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Abstract Let R be a commutative ring with identity, Z(R) be its zero-divisors, and H be a
nonempty proper multiplicative prime subset ofR. The generalized total graph ofR is the simple
undirected graph GTH(R) with the vertex set R and two distinct vertices x and y are adjacent if
and only if x+y ∈ H. In this paper, we investigate the vertex connectivity, edge connectivity and
separation of GT (F ) for the finite field F. In particular, we prove that κ = κ ′ = δ for GT (F ).

1 Introduction

Throughout this paper, R denotes a commutative ring with identity, Z(R) is the set of all zero-
divisors of R, Z∗(R) = Z(R) \ {0} and U(R) is the set of all units in R. Anderson and Liv-
ingston [5] introduced the zero-divisor graph of R, denoted by Γ(R), as the undirected simple
graph with vertex set Z∗(R) and two distinct vertices x, y ∈ Z∗(R) are adjacent if and only if
xy = 0. Subsequently, Anderson and Badawi [3] introduced the concept of the total graph of a
commutative ring. The total graph TΓ(R) of R is the undirected graph with vertex set R and for
distinct x, y ∈ R are adjacent if and only if x+ y ∈ Z(R). Anukumar et al.[10, 11, 12, 13], Asir
and Tamizh Chelvam [6] have extensively studied about the total graph of commutative rings.

Recently, Anderson and Badawi [3] introduced the concept of the generalized total graph of
a commutative ring R. A nonempty proper subset H of R is said to be a multiplicative prime
subset of R if the following two conditions hold: (i) ab ∈ H for every a ∈ H and b ∈ R; (ii) if
ab ∈ H for a, b ∈ R, then either a ∈ H or b ∈ H . For a multiplicative prime subset H of R,
the generalized total graph GTH(R) of R is the simple undirected graph with vertex set R and
two distinct vertices x and y are adjacent if and only if x+ y ∈ H. One can see that every prime
ideal, union of prime ideals andH = R\U(R) are some of the multiplicative prime subsets ofR.
The unit graph G(R) of R is the simple undirected graph with vertex set R in which two distinct
vertices x and y are adjacent if and only if x+y ∈ U(R). Note that ifR is finite, thenGTZ(R)(R)
is the unit graph [9]. Tamizh Chelvam and Balamurugan [14, 15, 16, 17] have extensively studied
about the generalized total graph of a finite commutative ring and its complement. The entire
literature regarding graphs from rings can be found in the monograph [2].

Let G = (V,E) be a graph with vertex set V and edge set E. The complement G of the graph
G is the simple graph with vertex set V (G) and two distinct vertices x and y are adjacent in G
if and only if they are not adjacent in G. We say that G is connected if there is a path between
any two distinct vertices of G. For a vertex v ∈ V (G), deg(v) is the degree of v. For any graph
G, δ(G) and ∆(G) denote the minimum and maximum degree of vertices in G respectively. Kn

denotes the complete graph of order n and Km,n denotes the complete bipartite graph. For basic
definitions in graph theory, we refer the reader to [7] and for the terms regarding algebra one can
refer [8].

In this paper, we are interested in the connectivity of the complement of the generalized total
graph of fields. In section 2, we recall the structure of GT (F ) and its complement. In section 3,
we investigate the connectivity of GT (F ) and prove that κ = κ ′ = δ for GT (F ). Throughout
this paper, we assume that P is a prime ideal of R with |P | = λ and |R/P | = µ.
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2 Generalized total graph of fields

In this section, we recall certain results on the generalized total graph of commutative rings.

Theorem 2.1. [3, Theorem 2.2] Let P be a prime ideal of a finite commutative ring R, and let
|P | = λ and |R/P | = µ.

(i) If 2 ∈ H , then GTH(R \ P ) is the union of µ− 1 disjoint Kλ’s;

(ii) If 2 /∈ H , then GTH(R \ P ) is the union of µ−1
2 disjoint Kλ,λ’s.

Note that GT (F ) is the generalized total graph of the field F with the unique multiplicative
prime subset {0}. If F is a field of characteristic 2, then x + x = 0 for every x ∈ F. When the
characteristic of the field F is greater than 2, for any 0 6= x ∈ F, x 6= −x and x+ (−x) = 0. In
view of these, one can have the following structure for GT (F ).

Lemma 2.2. [14, Lemma 1.1] Let F be a finite field. Then

GT (F ) =



K1 ∪ · · · ∪K1︸ ︷︷ ︸
|F | copies

if char(F ) = 2;

K1 ∪K1,1 ∪ · · · ∪K1,1︸ ︷︷ ︸
|F |−1

2 copies

if char(F ) > 2.

In view of the Lemma 2.2, we have the following structure for the complement of GT (F ).

Lemma 2.3. [14, Lemma 2.2] Let F be a finite field. Then the following are true:

(i) If char(F ) = 2, then GT (F ) = K|F |;

(ii) If char(F ) > 2, then GT (F ) is a connected bi-regular graph with ∆ = |F | − 1 and
δ = |F | − 2.

3 Properties of GT (F )

In this section, we discuss about connectivity of GT (F ). Note that, a simplicial vertex v of a
graph G is a vertex whose neighbours induce a clique in G.

Lemma 3.1. Let F be a finite field. Then the following are true :

(i) If char(F ) = 2, then every vertex of GT (F ) is a simplicial vertex;

(ii) Let char(F ) > 2.

(a) If |F | = 3, then the non-zero elements of F are simplicial vertices in GT (F );

(b) If |F | > 3, then no vertex in GT (F ) is a simplicial vertex.

Proof. (i) Follows from Lemma 2.3(i).
(ii) Assume that char(F ) > 2. If |F | = 3, then by Lemma 2.3(i) GT (F ) is P3. In this case,

the neighbours of 0 are x, y such that x = −y. and hence 0 is not a simplicial vertex. Clearly 0 is
the only one neigbour of x as well as y and it inducesK1 as the clique. Assume that |F | ≥ 5. List
the elements of F as F = {0, x1, . . . , x |F |−1

2
, y1, . . . , y |F |−1

2
} where yi = −xi for 1 ≤ i ≤ |F |−1

2 .

Clearly F \ {0} is the set of all neighbours of 0. For i ≤ i ≤ |F |−1
2 , the vertices xi and yi are not

adjacent in GT (F ). Therefore the subgraph induced by the neighbours of 0 is not a clique.

Note that, a cut vertex of a connected graph is a vertex whose deletion results in a discon-
nected graph. In view of following lemma, we obtain the characterization of finite fields for
which GT (F ) has a cut vertex.

Lemma 3.2. Let F be a finite field. Then GT (F ) has a cut vertex if and only if F ∼= Z3.
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Proof. If F ∼= Z3, then by Lemma 2.3, GT (F ) is P3 with deg(0) = 2 and deg(1) = deg(2) = 1.
Hence 0 is the cut vertex of GT (F ).

Conversely, assume that GT (F ) has a cut vertex u.
If char(F ) = 2, then by Lemma 2.3, GT (F ) is K|F |, contradiction to the assumption that

GT (F ) contains a cut vertex u.
Suppose that char(F ) > 2 and |F | ≥ 5. List the elements of F as F = {0, x1, · · · , x |F |−1

2
, y1,

· · · y |F |−1
2
} where each yi = −xi for 1 ≤ i ≤ |F |−1

2 . Clearly 0 − x1 − · · · − x |F |−1
2
− y1 − · · · −

y |F |−1
2
−0 is a cycle of length |F | inGT (F ) and soGT (F )\{u} induces a cycle of length |F |−1

again a contradiction to the assumption that u is a cut vertex. Hence F ∼= Z3.

Note that, a cut edge of a connected graph is an edge whose deletion results in a disconnected
graph. In view of following lemma, we obtain a characterization of fields for which GT (F ) has
a cut edge.

Lemma 3.3. Let F be a finite field. Then GT (F ) contains a cut edge e if and only if either
F ∼= Z2 or F ∼= Z3.

Proof. Assume that either F ∼= Z2 or F ∼= Z3. By Lemma 2.3 GT (F ) is either K2 or P3. Hence
GT (F ) contains a cut edge e.

Conversely, assume that GT (F ) has a cut edge e. If char(F ) = 2 with |F | > 2, then by
Lemma 2.3,GT (F ) isK|F | and soGT (F )\{e} is connected for every e ∈ E(F ), a contradiction.
Hence F ∼= Z2.

Suppose char(F ) > 2 with |F | ≥ 5. Consider the partition, F = {0}
|F |−1

2⋃
i=1
{xi}

|F |−1
2⋃
i=1
{yi},

where yi = −xi for 1 ≤ i ≤ |F |−1
2 . Note that deg(0) = |F | − 1 and 〈

|F |−1
2⋃
i=1
{xi}〉 = 〈

|F |−1
2⋃
i=1
{yi}〉 =

K |F |−1
2

is a subgraph of GT (F ). Also xi, yi are not adjacent in GT (F ). Therefore GT (F ) \ {e}
induces a connected subgraph, a contradiction. This gives that F ∼= Z3.

Lemma 3.4. Let F be a finite field with |F | > 4 and S ⊂ V (GT (F )) with |S| = 3. Then the
subgraph induced by S is either K3 or K1,2.

Proof. If char(F ) = 2, then by Lemma 2.3, 〈S〉 = K3 ⊂ GT (F ).
Assume that char(F ) > 2. Let S = {0, x1, x2}. If x2 = −x1, then 〈S〉 = K1,2. If x2 6= −x1,
then 〈S〉 = K3. If 0 /∈ S and no two of them are additive inverses, then 〈S〉 = K3.

Recall that, the vertex connectivity of a graph G is the minimum number of vertices whose
deletion disconnectsG,which is denoted by κ(G). The edge connectivity of a graphG is the min-
imum number of edges whose deletion disconnectsG,which is denoted by κ′(G). The following
theorem shows that κ(GT (F )) = κ′(GT (F )) = δ(GT (F )).

Theorem 3.5. Let F be a finite field. Then κ(GT (F )) = κ ′(GT (F )) = δ(GT (F )).

Proof. Assume that char(F ) = 2. Then GT (F ) is complete and hence

κ(GT (F )) = κ ′(GT (F )) = |F | − 1 = δ(GT (F )).

Assume that char(F ) 6= 2. By Lemma 2.3, deg
GT (F )

(0) = |F | − 1 = ∆ and deg
GT (F )

(x) =

|F | − 2 = δ. Let 0 6= x ∈ F and Ex = {e = xy : y 6= −x}. Clearly Ex is the set of edges
which are incident at x in GT (F ). Therefore GT (F ) \ Ex is disconnected and so κ′(GT (F )) =
|F | − 2 = δ(GT (F )).

Assume that char(F ) > 2. If |F | = 3, by Lemma 3.3, κ(GT (F )) = |F | − 2 = 1 =

δ(GT (F )).

If |F | ≥ 5, by Lemma 2.3, δ(GT (F )) = |F | − 2 and so κ ≤ |F | − 2.
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Claim: κ = |F | − 2.
Suppose the set of vertices W = {v1, . . . , v|F |−3} ⊂ V (GT (F )) is the vertex cut of GT (F ).
Then by Lemma 3.4, the subgraph induced by the set 〈V (GT (F ))\W 〉 either K3 or K1,2, which
is a contradiction to W is a vertex cut. Hence κ = |F | − 2 = δ(GT (F )).

Corollary 3.6. Let F be a finite field with char(F ) > 2 and x ∈ F \ {0}. Then any vertex cut of
GT (F ) is of the form F \ {x,−x}.

Proof. Proof follows from Lemma 3.3 and Theorem 3.5.

Corollary 3.7. Let F be a finite field. Then the following are true:

(i) GT (F ) is not a 2-connected graph;

(ii) GT (F ) is not 2-edge connected graph;

(iii) GT (F ) is 3-edge connected if and only if either F ∼= F4 or F ∼= F5.

Proof. Proof follows from Lemma 2.3 and Theorem 3.5.

Recall that, a separation of a connected graph G is a decomposition of the graph into two
nonempty connected subgraphs which have just one vertex in common. This common vertex is
called a separating vertex of G.

A graph G is said to be non-separable if it is connected and has no separating vertices;
otherwise, it is separable. Note that any complete graph is non-separable.

Lemma 3.8. Let F be a finite field and F 6∼= Z3. Then GT (F ) is non-separable.

Proof. If char(F ) = 2, then by Lemma 2.3, GT (F ) is K|F | and so non-separable.
Assume that char(F ) > 2. By the assumption that F 6∼= Z3, we have |F | ≥ 5. Suppose

GT (F ) is separable. Then GT (F ) may be decomposed into two nonempty connected subgraphs
H1 and H2, with just one vertex u in common. Let ei = uui be an edge of Hi incident with
u, i = 1, 2.

Case(i). Suppose u = 0 and u2 = −u1. Since |F | ≥ 5, there exists a non-zero element
u3 in F \ {u, u1, u2} such that u3 is adjacent with u, u1 and u2 in GT (F ) \ {0}. Therefore
GT (F ) \ {0} 6= H1 ∪H2, a contradiction.

Case(ii). Suppose u = 0 and u2 6= −u1. In this case u1 is adjacent with u2 in GT (F ) \ {0},
which is a contradiction to H1 and H2 is a separation of GT (F ).

Case(iii). Suppose u 6= 0. Suppose either u = −u1, or u = −u2.

Then 〈{0, u1, u2}〉 = K3 inGT (F )\{0} and soGT (F )\{0} 6= H1∪H2,which is a contradiction
to GT (F ) is separable.

If u1 = −u2, then 〈{0, u, u1, u2}〉 induces K1,3 in GT (F ) and so GT (F ) \ {0} 6= H1 ∪H2,

which is also a contradiction to our assumption. Hence GT (F ) is non-separable.

An atom of a graph G is a minimal subset X of V (G) such that d(X) = κ ′ and |X| ≤ n
2 .

Thus if κ ′ = δ, then any vertex of minimum degree is a singleton atom. On the other hand, if
κ ′ < δ, then G has no singleton atom.

From Theorem 3.5, we have the following lemma.

Lemma 3.9. Let F be a finite field.

(i) If char(F ) = 2, then every element of F is an atom in GT (F );

(ii) If char(F ) > 2, then every non-zero element of F is an atom in GT (F ).

The following proposition is a known one.

Proposition 3.10. [7, Proposition 9.13] The atoms of a graph are pairwise disjoint.

From Lemma 3.9 and Proposition 3.10, we have the following.

Lemma 3.11. Let F be a finite field. Then the following are true:

(i) If char(F ) = 2, then any two elements of F are pairwise disjoint in GT (F );

(ii) If char(F ) > 2, then any two non-zero elements of F are pairwise disjoint in GT (F ).
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