CONNECTIVITY OF THE COMPLEMENT OF GENERALIZED TOTAL GRAPH OF FINITE FIELDS

M. Balamurugan, S. Anukumar Kathirvel and T. Tamizh Chelvam
Communicated by R. Kala

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.
Keywords and phrases:Generalized total graph, commutative ring, field, connectivity, complement.

Abstract

Let R be a commutative ring with identity, $Z(R)$ be its zero-divisors, and H be a nonempty proper multiplicative prime subset of R. The generalized total graph of R is the simple undirected graph $G T_{H}(R)$ with the vertex set R and two distinct vertices x and y are adjacent if and only if $x+y \in H$. In this paper, we investigate the vertex connectivity, edge connectivity and separation of $\overline{G T(F)}$ for the finite field F. In particular, we prove that $\kappa=\kappa^{\prime}=\delta$ for $\overline{G T(F)}$.

1 Introduction

Throughout this paper, R denotes a commutative ring with identity, $Z(R)$ is the set of all zerodivisors of $R, Z^{*}(R)=Z(R) \backslash\{0\}$ and $U(R)$ is the set of all units in R. Anderson and Livingston [5] introduced the zero-divisor graph of R, denoted by $\Gamma(R)$, as the undirected simple graph with vertex set $Z^{*}(R)$ and two distinct vertices $x, y \in Z^{*}(R)$ are adjacent if and only if $x y=0$. Subsequently, Anderson and Badawi [3] introduced the concept of the total graph of a commutative ring. The total graph $T_{\Gamma}(R)$ of R is the undirected graph with vertex set R and for distinct $x, y \in R$ are adjacent if and only if $x+y \in Z(R)$. Anukumar et al.[10, 11, 12, 13], Asir and Tamizh Chelvam [6] have extensively studied about the total graph of commutative rings.

Recently, Anderson and Badawi [3] introduced the concept of the generalized total graph of a commutative ring R. A nonempty proper subset H of R is said to be a multiplicative prime subset of R if the following two conditions hold: (i) $a b \in H$ for every $a \in H$ and $b \in R$; (ii) if $a b \in H$ for $a, b \in R$, then either $a \in H$ or $b \in H$. For a multiplicative prime subset H of R, the generalized total graph $G T_{H}(R)$ of R is the simple undirected graph with vertex set R and two distinct vertices x and y are adjacent if and only if $x+y \in H$. One can see that every prime ideal, union of prime ideals and $H=R \backslash U(R)$ are some of the multiplicative prime subsets of R. The unit graph $G(R)$ of R is the simple undirected graph with vertex set R in which two distinct vertices x and y are adjacent if and only if $x+y \in U(R)$. Note that if R is finite, then $\overline{G T_{Z(R)}(R)}$ is the unit graph [9]. Tamizh Chelvam and Balamurugan [14, 15, 16, 17] have extensively studied about the generalized total graph of a finite commutative ring and its complement. The entire literature regarding graphs from rings can be found in the monograph [2].

Let $G=(V, E)$ be a graph with vertex set V and edge set E. The complement \bar{G} of the graph G is the simple graph with vertex set $V(G)$ and two distinct vertices x and y are adjacent in \bar{G} if and only if they are not adjacent in G. We say that G is connected if there is a path between any two distinct vertices of G. For a vertex $v \in V(G), \operatorname{deg}(v)$ is the degree of v. For any graph $G, \delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of vertices in G respectively. K_{n} denotes the complete graph of order n and $K_{m, n}$ denotes the complete bipartite graph. For basic definitions in graph theory, we refer the reader to [7] and for the terms regarding algebra one can refer [8].

In this paper, we are interested in the connectivity of the complement of the generalized total graph of fields. In section 2, we recall the structure of $G T(F)$ and its complement. In section 3, we investigate the connectivity of $\overline{G T(F)}$ and prove that $\kappa=\kappa^{\prime}=\delta$ for $\overline{G T(F)}$. Throughout this paper, we assume that P is a prime ideal of R with $|P|=\lambda$ and $|R / P|=\mu$.

2 Generalized total graph of fields

In this section, we recall certain results on the generalized total graph of commutative rings.
Theorem 2.1. [3, Theorem 2.2] Let P be a prime ideal of a finite commutative ring R, and let $|P|=\lambda$ and $|R / P|=\mu$.
(i) If $2 \in H$, then $G T_{H}(R \backslash P)$ is the union of $\mu-1$ disjoint K_{λ} 's;
(ii) If $2 \notin H$, then $G T_{H}(R \backslash P)$ is the union of $\frac{\mu-1}{2}$ disjoint $K_{\lambda, \lambda}$'s.

Note that $G T(F)$ is the generalized total graph of the field F with the unique multiplicative prime subset $\{0\}$. If F is a field of characteristic 2 , then $x+x=0$ for every $x \in F$. When the characteristic of the field F is greater than 2, for any $0 \neq x \in F, x \neq-x$ and $x+(-x)=0$. In view of these, one can have the following structure for $G T(F)$.

Lemma 2.2. [14, Lemma 1.1] Let F be a finite field. Then
$G T(F)= \begin{cases}\underbrace{K_{1} \cup \cdots \cup K_{1}}_{|F| \text { copies }} & \text { if char }(F)=2 ; \\ K_{1} \cup \underbrace{K_{1,1} \cup \cdots \cup K_{1,1}}_{\frac{|F|-1}{2} \text { copies }} & \text { if } \operatorname{char}(F)>2 .\end{cases}$
In view of the Lemma 2.2, we have the following structure for the complement of $G T(F)$.
Lemma 2.3. [14, Lemma 2.2] Let F be a finite field. Then the following are true:
(i) If $\operatorname{char}(F)=2$, then $\overline{G T(F)}=K_{|F|}$;
(ii) If char $(F)>2$, then $\overline{G T(F)}$ is a connected bi-regular graph with $\Delta=|F|-1$ and $\delta=|F|-2$.

3 Properties of $\overline{G T(F)}$

In this section, we discuss about connectivity of $\overline{G T(F)}$. Note that, a simplicial vertex v of a graph G is a vertex whose neighbours induce a clique in G.

Lemma 3.1. Let F be a finite field. Then the following are true :
(i) If char $(F)=2$, then every vertex of $\overline{G T(F)}$ is a simplicial vertex;
(ii) Let $\operatorname{char}(F)>2$.
(a) If $|F|=3$, then the non-zero elements of F are simplicial vertices in $\overline{G T(F)}$;
(b) If $|F|>3$, then no vertex in $\overline{G T(F)}$ is a simplicial vertex.

Proof. (i) Follows from Lemma 2.3(i).
(ii) Assume that $\operatorname{char}(F)>2$. If $|F|=3$, then by Lemma 2.3(i) $\overline{G T(F)}$ is P_{3}. In this case, the neighbours of 0 are x, y such that $x=-y$. and hence 0 is not a simplicial vertex. Clearly 0 is the only one neigbour of x as well as y and it induces K_{1} as the clique. Assume that $|F| \geq 5$. List the elements of F as $F=\left\{0, x_{1}, \ldots, x_{\frac{|F|-1}{2}}, y_{1}, \ldots, y_{\frac{|F|-1}{2}}\right\}$ where $y_{i}=-x_{i}$ for $1 \leq i \leq \frac{|F|-1}{2}$. Clearly $F \backslash\{0\}$ is the set of all neighbours of 0 . For $i \leq i \leq \frac{|F|-1}{2}$, the vertices x_{i} and y_{i} are not adjacent in $\overline{G T(F)}$. Therefore the subgraph induced by the neighbours of 0 is not a clique.

Note that, a cut vertex of a connected graph is a vertex whose deletion results in a disconnected graph. In view of following lemma, we obtain the characterization of finite fields for which $\overline{G T(F)}$ has a cut vertex.

Lemma 3.2. Let F be a finite field. Then $\overline{G T(F)}$ has a cut vertex if and only if $F \cong \mathbb{Z}_{3}$.

Proof. If $F \cong \mathbb{Z}_{3}$, then by Lemma 2.3, $\overline{G T(F)}$ is P_{3} with $\operatorname{deg}(0)=2$ and $\operatorname{deg}(1)=\operatorname{deg}(2)=1$. Hence 0 is the cut vertex of $\overline{G T(F)}$.

Conversely, assume that $\overline{G T(F)}$ has a cut vertex u.
If $\operatorname{char}(F)=2$, then by Lemma 2.3, $\overline{G T(F)}$ is $K_{|F|}$, contradiction to the assumption that $\overline{G T(F)}$ contains a cut vertex u.

Suppose that $\operatorname{char}(F)>2$ and $|F| \geq 5$. List the elements of F as $F=\left\{0, x_{1}, \cdots, x_{\frac{|F|-1}{2}}, y_{1}\right.$, $\left.\cdots y_{\frac{|F|-1}{2}}\right\}$ where each $y_{i}=-x_{i}$ for $1 \leq i \leq \frac{|F|-1}{2}$. Clearly $0-x_{1}-\cdots-x_{\frac{|F|-1}{2}}-y_{1}-\cdots-$ $y_{\frac{|F|-1}{2}}-0$ is a cycle of length $|F|$ in $\overline{G T(F)}$ and so $\overline{G T(F)} \backslash\{u\}$ induces a cycle of length $|F|-1$ again a contradiction to the assumption that u is a cut vertex. Hence $F \cong \mathbb{Z}_{3}$.

Note that, a cut edge of a connected graph is an edge whose deletion results in a disconnected graph. In view of following lemma, we obtain a characterization of fields for which $\overline{G T(F)}$ has a cut edge.

Lemma 3.3. Let F be a finite field. Then $\overline{G T(F)}$ contains a cut edge e if and only if either $F \cong \mathbb{Z}_{2}$ or $F \cong \mathbb{Z}_{3}$.

Proof. Assume that either $F \cong \mathbb{Z}_{2}$ or $F \cong \mathbb{Z}_{3}$. By Lemma $2.3 \overline{G T(F)}$ is either K_{2} or P_{3}. Hence $\overline{G T(F)}$ contains a cut edge e.

Conversely, assume that $\overline{G T(F)}$ has a cut edge e. If $\operatorname{char}(F)=2$ with $|F|>2$, then by Lemma 2.3, $\overline{G T(F)}$ is $K_{|F|}$ and so $\overline{G T(F)} \backslash\{e\}$ is connected for every $e \in E(F)$, a contradiction. Hence $F \cong \mathbb{Z}_{2}$.

Suppose $\operatorname{char}(F)>2$ with $|F| \geq 5$. Consider the partition, $F=\{0\} \bigcup_{i=1}^{\frac{|F|-1}{2}}\left\{x_{i}\right\} \bigcup_{i=1}^{\frac{|F|-1}{2}}\left\{y_{i}\right\}$, where $y_{i}=-x_{i}$ for $1 \leq i \leq \frac{|F|-1}{2}$. Note that $\operatorname{deg}(0)=|F|-1$ and $\left\langle\bigcup_{i=1}^{\frac{|F|-1}{2}}\left\{x_{i}\right\}\right\rangle=\left\langle\bigcup_{i=1}^{\frac{|F|-1}{2}}\left\{y_{i}\right\}\right\rangle=$ $K_{\frac{|F|-1}{2}}$ is a subgraph of $\overline{G T(F)}$. Also x_{i}, y_{i} are not adjacent in $\frac{i=1}{G T(F)}$. Therefore $\frac{i=1}{G T(F)} \backslash\{e\}$ induces a connected subgraph, a contradiction. This gives that $F \cong \mathbb{Z}_{3}$.

Lemma 3.4. Let F be a finite field with $|F|>4$ and $S \subset V(\overline{G T(F)})$ with $|S|=3$. Then the subgraph induced by S is either K_{3} or $K_{1,2}$.

Proof. If $\operatorname{char}(F)=2$, then by Lemma 2.3, $\langle S\rangle=K_{3} \subset \overline{G T(F)}$.
Assume that $\operatorname{char}(F)>2$. Let $S=\left\{0, x_{1}, x_{2}\right\}$. If $x_{2}=-x_{1}$, then $\langle S\rangle=K_{1,2}$. If $x_{2} \neq-x_{1}$, then $\langle S\rangle=K_{3}$. If $0 \notin S$ and no two of them are additive inverses, then $\langle S\rangle=K_{3}$.

Recall that, the vertex connectivity of a graph G is the minimum number of vertices whose deletion disconnects G, which is denoted by $\kappa(G)$. The edge connectivity of a graph G is the minimum number of edges whose deletion disconnects G, which is denoted by $\kappa^{\prime}(G)$. The following theorem shows that $\kappa(\overline{G T(F)})=\kappa^{\prime}(\overline{G T(F)})=\delta(\overline{G T(F)})$.

Theorem 3.5. Let F be a finite field. Then $\kappa(\overline{G T(F)})=\kappa^{\prime}(\overline{G T(F)})=\delta(\overline{G T(F)})$.
Proof. Assume that $\operatorname{char}(F)=2$. Then $\overline{G T(F)}$ is complete and hence

$$
\kappa(\overline{G T(F)})=\kappa^{\prime}(\overline{G T(F)})=|F|-1=\delta(\overline{G T(F)})
$$

Assume that $\operatorname{char}(F) \neq 2$. By Lemma 2.3, $\operatorname{de} g_{\overline{G T(F)}}(0)=|F|-1=\Delta$ and $d e g_{\overline{G T(F)}}(x)=$ $|F|-2=\delta$. Let $0 \neq x \in F$ and $E_{x}=\{e=x y: y \neq-x\}$. Clearly E_{x} is the set of edges which are incident at x in $\overline{G T(F)}$. Therefore $\overline{G T(F)} \backslash E_{x}$ is disconnected and so $\kappa^{\prime}(\overline{G T(F)})=$ $|F|-2=\delta(\overline{G T(F)})$.

Assume that $\operatorname{char}(F)>2$. If $|F|=3$, by Lemma 3.3, $\kappa(\overline{G T(F)})=|F|-2=1=$ $\delta(\overline{G T(F)})$.

If $|F| \geq$ 5, by Lemma 2.3, $\delta(\overline{G T(F)})=|F|-2$ and so $\kappa \leq|F|-2$.

Claim: $\kappa=|F|-2$.
Suppose the set of vertices $W=\left\{v_{1}, \ldots, v_{|F|-3}\right\} \subset V(\overline{G T(F)})$ is the vertex cut of $\overline{G T(F)}$. Then by Lemma 3.4, the subgraph induced by the set $\langle V(\overline{G T(F)}) \backslash W\rangle$ either K_{3} or $K_{1,2}$, which is a contradiction to W is a vertex cut. Hence $\kappa=|F|-2=\delta(\overline{G T(F)})$.
Corollary 3.6. Let F be a finite field with char $(F)>2$ and $x \in F \backslash\{0\}$. Then any vertex cut of $\overline{G T(F)}$ is of the form $F \backslash\{x,-x\}$.
Proof. Proof follows from Lemma 3.3 and Theorem 3.5.
Corollary 3.7. Let F be a finite field. Then the following are true:
(i) $\overline{G T(F)}$ is not a 2-connected graph;
(ii) $\overline{G T(F)}$ is not 2-edge connected graph;
(iii) $\overline{G T(F)}$ is 3-edge connected if and only if either $F \cong F_{4}$ or $F \cong F_{5}$.

Proof. Proof follows from Lemma 2.3 and Theorem 3.5.
Recall that, a separation of a connected graph G is a decomposition of the graph into two nonempty connected subgraphs which have just one vertex in common. This common vertex is called a separating vertex of G.

A graph G is said to be non-separable if it is connected and has no separating vertices; otherwise, it is separable. Note that any complete graph is non-separable.
Lemma 3.8. Let F be a finite field and $F \not \approx \mathbb{Z}_{3}$. Then $\overline{G T(F)}$ is non-separable.
Proof. If $\operatorname{char}(F)=2$, then by Lemma 2.3, $\overline{G T(F)}$ is $K_{|F|}$ and so non-separable.
Assume that $\operatorname{char}(F)>2$. By the assumption that $F \neq \mathbb{Z}_{3}$, we have $|F| \geq 5$. Suppose $\overline{G T(F)}$ is separable. Then $\overline{G T(F)}$ may be decomposed into two nonempty connected subgraphs H_{1} and H_{2}, with just one vertex u in common. Let $e_{i}=u u_{i}$ be an edge of H_{i} incident with $u, i=1,2$.

Case(i). Suppose $u=0$ and $u_{2}=-u_{1}$. Since $|F| \geq 5$, there exists a non-zero element u_{3} in $F \backslash\left\{u, u_{1}, u_{2}\right\}$ such that u_{3} is adjacent with u, u_{1} and u_{2} in $\overline{G T(F)} \backslash\{0\}$. Therefore $\overline{G T(F)} \backslash\{0\} \neq H_{1} \cup H_{2}$, a contradiction.

Case(ii). Suppose $u=0$ and $u_{2} \neq-u_{1}$. In this case u_{1} is adjacent with u_{2} in $\overline{G T(F)} \backslash\{0\}$, which is a contradiction to H_{1} and H_{2} is a separation of $\overline{G T(F)}$.

Case(iii). Suppose $u \neq 0$. Suppose either $u=-u_{1}$, or $u=-u_{2}$.
Then $\left\langle\left\{0, u_{1}, u_{2}\right\}\right\rangle=K_{3}$ in $\overline{G T(F)} \backslash\{0\}$ and so $\overline{G T(F)} \backslash\{0\} \neq H_{1} \cup H_{2}$, which is a contradiction to $\overline{G T(F)}$ is separable.

If $u_{1}=-u_{2}$, then $\left\langle\left\{0, u, u_{1}, u_{2}\right\}\right\rangle$ induces $K_{1,3}$ in $\overline{G T(F)}$ and so $\overline{G T(F)} \backslash\{0\} \neq H_{1} \cup H_{2}$, which is also a contradiction to our assumption. Hence $\overline{G T(F)}$ is non-separable.

An atom of a graph G is a minimal subset X of $V(G)$ such that $d(X)=\kappa^{\prime}$ and $|X| \leq \frac{n}{2}$. Thus if $\kappa^{\prime}=\delta$, then any vertex of minimum degree is a singleton atom. On the other hand, if $\kappa^{\prime}<\delta$, then G has no singleton atom.

From Theorem 3.5, we have the following lemma.
Lemma 3.9. Let F be a finite field.
(i) If char $(F)=2$, then every element of F is an atom in $\overline{G T(F)}$;
(ii) If char $(F)>2$, then every non-zero element of F is an atom in $\overline{G T(F)}$.

The following proposition is a known one.
Proposition 3.10. [7, Proposition 9.13] The atoms of a graph are pairwise disjoint.
From Lemma 3.9 and Proposition 3.10, we have the following.
Lemma 3.11. Let F be a finite field. Then the following are true:
(i) If char $(F)=2$, then any two elements of F are pairwise disjoint in $\overline{G T(F)}$;
(ii) If char $(F)>2$, then any two non-zero elements of F are pairwise disjoint in $\overline{G T(F)}$.

Acknowledgment

This research work is supported by SERB/CRG/2020/002407 of Science \& Engineering Research Board, Government of India through T. Tamizh Chelvam.

References

[1] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213, 2224-2228 (2009).
[2] D. F. Anderson, T. Asir, A. Badawi and T. Tamizh Chelvam, Graphs from rings, First ed., Springer Nature Switzerland AG 2021.
[3] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12, (2013) (18 pages), doi:10.1142/S021949881250212X.
[4] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320, 2706-2719 (2008).
[5] D. F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434447 (1999).
[6] T. Asir and T. Tamizh Chelvam, On the total graph and its complement of a commutative ring, Comm. Algebra 41 3820-3835 (2013), doi:10.1080/00927872.2012.678956.
[7] J.A.Bondy and U.S.R.Murty (2008), Graph theory, Springer.
[8] I. Kaplansky, Commutative Rings (Revised Edn), Univ. Chicago Press, Chicago (1974).
[9] K. Khashyarmanesh and M.R. Khorsandi, A generalization of the unit and unitary Cayley graphs of a commutative ring, Acta Math. Hungar 137(4), 242-253 (2012).
[10] T. Tamizh Chelvam, S. Anukumar Kathirvel, Generalized unit and unitary Cayley graphs of finite rings, J. Algebra Appl., 18(1) (2019), \# 1950006 [21 pages].
[11] T. Tamizh Chelvam, S. Anukumar Kathirvel, Note on generalized Cayley graph of finite rings and its complement, J. Anal., 27(2) (2019), 555-566.
[12] T. Tamizh Chelvam, S. Anukumar Kathirvel, M. Balamurugan, Intersection graph of gamma sets in generalized unit and unitary Cayley graphs, Houston J. Math., 46(3) (2020), 561-582.
[13] T. Tamizh Chelvam, S. Anukumar Kathirvel, M. Balamurugan, Domination in generalized unit and unitary Cayley graphs of finite rings, Indian J. Pure Appl. Math., 51(2) (2020), 533-556.
[14] T. Tamizh Chelvam and M. Balamurugan, On the generalized total graph of fields and its complement, Palestine J. Math. 7(2), 450-457 (2018).
[15] T. Tamizh Chelvam and M. Balamurugan, Complement of the generalized total graph of commutative rings, J. Anal, DOI.10.1007/s41478-018-0093-6.
[16] T. Tamizh Chelvam and M. Balamurugan, Complement of the generalized total graph of \mathbb{Z}_{n}, FILOMAT 33:18 6103-6113 (2019), https://doi.org/10.2298/FIL1918103T.
[17] T. Tamizh Chelvam and M. Balamurugan, Complement of the generalized total graph of fields, AKCE Int. J. Graphs Comb., https://doi.org/10.1016/j.akcej.2019.12.005.

Author information

M. Balamurugan, Department of Mathematics, K.R. College of Arts and Science, Kovilpatti 628503, Tamil Nadu, INDIA.
E-mail: bm4050@gmail.com, ORCID:0000-0001-6991-7018.
S. Anukumar Kathirvel, Department of Mathematics, Amrita College of Engineering and Technology, Nagercoil 629901, Tamil Nadu, INDIA.
E-mail: anukumarsjc@gmail. com, ORCID:0000-0002-1286-1444.
T. Tamizh Chelvam, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, INDIA.
E-mail: tamche59@gmail.com, ORCID:0000-0002-1878-7847.

