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Abstract Let R be a commutative ring with identity and let Z(R, k) be the set of all k-zero-
divisors in R and k > 2 an integer. The k-zero-divisor hypergraph of R, denoted by H(R), is

a hypergraph with vertex set Z(R, k), and for distinct elements zy, 22, ..., 7 in Z(R, k), the set
k

{z1,22,...,x} is an edge of Hy(R) if and only if Hxl = 0 and the product of any (k — 1)

i=1
elements of {x,x,, ..., xx} is nonzero. In this paper, we determine the domination number of
Hy(R) for some commutative rings.

1 Introduction

Attaching various graphs to an algebraic structure to understand its properties is a classical and
useful technique. In this direction, various graph parameters can be related to algebraic prop-
erties of the structure under consideration and lead to a better understanding of its theory. For
example, one can attach a graph to a commutative ring R with unity by considering its non-zero
zero-divisors as its vertices and connect two of them by an edge if their product is zero [6]. This
graph is called the zero-divisor graph of R, denoted by I'(R), and is well-studied in the literature
[4]. In view of this, Ch. Eslahchi and A. M. Rahimi [9] have introduced and investigated a graph
called the k-zero-divisor hypergraph of a commutative ring and later was studied extensively in
[11, 12]. For k& = 2, the graph is exactly the same as the zero-divisor graph of a ring.

A hypergraph H is a pair (V(H), E(H)) of disjoint sets, where V(%) is a non empty finite
set whose elements are called vertices and the elements of F(#) are nonempty subsets of V (H)
called edges. The hypergraph # is called k-uniform whenever every edge e of H is of size k.
The number of edges containing a vertex v € V() is its degree d;(v). For basic definitions on
hypergraphs, one may refer [3]. A set D of vertices in a hypergraph # is a dominating set if for
every x € V' \ D there exists y € D such that = and y are adjacent i.e., there exists e € E such
that z,y € e. The minimum cardinality of a dominating set is called the domination number of
‘H and is denoted by (), one may refer [1].

Throughout this paper, we assume that R is a commutative ring with identity, Z(R), its set
of zero-divisors and R*, its group of units and F' is a field. For any set X, let X* denote the
nonzero elements of X . For basic definitions on rings, one may refer [7, 10].

2 Domination of H,(R)

In this section, we determine the domination number of the k-zero-divisor hypergraph of some
classes of commutative rings. From the definition, we have the following observations.

Remark 2.1.[11, Remark 2.1] Let R = F} x I, x --- x F,, where each Fj is a field and
3<k<n.

If Ay = {x = (a1,0a2,...,a,) € R : exactly £ components in the n tuples of = are zero} for
n—k+1

1<¢<n-k+1Then Z(R,k)= (] A
=1



Domination in k-zero-divisor hypergraph 27

Remark 2.2. Let m = p™ be a positive integer and A; = {z € Z,, : (z,m) = d} where p is
prime, d divides m and n > 3. Then

n—2
() Z(Zm,3) = | Ape»
i=1

n—k+1
(i) Z(R, k)= |J Ap and A, N A, =0 foralli # j.

i=1

Proposition 2.3. Let (R;, m;) be a local ring withm; # {0} for 1 <i <mnandlet R = Ry x---X
R,. Let z; € m! for 1 < i < n. Then z; € Z(R;,3) ifand only if z = (0,...,0,2;,0...,0) €
Z(R,3)

Proof. Suppose that z; € Z(R;,3). Then by definition of Z(R;, 3), there exists distinct elements
x;, y; of R; other than z; such that x;y;2z; = 0 and z;y;, x; 2, y; z; are nonzero elements of R;. Let
z = (0,...,0,2;,0,...,0),y = (0,...,0,9;,0,...,0), 2 = (0,...,0,2,0,...,0) € R. Then
zyz = 0 and xy, xz, yz are nonzero elements of R. Hence z € Z(R, 3).

Suppose that z = (0,...,0,2;,0,...,0) € Z(R,3). Then there exists distinct elements
z = (0,...,0,a;,0,...,0), y = (0,...,0,0;,0,...,0) € Z(R,3) such that zyz = 0 and so
a;b;z; = 0. By definition of Z(R, 3), zy, xz, yz are nonzero elements of R and so a;b;, b;z; and
a;z; are nonzero elements of R;. From this, we get z; € Z(R;,3). O

Proposition 2.4. Let (R, m) be a finite local ring with m! = 0. Ift = 2, then Z(R, k) = 0 for
any k > 3.

Proof. Suppose Z(R, k) # () forany k > 3. Letz; € Z(R, k). Then there exists 2, 23, ..., z) €
Z(R, k) such that {z,x2,..., 2z} is an edge. i.e., z1z; ...z, = 0. Since ¢ = 2, the product of
two vertices from {z, x5, ...,z } is zero, which is a contradiction. Hence Z(R, k) = 0. O

Proposition 2.5. Let (R, m) be a finite local ring with m! = 0, then Z(R, k) = 0 for all t < k.

Proof. Suppose Z(R, k) # () forany ¢ < k. Let xy € Z(R, k). Then there exists z, 23, ..., Tx €
Z(R, k) such that {zy,z,,..., 7} is an edge. i.e., zj25 ...z = 0. Since ¢ < k, the product of ¢
vertices from {x, z,, ...,z } is zero, which is a contradiction. Hence Z(R, k) = 0. O

The next theorem shows that k-zero-divisor hypergraph of a local ring Z,: is connected.

Theorem 2.6. Let R = Z,:, where t > 3. For k < t, then Hy(R) is connected, diam(Hy(R)) <
2 and gr(Hi(R)) =2 or cc.

Proof. Let x, y € Z(R,k) such that z # y. If z,y € e for some edge e in Hy(R), then
d(z,y) = 1. Suppose z,y ¢ e for every edge e in H;(R). Since z,y € Z(R,k), z € A, and
y € Ap; for some i, j. For each w € Z(R, k) and w # z, w, z € e for some edge e in H;(R),
where z € A,. From this, we get * # z and y # z and so there exists z; € A, for some
1<i<t—k+1landl <i<t—2suchthat {z,z,z1,202,...,2p-2}, {2,y, 21,22, ..., T2}
are edges in H(R) and so d(z,y) = 2. Hence it is clear that diam(H(R)) < 2.

Suppose 3 < k < t. Lete; = {z1,22,...,2-2,2,2'}, &2 = {x1,202,...,28_2,2,2'} are
two edges in H(R), where 2,2’ € Ay, ; € Ay, for some 1 < I < ¢t —k + 1 and hence
2 —e; — z — ey — 2’ form a cycle of length two and so gr(Hx(R)) = 2.

Suppose k = t. If |[Z(R,k)| > t + 1, then e, = {zy,22,...,25-2,2,2'} and

er = {x1,22,...,25-2,2,2'} are two edges in Hy(R), where z,2’,z; € A, and hence 2z’ —
e; — z — ey — 2z’ form a cycle of length two and so gr(Hx(R)) = 2. If |Z(R,k)| = t, then
e={x1,12,...,Tk_2,Tk_1, Tk} is the only edge in Hy(R). Hence gr(Hy(R)) = oo. ]

Note that if R = Z,», Zg or Fy x F,, where p is prime and F}’s are field, then Z(R,3) = ().
We exclude these rings while studying 3-zero-divisor hypergraph.

Theorem 2.7. Let R = Zy», where p is prime and n. > 3. Then ~(H3(R)) = 1

Proof. Forany x € Z(R,3), {z,y,a} is an edge of H3(R) foralla € A, and some y € Z(R, 3).
Hence {a} is a dominating set of H3(R) for some a € A, and so v(H3(R)) = 1. i
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Theorem 2.8. Let R = Z,» x F be a commutative ring, where p is prime, n > 2, F is a field
and Z(Zyn,3) # 0. Then v(H3(R)) = 1.

Proof. Consider the set D = {x = (z,u)} C Z(R,3), where u € F* and z € A,. Suppose that
y € Z(R,3)\D.Ify = (0,v) € Z(R,3), where v € F*, then there exists w = (a,u) € Z(R,3),
where a € A1, such that zyw = 0 and none of zy, zw and yw are zero. Hence x dominates
every element of (0) x F*.

If y = (2,0) € Z(R,3), where z € Z(Z,~,3), then there exists w = (a,u) € Z(R,3), where
a€ Api,1 <i<n—2,suchthat {z,y, w} is an edge and so = dominates Z(Z,~,3) x (0).

Consider the cases when y = (z,u’) € Z(R,3), where v’ € F*, z € Z(Z,»)*, and when
y = (z,u') € Z(R,3), where v € F*, z € Z(Zyn)*. In the former case, there exists w =
(v,0) € Z(R,3), where v € Z,, such that {z,y,w} is an edge. In the later case, there exists
w = (a,0) € Z(R,3), where a € Z(Zy,n,3), such that the product zyw = 0 and zy, zw, yw
are non-zero. Thus, we conclude that = dominates every element of Z(R,3). Hence D is a
dominating set of H3(R) and so y(H3(R)) = 1. o

Theorem 2.9. Let R = Zp:n X Zp;u, where py, py are prime and ny,ny > 2. Then y(H;(R)) = 2.

Proof. Leta = (a1,a2) € Z(R,3), where a; € A, for i = 1,2. Then a dominates Z(R,3) \ B,
where B = {(b1,b2) : b; € Ap@i—l, for i = 1,2}. In order to find a vertex which dominates the

set B, let us consider the vertex ¢ = (¢1,¢2) € Z(R,3), where ¢; € Z(Zp;n )*and ¢; € Z;nz.
2
For each d € B, there exist f = (fi1, f») € Z(R,3), where f; € Z;n] and f, € Z(Z,)" such
1

that the product cdf is zero and none of cd, cf, df are zero and so ¢ dominates the set B. Hence
{a, ¢} is a dominating set of H3(R) and v(H3(R)) < 2.

Suppose that y(H3(R)) = 1. Then there exists a subset S of Z(R,3) such that S is a domi-
nating set of #3(R) and |S| = 1.

Letzi € Ay, €A, forsomeze{lZ np—1}andje{1,2,...,np — 1}.

If (z1,22) € S then there exists a vertex (a, b) € Z(R,3),a € Apr,ﬂ, be Ap;z—j, such that

the product (21, 22)(a,b) = (0, 0) and so the vertices of this nature do not fall under any edge of
H3(R).
Consider the vertex in S of the form (z,v) € Z(Zy,m) x me Then the vertices (z,v) and

2

(0,v") are not adjacent in Hz(R), for all v’ € Z;nz.
2
Finally let us consider the vertex in S of the form (z,0) € Z(R,3), where z € Z(ZPIH .3).
Then vertices (z,0) and (0,v’) are not adjacent in H3(R), for all v’ € Z;nz. Thus there does not

exist a dominating set of cardinality one and so v(H3(R)) = 2. o

Theorem 2.10. Let R = Fy x F» x F3, where each F; is a field. Then v(H3(R)) = 1 if and only
if R= 7y X Zy x F3, where F3 is a field.

Proof. Suppose v(H3(R)) = 1. Let us assume that at least two of Fy, F», I are of cardinality
more than 2. Note that Z(R,3) = B, U B, U B3, where By = F}* x I x 0, B, = 0 x F x FY,
By = F x 0 x Fy. Clearly |B;| > 2 forall : € {1,2,3}.

Let = be any element of Z(R,3). Then xz € B; for some ¢ € {1,2,3} and = dominates
every element of B; for j # ¢ and  does not dominate the set B;, a contradiction. Hence
R>=7, x 7y x F3.

Conversely, assume that R = Z, x Z, x Fs, where F3 is a field. Then Z(R,3) = {(1,1,0),
(0,1,w), (1,0,w) : w e F§}. Consider the set D = {z = (1,1,0)}. If y = (0, 1,w) € Z(R,3),
where w € F}, then there exists z = (1,0,w) € Z(R,3) such that {x,y, z} is an edge. Hence D
is a dominating set of H3(R) and so y(H3(R)) = 1. O

Theorem 2.11. Let R = F| x F, X F3 be a commutative ring and R 2 7, X Z, X F3, where each
F; is a field. Then v(H3(R)) = 2.

Proof. By Theorem 2.10, v(H3(R)) > 2. Since R 2 7Z, x Z, x F3, at least two F;’s have
cardinality more than two. Without loss of generality, we assume that |F;| > 3 for i € {2,3}.
Note that Z(R,3) = BiUB,UBs, where B = F|*x ;' x0, B, = 0x Fy x F§, By = F} x0x Fy.
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Consider the set D = {a = (u,v,0),b = (0,v,w)}, where a € By and b € B,. Then a domi-
nates every element of B, U B3 and b dominates every element of B;. Hence D is a domination
set of H3(R) and so y(H3(R)) = 2. i

Theorem 2.12. Let R = F| x F) X Zy» be a commutative ring, where each F; is a field, p is
prime and n > 2. Then v(H3(R)) = 2.

Proof. Consider D = {z = (u,v,z),y = (0,v,2)}, where u € F}", v € Fy, z € Ap. Then the
vertex = dominates Z(R,3) . B where B = {(u,v,0) : u € F}', v € Fy}. Also the vertex
y € D dominates B. Hence D is a dominating set of H3(R) and so v(H3(R)) < 2.

Letg = (1,1,2) € Z(R,3), for some z € Z(Z,~)*. Then the vertex g does not dominate any
element of B. Clearly the vertices (0,1, 1) and (1,0, 1) do not dominate any element of the sets
{(0,v,w) :v e Ff,we Z).} and {(u,0,w) : u € F\',w € Z. } respectively.

Let z € Z(Zy»)* with zd = 0 for some d € Z(Z,»)*. Then vertices (1,0, z) and (0,1,d)
are not adjacent in H3(R). Also the vertex (0,0, 1) does not dominate any element of the set
{(0,0,2") : 2’ € Z(Zy~,3)}. Thus we conclude that any dominating set of 3(R) must contain
more than one element and hence y(#H3(R)) = 2. o

Theorem 2.13. Let R = F x Z i X Z pp2 be a commutative ring, where F is a field, p;,p, are
prime and ny,ny > 2. Then fy(’Hg( ) = 2,

Proof. Consider D = {z = (u,a,b),y = (u,v,b)}, where u € F*, v € Z s @ € Ay be Ay,
Then the vertex = is adjacent to every element of the set Z(R,3) \ {(0, z w) ZEA -1, we
1
pnr]}. Also the vertex y dominates the set {(0,p,q) : p € Apnl—l, q € Apnz—l}. Hence D
p) 1

2 2
is a dominating set of H3(R) and by using similar arguments given in Theorem 2.12, we get

Y(H3(R)) = 2. o

Theorem 2.14. Let R = 7, "X Z, ra X Z, " be a commutative ring, where each p;’s are prime
andn; > 2 fori={1,2 3} Then 7(7{3( )) 2.

Proof. Let D = {z = (u,b,¢),y = (a,v,0)} C Z(R,3), where a € A,,,b € A,,c e A,,
u € anl, v E an, Then the vertex = dominates the set Z(R,3) \ (P U Q U S), where
P = ZXW, x 0 x 0, Q Z(Z n],3) x 0x0,and S = {(0,b',c) : V € Apnz—l, cd e Apn3—l}.

2 3
Also the vertex y dominates the setP UQ U S in H3(R). From this, we get D is a dominating set
of H3(R) and so v(H3(R)) < 2.

Note that H3(Z3 x Z3 x Z3) is a subhypergraph of H3(R). By Theorem 2.11, v(H3(Z3 x
Z3 x Z3)) > 2 and hence v(H3(R)) = 2. o

Theorem 2.15. Let R be an Artinian reduced ring and F be a field and |Maxz(R)| > 3. If
k = |Mazx(R)|,

1 if R=Zy X - XZyxF
—_———

’Y(Hk(R)) = (n—1) times
2 otherwise.

Proof. Since R is reduced, R 2 F} X - -+ x F,,, where each Fj is a field and |Max(R)| = n. By
n—k+1

Remark 2.2, Z(R, k) U Ay.

Casel: R=7, x --- szxF.
—_———
(n—1) times
Letz = (1,1,...,1,0) € Z(R,k). For any y € Z(R,k) and y # x, there is an edge e of
Hi(R) such that z, y € e. Hence {x} is a dominating set of H(R) and so v(Hx(R)) = 1.
Case 2: R 2 7, X --- X Zp xF. Then at least two F;’s have more than two elements. Without
—_——

(n—1) times

loss of generality, we assume that |Fy| > 3 and |F;| > 3 for some ¢ # t.
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Consider the set D = {z = (1,1,...,1,0),y = (0,1,1,...,1,1)}. Then the vertex x dom-
inates the set Z(R,3) \ B where B = {(u1,ua,...,un—1,0) : u; € F*}. Also the vertex y
dominates the set B. Hence D is a dominating set of #;(R) and so v(Hx(R)) < 2.

Suppose that v(Hi(R)) = 1. Then there exists a subset S of Z(R, k) such that S is a
dominating set of Hy(R) and |S| = 1. If x = (w1, ..., uj—1,0,uj41,...,u,) € S, where u; € F}

for all ¢ # j, then the vertices x and (vy, ..., v, ..., 0;-1,0,0j41,...,0,...,0,) € Z(R, k) are
not adjacent in Hy(R), where v; € F}*, which is a contradiction. Hence any dominating set of
M (R) contains at least two elements. Hence (Hy(R)) = 2. O

Theorem 2.16. Let R = F} X F, x --- x F,, be a ring, where each F; is a field and 3 < k < n.
Let D be any dominating set in Hy(R) with minimum cardinality among all dominating sets.
Then, for every 1 < ¢ <n — k+ 1, D must contain at least one vertex from A, where

Ap={z = (a1,a2,...,a,) € R: exactly { components in the n tuples of = are zero}.
Proof. Letz = (uy,...,us,0,0,...,0,u2011,...,un) € Ay, where u; € F.
———
£ terms
Now Bg = {(al,...,ag,bg+1,...,bzg,a2g+1,...,an) € R : as € Fy, bj € F]}\
———
£ terms
{{(O,...,O,b(+1,bg+2,...7b2(,0,...,O) ER:b € Fi}U{(ala"wa@?O?'"aoaa2f+la"'7an) €
—_—— ——
l terms { terms )
R :a; € Fi}U{(ul,...,U£,bg+1,...,bzg,UQg+1,...,un) € R:u; € Fi*,bj € F]}} Since
———

l terms
n > 3, the vertices in B, contains at least two vertices that are adjacent only to vertices in A,.

Suppose that D does not contain any vertex from A, for some ¢. Since D is a dominating set, D
will contain vertices of B;. Consider D’ = (D — B;) U {y} where y is an element of A;. Then
|D'| < |D| and D’ is a dominating set of H;(R), a contradiction. Hence D will contain at least
one element from A, for every . O

Theorem 2.17. Let R be an Artinian reduced ring, F be a field and n = |Maz(R)| > 3. If
3<k<n,then
n—k+1 if REZyx---xZyxF
—_—————

/V(Hk(R)) - (n—1) times
n—k+2 if otherwise

Proof. Since R is reduced, R = I} X --- x F,,, where each F; is a field and |Max(R)| = n. By
n—k+1

Remark 2.1, Z(R, k) = U Ay

=1
Casel: R= 7, x --- X 7y XF.
————

(n—1) times

Consider the set D = {z1,72,...,Zn_k+1} € Z(R, k), where x; = (1,...,1,0),2, =

(1,...,1,0,0), ..., 2nrp = (1,...,1,0,...,0), Zp_ss1 = (1,...,1,0,...,0). Then the ver-
—— ——
k terms k—1 terms

tex 1 dominates the set {(y1,v2, ..., Yn—1,un) € Z(R, k) : y; € Zy,u,, € F;'} and the vertex x;
does not dominate any elements of the set By, where By = {(y1,-..,¥n_1,0) € Z(R,k) : y; €
Z,}. Now the vertex z, dominates the set {(yi,...,yn—2,1,0) € Z(R,k) : y; € Z,} and the
vertex z; does not dominate any vertex in B = {(y1,...,Yn_2,0,0) € Z(R, k) : y; € Z,}. Pro-
ceeding like this, finally the vertex z,,_; dominates {(y1,...,yx—1,1,0,...,0) 1 y; € Zy, y; #
0 for all ¢}. Hence D is the dominating set of H,(R) and so y(Hi(R)) <n —k+ 1.

In view of Theorem 2.16, we have y(Hy(R)) > n—k+ 1 and hence y(Hi(R)) =n—k+ 1.
Case2: R% 7y x -+ X Zp XF.

—_——

(n—1) times
Consider the set D = {y1,v2, -, Yn—k+2}, Where gy = (1,...,1,0),90 = (1,...,1,0,0), ...
Ynte = (1,...,1,0,...,0), ypsy1 = (1,...,1,0,...,0), yn_rs2 = (0,1,...,1) € Z(R, k).
—— ——

k terms k—1 terms
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Then the vertex y; dominates the set {(wi,ws,...,wy—1,un) € Z(R, k) : w; € F;,u, € F¥}
and the vertex y; does not dominate any elements in the set {(w,ws, ..., w,—1,0) € Z(R, k) :
w; € F;}. Now the vertex y, dominates the set {(wy,ws, ..., wp—_2,un—1,0) € Z(R, k) : w; €
Fi,un—1 € F}_,} and the vertex y, does not dominate any vertex in {(wy,wa,...,wy_2,0,0) €
Z(R,k) :w; € F;} U{(wy,wy, ..., wn_1,0) € Z(R, k) : w; € F;}. Proceeding like this, y,, _x+1
dominates the set { (w1, ws, ..., wk_l,uk,o, ...,0) rw; € Fj,u, € Fyf,w; # 0 for all i} and the
vertex y, does not dominate any elements in the set P, where P = {(wy,...,wr_1,0,...,0) :
w; € F; and at least two w;’s are non-zero} U ... U
{(w1,...,wp—2,0,0) : w; € F; and at least two w;’s are non-zero} U {(wy,...,w,—1,0) : w; €
F; and at least two w;’s are non-zero}, where 1 < ¢ < n — k + 1. Now the vertex y,, x> domi-
nates the set P. Hence D is a dominating set of H;(R) and so v(Hi(R)) <n —k + 2.
Suppose that v(Hx(R)) < n — k + 1. Then by Theorem 2.16, there exists a dominating

set D' = {$1,$2, s axnfk-ﬁ-l}’ where Ty = (aly s 70/57170707 s ,0,&@4.[,1, s aanflaa/n) €
———
. . . 0 terms . . .
Apand 1 < £ < n—k+ 1. Since |F;| > 3, vertices in D’ do not dominate vertices in
{(a1,..-,a0-1,0,0,...,0,ap10-1,--.,an_1,a,) : 1 <€ < n—k+ 1}, a contradiction. Hence
£ terms
v(He(R)) =n—k+2. O

Theorem 2.18. Let R = Zp(lxl X Zp;z X+ X ZLyon be a commutative ring with identity, where
each p; is prime and o; > 2, n > 3, p{"* <p5? <--- < p&n. Then y(H3(R)) =n — 1.

Proof. Consider the set D = {z1,...,Tn—1} Where z; = (21,22, -, Zic1, Ui, Zitls - -+ Zn)s
zi € Ap,, ui € Z;ai for | < i < n — 1. Then the vertex x; dominates the set Z(R,3) \

(AU B UC), where B" = U{ 50,04, i1y Aot 0n) ¢ oa; € Apgr]}, o =
{(a1,0,...,0,0) : a; € Z(Zp:xl7 )} and A’ = {(u1,0,...,0,0) : u; € Z;a]}. Also the vertex
1
x, dominates the set C' U A’ U {(0,az,...,an_1,a,) € B' 1 a; € Apgi—l} and {z,z,} does not
n—1 '
dominate any elements in the set U {(0,0,...,0,a;,ai41,.-.,an_1,a,) : a; € Apgi—]}. Now
i=3 ‘
the vertex z3 dominates the set {(0,0,a3,a4,...,an—1,a,) € B 1 a; € Apgrl} and {x, 2, 23}
n—1
does not dominate any elements in the set U {(0,...,0,a;,@ix1,- -y Qn_1,an) : a; € Apc_xrl}.
i=4 ’
Proceeding like this, the vertex x,,_, dominates the set {(0,0,...,0,a,_2,a,_1,a,) € B’ :
a; € A aﬁl} and {z,x2,...,x,—2} does not dominate any elements of the set H, where H =

{(0,0,...,0,an_1,a,) € B : a; € Ap%fl} but z,,_; dominates the set H. Hence D is a
dommatlng set of H3(R) and so y(H3(R)) <n — 1.

Since H3(Z%) is a subhypergraph of #3(R) and by Theorem 2.17, y(H3(Z%)) > n — 1.
Hence y(H3(R)) =n — 1. o

Theorem 2.19. Let R = Z o1 X Z po2 X X Lion X Fy X Fy X - - x I, be a finite commutative

non-local ring, where each F lsﬁeld a; >2,m>1,n>2andn+m > 3. Then v(H;(R)) =
n+m— L

Proof. Consider the set D = {x1,22,...,%n, Y1,Y2, - - -, Ym—1}, Where 1 = (21,22, - . ., 2n,
’LL],’UQ...,Um),xZZ (ul,uz,...,un_l,0,0,...,O), xr3 = (ul,uz,...,un_z,0,0,...,0),...,
Tpn—1 = (u1,u2,0,...,0,0,...,0), x, = (u1,0,...,0,0,...,0),y1 = (0,...,0, 2, u1,us, ...,
Um-1,0), y2 = (0,...,0, 2z, ur, ug, . . ., Um—2,0,0), ..., Yym—2 = (0,...,0, 2, u1,u2,0,...,0),
Ym—1 = (0,...,0,2,,u1,0,...,0,0)}, where z; € A, and u;’s are units.

Then the vertex x1 dominates the set Z(R,3) ~\ (P'UQ’US’), where P’ = {(0,...,0,b1, 0,
cbm—1,bp) 1 by =00rb; € F*}, 8" ={(a1,...,an-1,0,0,...,0) 1 aq; € A az_l}andQ’ =
{(a1,...,an-1,an,0,...,0) : at least one a; = 0 and at least two a}s € A aﬁl} Also the vertex

x dominates the set S’ U {(a1, az,...,an-1,01,0,...,0) € Q" :0# a, € ‘A = 1} and vertices
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{1, 22} do not dominate any elements in the set P’ and {(as,az,...,a,-1,0,0,...,0) € Q" :
a; € Apgi—l }. Proceeding like this, the vertex z,,_; dominates the set {(a, a2, a3,0,...,0) €
Q :0 ;é az € Apcg—l} and vertices {1, 2, ..., Z,_1} do not dominate any elements in the set
P’ and H, where H — {(a1,a2,0,0,...,0) € Q" : a; € qui—l} but x,, dominates the set H.
Now the vertex y; dominates the set {(0,...,0,by,..., bm_l,&m) € P' :u,, € FX} and the ver-
tices {1, 22, ..., Ty, y1 } donot dominate any elements in the set {(0,...,0,b1,b2,...,b;m_1,0) €
P’ : b =0orb € F}. The vertex y, dominates the set {(0,...,0,b1,b2,...,upm—1,0) €
Pt upm_y € FY_ |} and vertices {x1,22,...,%y,y1,%2} do not dominate any elements in
the set {(0,...,0,b1,b2,...,b:,—2,0,0) € P' : b; = O orb; € F}. Proceeding like this,
the vertex y,,—, dominates the set {(0,...,0,b1,b,u3,0...,0) € P’ : u3 € F;} and the
vertices {z1,Z2,...,Zn,Y1,Y2,--.,Ym—2} do not dominate any elements in the set H’, where
H ={(0,...,0,b,0,0,...,0,0) € P': b; € F;*} but y,,_; dominates the set //’. Hence D is
the dominating set of H3(R) and so v(H3(R)) <n+m — 1.

Since H3(Z% x Z3*) is a subhypergraph of #3(R). By Theorem 2.17, v(H3(Z} x Z5")) >
n+m — 1. Hence v(H3(R)) =n+m — 1. O

Theorem 2.20. Let R = Z,n X Fi X Fy X -+ - x Fy,, be a finite commutative non-local ring, where
each Fj is field, p is prime, n > 2 and m > 3. Then v(H3(R)) = m — 1.

Proof. Consider the set D = {y1,92,.-,Ym—1}, Where 41 = (z,u1,...,Um_1,0),10 = (2,uy,
s Um—2,0, U )5 e Ym—2 = (2,u1,u2,0,u4, . . s Um), Ym—1 = (2,u1,0,us, ..., uy), Where
z € Ap and u;’s are units.

Then y; dominates the set Z(R,3) ~ {P U P’}, where P = {(0,b,...,b,-1,0) : b; =
Oorb;, € Fix} and P’ = {(v,ul,...,um_],()) MANS Z;n U; € Fix} U {(z’,O...,O,um) :
2 € Apn-r, um € Fi}. Now the vertex y, dominates the set {(0,b1,...,bp—2,un-1,0) €
P : un_1 € F* ;}UP and the vertices {y;,y,} does not dominate any elements in the
set {(0,b1,...,b,-2,0,0) € P : b; = 0orb; € F*}. The vertex y3 dominates the set
{(0,b1,...,bp—3,um—2,0,0) € P : up_n € F* ,} and {yi,y,y3} does not dominate any
elements in the set {(0, by, ...,b,—3,0,0,0) € P:b; =0orb; € F;*}. Proceeding like this, the
vertex y,,,—» dominates the set {(0,b;,by,u3,0...,0) € P :uz € Fy'} and {y1,42,...,Ym—2}
does not dominate any elements in the set H, where H = {(0,b;,b,,0,...,0,0) € P: b, € F*}
but y,,—; dominates the set H. Hence D is the dominating set of H3(R) and so y(H3(R)) <
m — 1.

Since H3(Z3 x Z3*) is a subhypergraph of 73(R). By Theorem 2.17, ~v(H3(Z3 x Z3*)) >
m — 1. Hence v(H3(R)) = m — 1. o
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