = 0 \times F_2^* \times F_3^*$, $B_3 = F_1^* \times 0 \times F_3^*$.

Consider the set $D = \{a = (u, v, 0), b = (0, v, w)\}$, where $a \in B_1$ and $b \in B_2$. Then *a* dominates every element of $B_2 \cup B_3$ and *b* dominates every element of B_1 . Hence *D* is a domination set of $\mathcal{H}_3(R)$ and so $\gamma(\mathcal{H}_3(R)) = 2$.

Theorem 2.12. Let $R = F_1 \times F_2 \times \mathbb{Z}_{p^n}$ be a commutative ring, where each F_i is a field, p is prime and $n \ge 2$. Then $\gamma(\mathcal{H}_3(R)) = 2$.

Proof. Consider $D = \{x = (u, v, z), y = (0, v, z)\}$, where $u \in F_1^*, v \in F_2^*, z \in A_p$. Then the vertex x dominates $Z(R, 3) \setminus B$ where $B = \{(u, v, 0) : u \in F_1^*, v \in F_2^*\}$. Also the vertex $y \in D$ dominates B. Hence D is a dominating set of $\mathcal{H}_3(R)$ and so $\gamma(\mathcal{H}_3(R)) \leq 2$.

Let $g = (1, 1, z) \in Z(R, 3)$, for some $z \in Z(\mathbb{Z}_{p^n})^*$. Then the vertex g does not dominate any element of B. Clearly the vertices (0, 1, 1) and (1, 0, 1) do not dominate any element of the sets $\{(0, v, w) : v \in F_2^*, w \in \mathbb{Z}_{p^n}^\times\}$ and $\{(u, 0, w) : u \in F_1^*, w \in \mathbb{Z}_{p^n}^\times\}$ respectively.

Let $z \in Z(\mathbb{Z}_{p^n})^*$ with zd = 0 for some $d \in Z(\mathbb{Z}_{p^n})^*$. Then vertices (1,0,z) and (0,1,d) are not adjacent in $\mathcal{H}_3(R)$. Also the vertex (0,0,1) does not dominate any element of the set $\{(0,0,z') : z' \in Z(\mathbb{Z}_{p^n},3)\}$. Thus we conclude that any dominating set of $\mathcal{H}_3(R)$ must contain more than one element and hence $\gamma(\mathcal{H}_3(R)) = 2$.

Theorem 2.13. Let $R = F \times \mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}}$ be a commutative ring, where F is a field, p_1, p_2 are prime and $n_1, n_2 \ge 2$. Then $\gamma(\mathcal{H}_3(R)) = 2$.

Proof. Consider $D = \{x = (u, a, b), y = (u, v, b)\}$, where $u \in F^*$, $v \in \mathbb{Z}_{p_1^{n_1}}^{\times}$, $a \in A_{p_1}$, $b \in A_{p_2}$. Then the vertex x is adjacent to every element of the set $Z(R, 3) \setminus \{(0, z, w) : z \in A_{p_1^{n_1-1}}, w \in A_{p_2^{n_2-1}}\}$. Also the vertex y dominates the set $\{(0, p, q) : p \in A_{p_1^{n_1-1}}, q \in A_{p_2^{n_2-1}}\}$. Hence D is a dominating set of $\mathcal{H}_3(R)$ and by using similar arguments given in Theorem 2.12, we get $\gamma(\mathcal{H}_3(R)) = 2$.

Theorem 2.14. Let $R = \mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}} \times \mathbb{Z}_{p_3^{n_3}}$ be a commutative ring, where each p_i 's are prime and $n_i \ge 2$ for $i = \{1, 2, 3\}$. Then $\gamma(\mathcal{H}_3(R)) = 2$.

Proof. Let $D = \{x = (u, b, c), y = (a, v, 0)\} \subseteq Z(R, 3)$, where $a \in A_{p_1}, b \in A_{p_2}, c \in A_{p_3}, u \in \mathbb{Z}_{p_1}^{\times n_1}, v \in \mathbb{Z}_{p_2}^{\times n_2}$. Then the vertex x dominates the set $Z(R, 3) \setminus (P \cup Q \cup S)$, where $P = \mathbb{Z}_{p_1}^{\times n_1} \times 0 \times 0, Q = Z(\mathbb{Z}_{p_1}^{n_1}, 3) \times 0 \times 0$, and $S = \{(0, b', c') : b' \in A_{p_2}^{n_2-1}, c' \in A_{p_3}^{n_3-1}\}$. Also the vertex y dominates the set $P \cup Q \cup S$ in $\mathcal{H}_3(R)$. From this, we get D is a dominating set of $\mathcal{H}_3(R)$ and so $\gamma(\mathcal{H}_3(R)) \leq 2$.

Note that $\mathcal{H}_3(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3)$ is a subhypergraph of $\mathcal{H}_3(R)$. By Theorem 2.11, $\gamma(\mathcal{H}_3(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3)) \ge 2$ and hence $\gamma(\mathcal{H}_3(R)) = 2$.

Theorem 2.15. Let R be an Artinian reduced ring and F be a field and $|Max(R)| \ge 3$. If k = |Max(R)|, then

$$\gamma(\mathcal{H}_k(R)) = \begin{cases} 1 & \text{if } R = \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{(n-1) \text{ times}} \times F \\ 2 & \text{otherwise.} \end{cases}$$

Proof. Since R is reduced, $R \cong F_1 \times \cdots \times F_n$, where each F_i is a field and |Max(R)| = n. By Remark 2.2, $Z(R,k) = \bigcup_{\substack{\ell=1 \\ \ell=1}}^{n-k+1} \mathbb{A}_{\ell}$. **Case 1**: $R = \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{(n-1) \text{ times}} \times F$.

Let $x = (1, 1, ..., 1, 0) \in Z(R, k)$. For any $y \in Z(R, k)$ and $y \neq x$, there is an edge e of $\mathcal{H}_k(R)$ such that $x, y \in e$. Hence $\{x\}$ is a dominating set of $\mathcal{H}_k(R)$ and so $\gamma(\mathcal{H}_k(R)) = 1$. **Case 2:** $R \ncong \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 \times F$. Then at least two F_i 's have more than two elements. Without without F_i is a dominating set of $\mathcal{H}_k(R)$ and F_i is a dominating set of $\mathcal{H}_k(R)$ and F_i is a dominating set of $\mathcal{H}_k(R)$ and F_i is a dominating set of $\mathcal{H}_k(R)$ and so $\gamma(\mathcal{H}_k(R)) = 1$.

loss of generality, we assume that $|F_{\ell}| \ge 3$ and $|F_t| \ge 3$ for some $\ell \ne t$.

Consider the set $D = \{x = (1, 1, ..., 1, 0), y = (0, 1, 1, ..., 1, 1)\}$. Then the vertex x dominates the set $Z(R, 3) \setminus B$ where $B = \{(u_1, u_2, ..., u_{n-1}, 0) : u_i \in F_i^*\}$. Also the vertex y dominates the set B. Hence D is a dominating set of $\mathcal{H}_k(R)$ and so $\gamma(\mathcal{H}_k(R)) \leq 2$.

Suppose that $\gamma(\mathcal{H}_k(R)) = 1$. Then there exists a subset S of Z(R,k) such that S is a dominating set of $\mathcal{H}_k(R)$ and |S| = 1. If $x = (u_1, \ldots, u_{j-1}, 0, u_{j+1}, \ldots, u_n) \in S$, where $u_i \in F_i^*$ for all $i \neq j$, then the vertices x and $(v_1, \ldots, v_\ell, \ldots, v_{j-1}, 0, v_{j+1}, \ldots, v_t, \ldots, v_n) \in Z(R, k)$ are not adjacent in $\mathcal{H}_k(R)$, where $v_i \in F_i^*$, which is a contradiction. Hence any dominating set of $\mathcal{H}_k(R)$ contains at least two elements. Hence $\gamma(\mathcal{H}_k(R)) = 2$.

Theorem 2.16. Let $R = F_1 \times F_2 \times \cdots \times F_n$ be a ring, where each F_i is a field and $3 \le k < n$. Let D be any dominating set in $\mathcal{H}_k(R)$ with minimum cardinality among all dominating sets. Then, for every $1 \le \ell \le n - k + 1$, D must contain at least one vertex from \mathbb{A}_ℓ , where

 $A_{\ell} = \{x = (a_1, a_2, \dots, a_n) \in R : exactly \ \ell \text{ components in the } n \text{ tuples of } x \text{ are zero} \}.$

Proof. Let
$$x = (u_1, \dots, u_\ell, \underbrace{0, 0, \dots, 0}_{\ell \text{ terms}}, u_{2\ell+1}, \dots, u_n) \in \mathbb{A}_\ell$$
, where $u_i \in F_i^*$.

Now
$$\mathbb{B}_{\ell} = \{(a_1, \dots, a_{\ell}, \underbrace{b_{\ell+1}, \dots, b_{2\ell}}_{\ell \ terms}, a_{2\ell+1}, \dots, a_n) \in R : a_s \in F_s, \ b_j \in F_j\} \setminus \mathcal{B}_{\ell}$$

$$\{\{(0,\ldots,0,\underbrace{b_{\ell+1},b_{\ell+2},\ldots,b_{2\ell}}_{\ell \ terms},0,\ldots,0)\in R: b_i\in F_i\}\cup\{(a_1,\ldots,a_\ell,\underbrace{0,\ldots,0}_{\ell \ terms},a_{2\ell+1},\ldots,a_n)\in I_{\ell}\}$$

$$R: a_i \in F_i \} \cup \{ (u_1, \dots, u_{\ell}, \underbrace{b_{\ell+1}, \dots, b_{2\ell}}_{\ell \text{ terms}}, u_{2\ell+1}, \dots, u_n) \in R: u_i \in F_i^*, b_j \in F_j \} \}.$$
 Since

n > 3, the vertices in \mathbb{B}_{ℓ} contains at least two vertices that are adjacent only to vertices in \mathbb{A}_{ℓ} . Suppose that D does not contain any vertex from \mathbb{A}_t for some t. Since D is a dominating set, D will contain vertices of \mathbb{B}_t . Consider $D' = (D - \mathbb{B}_t) \cup \{y\}$ where y is an element of \mathbb{A}_t . Then |D'| < |D| and D' is a dominating set of $\mathcal{H}_k(R)$, a contradiction. Hence D will contain at least one element from \mathbb{A}_{ℓ} for every ℓ .

Theorem 2.17. Let R be an Artinian reduced ring, F be a field and $n = |Max(R)| \ge 3$. If $3 \le k < n$, then

$$\gamma(\mathcal{H}_k(R)) = \begin{cases} n-k+1 & \text{if } R \cong \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{(n-1) \text{ times}} \times F \\ n-k+2 & \text{if otherwise} \end{cases}$$

Proof. Since R is reduced, $R \cong F_1 \times \cdots \times F_n$, where each F_i is a field and |Max(R)| = n. By Remark 2.1, $Z(R,k) = \bigcup_{\substack{\ell=1 \\ \ell=1}}^{n-k+1} \mathbb{A}_{\ell}$. **Case 1**: $R \cong \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{(n-1) \text{ times}} \times F$.

Consider the set $D = \{x_1, x_2, \dots, x_{n-k+1}\} \subseteq Z(R, k)$, where $x_1 = (1, \dots, 1, 0), x_2 = (1, \dots, 1, 0, 0), \dots, x_{n-k} = (\underbrace{1, \dots, 1}_{k \ terms}, 0, \dots, 0), x_{n-k+1} = (\underbrace{1, \dots, 1}_{k-1 \ terms}, 0, \dots, 0)$. Then the vertex x_1 dominates the set $\{(y_1, y_2, \dots, y_{n-1}, u_n) \in Z(R, k) : y_i \in \mathbb{Z}_2, u_n \in F_n^*\}$ and the vertex x_1

tex x_1 dominates the set $\{(y_1, y_2, \ldots, y_{n-1}, u_n) \in Z(R, k) : y_i \in \mathbb{Z}_2, u_n \in F_n^*\}$ and the vertex x_1 does not dominate any elements of the set B_1 , where $B_1 = \{(y_1, \ldots, y_{n-1}, 0) \in Z(R, k) : y_i \in \mathbb{Z}_2\}$. Now the vertex x_2 dominates the set $\{(y_1, \ldots, y_{n-2}, 1, 0) \in Z(R, k) : y_i \in \mathbb{Z}_2\}$ and the vertex x_2 does not dominate any vertex in $B_2 = \{(y_1, \ldots, y_{n-2}, 0, 0) \in Z(R, k) : y_i \in \mathbb{Z}_2\}$. Proceeding like this, finally the vertex x_{n-k+1} dominates $\{(y_1, \ldots, y_{k-1}, 1, 0, \ldots, 0) : y_i \in \mathbb{Z}_2, y_i \neq 0$ for all $i\}$. Hence D is the dominating set of $\mathcal{H}_k(R)$ and so $\gamma(\mathcal{H}_k(R)) \leq n-k+1$.

In view of Theorem 2.16, we have $\gamma(\mathcal{H}_k(R)) \ge n-k+1$ and hence $\gamma(\mathcal{H}_k(R)) = n-k+1$. Case 2: $R \not\cong \underbrace{\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2}_{2} \times F$.

Consider the set $D = \{y_1, y_2, \dots, y_{n-k+2}\}$, where $y_1 = (1, \dots, 1, 0), y_2 = (1, \dots, 1, 0, 0), \dots, y_{n-k} = (\underbrace{1, \dots, 1}_{k \ terms}, 0, \dots, 0), y_{n-k+1} = (\underbrace{1, \dots, 1}_{k-1 \ terms}, 0, \dots, 0), y_{n-k+2} = (0, 1, \dots, 1) \in Z(R, k).$

Then the vertex y_1 dominates the set $\{(w_1, w_2, \ldots, w_{n-1}, u_n) \in Z(R, k) : w_i \in F_i, u_n \in F_n^*\}$ and the vertex y_1 does not dominate any elements in the set $\{(w_1, w_2, \ldots, w_{n-1}, 0) \in Z(R, k) : w_i \in F_i\}$. Now the vertex y_2 dominates the set $\{(w_1, w_2, \ldots, w_{n-2}, u_{n-1}, 0) \in Z(R, k) : w_i \in F_i, u_{n-1} \in F_{n-1}^*\}$ and the vertex y_2 does not dominate any vertex in $\{(w_1, w_2, \ldots, w_{n-2}, 0, 0) \in Z(R, k) : w_i \in F_i\} \cup \{(w_1, w_2, \ldots, w_{n-1}, 0) \in Z(R, k) : w_i \in F_i\}$. Proceeding like this, y_{n-k+1} dominates the set $\{(w_1, w_2, \ldots, w_{k-1}, u_k, 0, \ldots, 0) : w_i \in F_i, u_k \in F_k^*, w_i \neq 0$ for all $i\}$ and the vertex y_ℓ does not dominate any elements in the set P, where $P = \{(w_1, \ldots, w_{k-1}, 0, \ldots, 0) : w_i \in F_i \text{ and at least two } w_i$'s are non-zero $\} \cup \ldots \cup$

 $\{(w_1, \ldots, w_{n-2}, 0, 0) : w_i \in F_i \text{ and at least two } w_i \text{'s are non-zero}\} \cup \{(w_1, \ldots, w_{n-1}, 0) : w_i \in F_i \text{ and at least two } w_i \text{'s are non-zero}\}, where <math>1 \leq \ell \leq n-k+1$. Now the vertex y_{n-k+2} dominates the set *P*. Hence *D* is a dominating set of $\mathcal{H}_k(R)$ and so $\gamma(\mathcal{H}_k(R)) \leq n-k+2$.

Suppose that $\gamma(\mathcal{H}_k(R)) \leq n-k+1$. Then by Theorem 2.16, there exists a dominating set $D' = \{x_1, x_2, \dots, x_{n-k+1}\}$, where $x_\ell = (a_1, \dots, a_{\ell-1}, \underbrace{0, 0, \dots, 0}_{\ell \text{ terms}}, a_{\ell+\ell-1}, \dots, a_{n-1}, a_n) \in \mathbb{R}$

 $A_{\ell} \text{ and } 1 \leq \ell \leq n-k+1. \text{ Since } |F_i| \geq 3, \text{ vertices in } D' \text{ do not dominate vertices in } \\ \{(a_1, \dots, a_{\ell-1}, \underbrace{0, 0, \dots, 0}_{\ell \text{ terms}}, a_{\ell+\ell-1}, \dots, a_{n-1}, a_n) : 1 \leq \ell \leq n-k+1\}, \text{ a contradiction. Hence } \\ \gamma(\mathcal{H}_k(R)) = n-k+2. \Box$

Theorem 2.18. Let $R = \mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathbb{Z}_{p_n^{\alpha_n}}$ be a commutative ring with identity, where each p_i is prime and $\alpha_i \ge 2$, $n \ge 3$, $p_1^{\alpha_1} \le p_2^{\alpha_2} \le \cdots \le p_n^{\alpha_n}$. Then $\gamma(\mathcal{H}_3(R)) = n - 1$.

 $\begin{aligned} &Proof. \text{ Consider the set } D = \{x_1, \dots, x_{n-1}\} \text{ where } x_i = (z_1, z_2, \dots, z_{i-1}, u_i, z_{i+1}, \dots, z_n), \\ z_i \in A_{p_i}, u_i \in \mathbb{Z}_{p_i^{\alpha_i}}^{\times} \text{ for } 1 \leq i \leq n-1. \text{ Then the vertex } x_1 \text{ dominates the set } Z(R,3) \setminus (A' \cup B' \cup C'), \text{ where } B' = \bigcup_{i=2}^{n-1} \{(0, 0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}}\}, C' = \{(a_1, 0, \dots, 0, 0) : a_1 \in Z(\mathbb{Z}_{p_1^{\alpha_1}}, 3)\} \text{ and } A' = \{(u_1, 0, \dots, 0, 0) : u_1 \in \mathbb{Z}_{p_1^{\alpha_1}}^{\times}\}. \text{ Also the vertex } x_2 \text{ dominates the set } C' \cup A' \cup \{(0, a_2, \dots, a_{n-1}, a_n) \in B' : a_i \in A_{p_i^{\alpha_i-1}}\} \text{ and } \{x_1, x_2\} \text{ does not dominate any elements in the set } \bigcup_{i=3}^{n-1} \{(0, 0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}}\}. \text{ Now the vertex } x_3 \text{ dominate any elements in the set } \left\{ \bigcup_{i=4}^{n-1} \{(0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}} \}. \text{ Now the vertex } x_3 \text{ dominate any elements in the set } \bigcup_{i=4}^{n-1} \{(0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}} \}. \text{ Now the vertex } x_3 \text{ dominate any elements in the set } \bigcup_{i=4}^{n-1} \{(0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}} \}. \text{ Now the vertex } x_1 \text{ dominate any elements in the set } \bigcup_{i=4}^{n-1} \{(0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}} \}. \text{ Now the vertex } x_3 \text{ dominate any elements in the set } \bigcup_{i=4}^{n-1} \{(0, \dots, 0, a_i, a_{i+1}, \dots, a_{n-1}, a_n) : a_i \in A_{p_i^{\alpha_i-1}} \}. \text{ Proceeding like this, the vertex } x_{n-2} \text{ does not dominate any elements of the set } H, where H = \{(0, 0, \dots, 0, a_{n-1}, a_n) \in B' : a_i \in A_{p_i^{\alpha_i-1}} \} \text{ but } x_{n-1} \text{ dominates the set } H. \text{ Hence } D \text{ is a dominating set of } H_3(R) \text{ and so } \gamma(H_3(R)) \leq n-1. \end{aligned}$

Since $\mathcal{H}_3(\mathbb{Z}_3^n)$ is a subhypergraph of $\mathcal{H}_3(R)$ and by Theorem 2.17, $\gamma(\mathcal{H}_3(\mathbb{Z}_3^n)) \ge n-1$. Hence $\gamma(\mathcal{H}_3(R)) = n-1$.

Theorem 2.19. Let $R = \mathbb{Z}_{p_1^{\alpha_1}} \times \mathbb{Z}_{p_2^{\alpha_2}} \times \cdots \times \mathbb{Z}_{p_n^{\alpha_n}} \times F_1 \times F_2 \times \cdots \times F_m$ be a finite commutative non-local ring, where each F_j is field, $\alpha_i \ge 2$, $m \ge 1$, $n \ge 2$ and $n + m \ge 3$. Then $\gamma(\mathcal{H}_3(R)) = n + m - 1$.

Proof. Consider the set $D = \{x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_{m-1}\}$, where $x_1 = (z_1, z_2, \dots, z_n, u_1, u_2, \dots, u_m), x_2 = (u_1, u_2, \dots, u_{n-1}, 0, 0, \dots, 0), x_3 = (u_1, u_2, \dots, u_{n-2}, 0, 0, \dots, 0), \dots, x_{n-1} = (u_1, u_2, 0, \dots, 0, 0, \dots, 0), x_n = (u_1, 0, \dots, 0, 0, \dots, 0), y_1 = (0, \dots, 0, z_n, u_1, u_2, \dots, u_{m-1}, 0), y_2 = (0, \dots, 0, z_n, u_1, u_2, \dots, u_{m-2}, 0, 0), \dots, y_{m-2} = (0, \dots, 0, z_n, u_1, u_2, 0, \dots, 0), y_{m-1} = (0, \dots, 0, z_n, u_1, 0, \dots, 0, 0)\}$, where $z_i \in A_{p_i}$ and u_i 's are units.

Then the vertex x_1 dominates the set $Z(R,3) \setminus (P' \cup Q' \cup S')$, where $P' = \{(0, \ldots, 0, b_1, b_2, \ldots, b_{m-1}, b_m) : b_i = 0 \text{ or } b_i \in F_i^{\times}\}$, $S' = \{(a_1, \ldots, a_{n-1}, a_n, 0, \ldots, 0) : a_i \in A_{p_i^{\alpha_i-1}}\}$ and $Q' = \{(a_1, \ldots, a_{n-1}, a_n, 0, \ldots, 0) : a_i \text{ least one } a_i = 0 \text{ and at least two } a'_i s \in A_{p_i^{\alpha_i-1}}\}$. Also the vertex x_2 dominates the set $S' \cup \{(a_1, a_2, \ldots, a_{n-1}, a_n, 0, \ldots, 0) \in Q' : 0 \neq a_n \in A_{p_n^{\alpha_n-1}}\}$ and vertices

 $\{x_1, x_2\} \text{ do not dominate any elements in the set } P' \text{ and } \{(a_1, a_2, \dots, a_{n-1}, 0, 0, \dots, 0) \in Q' : a_i \in A_{p_i^{\alpha_i-1}}\}. \text{ Proceeding like this, the vertex } x_{n-1} \text{ dominates the set } \{(a_1, a_2, a_3, 0, \dots, 0) \in Q' : 0 \neq a_3 \in A_{p_3^{\alpha_3-1}}\} \text{ and vertices } \{x_1, x_2, \dots, x_{n-1}\} \text{ do not dominate any elements in the set } P' \text{ and } H, \text{ where } H = \{(a_1, a_2, 0, 0, \dots, 0) \in Q' : a_i \in A_{p_i^{\alpha_i-1}}\} \text{ but } x_n \text{ dominates the set } H. \text{ Now the vertex } y_1 \text{ dominates the set } \{(0, \dots, 0, b_1, \dots, b_{m-1}, u_m) \in P' : u_m \in F_m^\times\} \text{ and the vertices } \{x_1, x_2, \dots, x_n, y_1\} \text{ do not dominate any elements in the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-1}, 0) \in P' : b_i = 0 \text{ or } b_i \in F_i^\times\}. \text{ The vertex } y_2 \text{ dominates the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-1}, 0) \in P' : u_{m-1} \in F_{m-1}^\times\} \text{ and vertices } \{x_1, x_2, \dots, x_n, y_1, y_2\} \text{ do not dominate any elements in the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-1}, 0) \in P' : u_{m-1} \in F_{m-1}^\times\} \text{ and vertices } \{x_1, x_2, \dots, x_n, y_1, y_2\} \text{ do not dominate any elements in the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-2}, 0, 0) \in P' : b_i = 0 \text{ or } b_i \in F_i^\times\}. \text{ Proceeding like this, the vertex } y_{m-2} \text{ dominates the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-2}, 0, 0) \in P' : b_i = 0 \text{ or } b_i \in F_i^\times\}. \text{ Proceeding like this, the vertex } y_{m-2} \text{ dominates the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-2}, 0, 0) \in P' : b_i = 0 \text{ or } b_i \in F_i^\times\}. \text{ Proceeding like this, the vertex } y_{m-2} \text{ dominates the set } \{(0, \dots, 0, b_1, b_2, \dots, b_{m-2}, 0, 0) \in P' : b_i \in 0 \text{ or } b_i \in F_i^\times\} \text{ and the vertices } \{x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_{m-2}\} \text{ do not dominate any elements in the set } H', \text{ where } H' = \{(0, \dots, 0, b_1, b_2, 0, \dots, 0, 0) \in P' : b_i \in F_i^\times\} \text{ but } y_{m-1} \text{ dominates the set } H'. \text{ Hence } D \text{ is the dominating set of } \mathcal{H}_3(R) \text{ and so } \gamma(\mathcal{H}_3(R)) \leq n + m - 1.$

Since $\mathcal{H}_3(\mathbb{Z}_3^n \times \mathbb{Z}_2^m)$ is a subhypergraph of $\mathcal{H}_3(R)$. By Theorem 2.17, $\gamma(\mathcal{H}_3(\mathbb{Z}_3^n \times \mathbb{Z}_2^m)) \ge n + m - 1$.

Theorem 2.20. Let $R = \mathbb{Z}_{p^n} \times F_1 \times F_2 \times \cdots \times F_m$ be a finite commutative non-local ring, where each F_j is field, p is prime, $n \ge 2$ and $m \ge 3$. Then $\gamma(\mathcal{H}_3(R)) = m - 1$.

Proof. Consider the set $D = \{y_1, y_2, \dots, y_{m-1}\}$, where $y_1 = (z, u_1, \dots, u_{m-1}, 0), y_2 = (z, u_1, \dots, u_{m-2}, 0, u_m), \dots, y_{m-2} = (z, u_1, u_2, 0, u_4, \dots, u_m), y_{m-1} = (z, u_1, 0, u_3, \dots, u_m)$, where $z \in A_p$ and u_i 's are units.

Then y_1 dominates the set $Z(R,3) \setminus \{P \cup P'\}$, where $P = \{(0,b_1,\ldots,b_{m-1},0) : b_i = 0$ or $b_i \in F_i^{\times}\}$ and $P' = \{(v,u_1,\ldots,u_{m-1},0) : v \in \mathbb{Z}_{p^n}^{\times} u_i \in F_i^{\times}\} \cup \{(z',0\ldots,0,u_m) : z' \in A_{p^{n-1}}, u_m \in F_m^{\times}\}$. Now the vertex y_2 dominates the set $\{(0,b_1,\ldots,b_{m-2},u_{m-1},0) \in P : u_{m-1} \in F_{m-1}^{\times}\} \cup P'$ and the vertices $\{y_1,y_2\}$ does not dominate any elements in the set $\{(0,b_1,\ldots,b_{m-2},0,0) \in P : b_i = 0 \text{ or } b_i \in F_i^{\times}\}$. The vertex y_3 dominates the set $\{(0,b_1,\ldots,b_{m-2},0,0) \in P : u_{m-2} \in F_{m-2}^{\times}\}$ and $\{y_1,y_2,y_3\}$ does not dominate any elements in the set $\{(0,b_1,\ldots,b_{m-3},0,0,0) \in P : b_i = 0 \text{ or } b_i \in F_i^{\times}\}$. Proceeding like this, the vertex y_{m-2} dominates the set $\{(0,b_1,b_2,u_3,0\ldots,0) \in P : u_3 \in F_3^{\times}\}$ and $\{y_1,y_2,\ldots,y_{m-2}\}$ does not dominate any elements in the set $\{(0,b_1,b_2,u_3,0\ldots,0) \in P : u_3 \in F_3^{\times}\}$ and $\{y_1,y_2,\ldots,y_{m-2}\}$ does not dominate any elements in the set $\{(0,b_1,b_2,u_3,0\ldots,0) \in P : u_3 \in F_3^{\times}\}$ and $\{y_1,y_2,\ldots,y_{m-2}\}$ does not dominate any elements in the set $\{(0,b_1,b_2,u_3,0\ldots,0) \in P : u_3 \in F_3^{\times}\}$ and $\{y_1,y_2,\ldots,y_{m-2}\}$ does not dominate any elements in the set H. Hence D is the dominating set of $\mathcal{H}_3(R)$ and so $\gamma(\mathcal{H}_3(R)) \leq m-1$.

Since $\mathcal{H}_3(\mathbb{Z}_3 \times \mathbb{Z}_2^m)$ is a subhypergraph of $\mathcal{H}_3(R)$. By Theorem 2.17, $\gamma(\mathcal{H}_3(\mathbb{Z}_3 \times \mathbb{Z}_2^m)) \ge m - 1$.

Acknowledgments

This research work is supported by the DST-SERB Project No. EEQ/2016/000367 of Science and Engineering Research Board, Government of India for the first author.

References

- [1] B. D. Acharya, Domination in hypergraphs, AKCE J. Graphs Combin., 4 (2) (2007), 117–126.
- [2] B. D. Acharya, Domination in hypergraphs, II-New directions, Proc. Int. Conf.-ICDM, (2008) 1–16.
- [3] Alain Bretto, Hypergraph Theory An Introduction, Springer, New York, 2013.
- [4] D.F. Anderson, T. Asir, A. Badawi, T. Tamizh Chelvam, *Graphs from rings*, First ed., Springer Nature Switzerland.
- [5] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, The zero-divisor graph of a commutative ring, II. In: Anderson, D. D., Patrick, I. J., eds. *Ideal Theoretic Methods in Commutative Algebra*, Dekker, New York, (2001), pp. 61–72.
- [6] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, *J. Algebra*, **217** (1999), 434–447.
- [7] M. F. Atiyah, I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley Publishing Co, Londan, 1969.

- [8] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, Londan, 2003.
- [9] Ch. Eslahchi, A. M. Rahimi, The *k*-zero divisor hypergraph of a commutative ring, *Int. J. Math. Math. Sciences*, **2007** (2007), 15 (article ID 50875).
- [10] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago, Chicago, 1974.
- [11] T. Tamizh Chelvam, K. Selvakumar, V. Ramanathan, On the planarity of the *k*-zero-divisor hypergraphs, *AKCE Inter. J. Graphs Combin*, **12** (2) (2015), 169–176.
- [12] K. Selvakumar, V. Ramanathan, Classification of non-local rings with genus one 3-zero-divisor hypergraphs, Comm. Algebra, 45 (1) (2017), 275–284.
- [13] K. Selvakumar, V. Ramanathan, Classification of non-local rings with projective 3-zero-divisor hypergraph, *Ricerche Mat.*, 66 (2017), 457–468.
- [14] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam., 1973.

Author information

K. Selvakumar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.

E-mail: selva_158@yahoo.co.in

J. Beautlin Jemi, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.

E-mail: beautlinjemi09@gmail.com