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Abstract Let d; be the degree of vertex v; of G then general Randi¢ matrix GR(G) = [r;;] is
defined as r;; = (d;d;)®, o € Riif the vertices v; and v; are adjacent in G and r;; = 0, otherwise.
The general Randi¢ energy Eqr(G) of G is the sum of the absolute values of the eigenvalues of
GR(G). In this paper, we compute the general Randi¢ energy of the graphs obtained by graph
operations like m-Splitting, m-Shadow and duplication graph.

1 Introduction

All graphs considered here are simple connected graphs without multiple, directed or weighted
edges. Let G be a graph with V(G) = {v,v2,...,v,} as a vertex set and F(G) as a edge set.
Let d; be the degree of a vertex v;, for each i = 1,2,...,n. The adjacency matrix A(G) = [a;;]
of a graph G is a square matrix of order n, where

1 ; if vertices v; and v; are adjacent
Aij = . .
0 ; otherwise

Let A1, A2, ..., A, are eigenvalues of A(G) then they all real numbers with their sum is zero as
A(G) is a symmetric matrix. The set of eigenvalues with their multiplicity is known as spectrum
of a graph and it is denoted by Spec(G). In 1978, Gutman[7] have introduced the concept of
energy of graph. According to him energy of graph £(G) is defined as sum of absolute values of
eigenvalues of graph G. That is,

£(G) =Y In

A brief account of spectra of graph and graph energy can be found in Balakrishnan
[2], Li et al. [17] and Cvetkovié et al. [4]. Topological indices are numerical values of a
graph which are invariant under isomorphism of graphs. Various type of topological indices
are mainly used in qualitative structure-property relationship(QSPR) and qualitative structure-
activity relationship(QSAR)[9]. In 1975, Randic¢ [21] has introduced one such topological index
and termed it as Randi¢ index which is defined by

R="> (didy)~?

i~j

where the summation is taken over all pairs of adjacent vertices v; and v;. Randi¢ index is
useful in chemistry and pharmacology, in particular it is very useful in designing quantitative
structure property and structure activity relations. A brief account on Randi¢ index can be found
in [8, 15, 16, 22].

In 1998, Bollobas and Erdos[3] have generalized the concept of Randi¢ index by replacing
—% power with any real number and named it as general Randi¢ index which is denoted and
defined as

Ry = Ro(G) =) (didj)*,a € R

i~g
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In 2010, Bozkurt ez al. [11, 12] pointed out that the Randi¢ index is purposeful to produce a
graph matrix of order n which is known as Randi¢ matrix R(G) = [r;;] , where

S (did;)~7 ; if v; and v; are adjacent
Y 0 ; otherwise

The connection between the Randi¢ matrix and the Randi¢ index is obvious: The sum of
all elements of R(G) is equal to 2R. Let py, pa, ..., pn, are eigenvalues of matrix R(G) then the
Randi¢ energy [11, 12] is defined as the sum of absolute values of Randi¢ eigenvalues of graph
G which is denoted as RE(G). That s,

RE = RE(G) = _|pil
i=1

Alikhani and Ghanbari[1] have found the Randi¢ energy of some standard graph families. Rojo
and Medina[23] have constructed a bipartite graphs having same Randi¢ energy. Some more
results related to Randi¢ energy can be found in [10, 26]. In [6], Gu ef al. have introduced the
concept of general Randi¢ matrix and general Randi¢ energy. The general Randi¢ matrix GR(G)
of a graph G is a square matrix which is defined by GR(G) = [g;;], where

. where a € R
0 . otherwise ’

{ (d;d;)> ; if vertices v; and v; are adjacent
Gij =

Fora = — %, the above matrix reduces to Randi¢ matrix and for a = 0, it reduces to adjacency
matrix. The general Randi¢ energy is defined as the sum of absolute values of eigenvalues of
GR(G).

Egr(G) = Z | 1]
i=1

where p;’s are eigen values of the general Randi¢ matrix of graph G. In [6], they have also
established some bounds on general Randi¢ energy in terms of general Randi¢ index, general
Randi¢ eigenvalues and smallest degree of a graph. They have established a lower bounds for
general Randi¢ spectral radius of a connected graph. Liu and Shiu[18] have characterized the
class of connected graphs with distinct eigenvalues and also obtained general Randi¢ polynomial
of subdivision of a graph.

Ramane and Gudodagi [19] have given general Randi¢ polynomial and general Randi¢ energy
of some standard graph families like the path P, the cycle C,,, the complete graph K,,, complete
bipartite graph K, ,,, star graph S,,, friendship graph F},, Dutch Windmill graph D} and D¢,
K4-Windmill graph K}' and double star S(p,q). Two non-isomorphic graphs G; and G, of
the same order are said to be equienergetic graphs if £(G;) = £(G2). Ramane et al.[20] have
constructed infinitely many pairs of equienergetic graphs. In the context of equienergetic graphs,
we define general Randi¢ equienergetic graphs in which two non-isomorphic graphs are said to
be general Randi¢ equienergetic if they have same general Randi¢ energy.

In the present work, our focus is to explore the concept of general Randi¢ energy in the con-
text of various graph operations. Also some results are also proved for general Randi¢ equiener-
getic graphs. In addition graphs having different order but of equal general Randié energy are
investigated.

2 General Randi¢ Energy of m-Splitting Graph

Definition 2.1. [25] The m-Splitting graph Spl,,(G) of a graph G is obtained by adding to each
vertex v a new m vertex vy, vz, ..., Up, such that v;, 1 < ¢ < m is adjacent to every vertex that is
adjacent to v in G.
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Definition 2.2. [13] For the matrices A = [a;;]mxn, B = [bij]pxq the Kronecker product of A
and B is defined as the matrix
annB - a1n,B
A®B =
am1B - amnB
Proposition 2.3. [13] If X is an eigenvalue of matrix A = [a;;]mxm with corresponding eigen-

vector x, and p is an eigenvalue of matrix B = [b; ;| xn with corresponding eigenvector y. Then
A is an eigenvalue of A @ B with corresponding eigenvector x ® y.

Proposition 2.4. /5] Let
Ay A
Ay A

be a symmetric block matrix. Then the spectrum of A is the union of spectra of Ay — A; and
Ay + A

A:

The following result relates the general Randi¢ energy of graph G and its m-Splitting.

Theorem 2.5. For any graph G, Egr(Splm(G)) = \/(m + 1)* +4m(m + 1)22Egr(G).

Proof. Let G be a graph with vy, vy, ..., v, as vertices of then its general Randié matrix R(G) is
given by

(%1 (%] v3 v Un

vi [0 rp orz o T,

vy [ra1 0 r3 e Ty

GR(G) = vy [r31 rz 0 o T3,
Un Tnl Tn2 Tn3 Tt 0

Now, consider m-copies of vertex v; for 1 < i < n, say vg,vg o™ and then join each

i3 Uy

vertex v¥, for 1 < k < m to neighbors of vertex v; to obtain m—Splitting of given graph G.
Then the matrix GR(Spl,,,(G)) can be written as follows

[(m +1)>**GR(G) (m+ 1)*GR(G) --- (m+1)*GR(G)]
(m+ 1)*GR(G) 0] O
GR(Spln(G)) =
_(m +1)*GR(G) O O ]
That is,
(m+1)2%* (m+1D)* o (m+1)°
(m+ 1)~ 0 0
GR(Spl(G)) = : : . : ® GR(G)
(m—f.— 1)~ 0 0
=A® R(G)
(m+1)% (m+1)* (m+ 1)~
(m+1)* 0 0
where A = : : . : . Since, A is a matrix of rank 2 so, it
(m+ 1)~ 0 e 0

means that matrix A has only two non-zero eigenvalues, say p; and p;.
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Also, we know that

p1+pr =tr(A) = (m+1)* 2.1
Now, consider the matrix
(m+1**+mm+1)2 (m+1)>3 ... (m+1)3>°
3a 2a 2a
i (m+1) (m+1) e (m41)
(m—|—1)30‘ (m+ 1)2a (m+ 1)20‘ (m+1)x (m+1)
Here,
07+ p3 = tr(A?) = (m + 1)* +2m(m + 1)> (2.2)

by solving equations (2.1) and (2.2), we have

(m+ 12 4+ /(m + D)% +4m(m + 1)2

Pl = 5 and
(m+1)2 — \/(m+ 1) +dm(m + 1)2«
P2 = 3
_ 0 p,m m
Hence, Spec(A) = L1
m—

Since, GR(Splm(G)) = A ® GR(G), it follows that if g, ua, ..., u, are eigenvalues of GR(G),
then by Proposition 2.3, we have Spec(GR(Spl,(G))) =

0 PIL Pifbn P2H1 cc P2fin
n(m—1) 1 ... 1 1 1

(m+1)%+ \/(m—l— 1) 4+ 4dm(m + I)ZO‘M
2 1

+

S (m+ 12+ /(m + )% +dm(m + 1)2
_;|Mi| < B

—(m+ 1%+ /(m+ 1) + 4m(m + 1)2a>
2

Therefore,

Er(Spln(G)) = \/(m + 1)* +dm(m + 1) Egr(G)
O

Corollary 2.6. Let G| and G, be general Randié equienergetic graphs then Spl,,(Gy) and
Splm (Ga) are also general Randi¢ equienergetic graphs.

Proof. Proof of this corollary follows from Theorem 2.5. O

3 General Randi¢ Energy of m-Shadow Graph

Definition 3.1. [25] The m-Shadow graph D,,(G) of a connected graph G is constructed by
taking m copies of G say Gy, G, ..., G,,,. Then Join each vertex u in G; to the neighbors of the
corresponding vertex vin G;, 1 <14,j <m.
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The following result relates the general Randi¢ energy of graph G and its m-Shadow.
Theorem 3.2. For any graph G, Egr(D,,(G)) = m***' Eqr(G).

Proof. Let G be a graph with vy, vy, ..., v, as vertices of then its general Randi¢ matrix R(G) is
given by

V1 (%) U3 o Un

vi [0 r2 T3 - Tin

vy |rar 0 rz e Ty

GR(G) = vy [r31 r 0 o T3y
Un L'nl Tn2 Th3 -0

Now, consider m-copies G, Ga, ..., G, of graph G and then join each vertex of u of graph G;
to the neighbors of the corresponding vertex v in graph G, 1 < 4,7 < m to obtain m—Shadow
D,,(G). Then the general Randi¢ matrix of graph D,,,(G) can be written as

[(m2*GR(G) m**GR(G) --- m**GR(G)
m**GR(G) m**GR(G) --- m**GR(G)
GR(Dn(G)) =
m**GR(G) m**GR(G) --- m**GR(G)
That is,
_m2a mZa m2a
m2a mZa m2a
GR(Din(G)) = ® GR(G)

m2a m2a mZa

Therefore, GR(D,,(G)) = B® R(G)
0 m2a+l
Since, we know that the spectrum of B is | !
m—

Hence, by Proposition 2.3

0 m20¢+1 U m2a+l 1/1‘ m20z+l'u/n
Spec«Dm(G)):(n(m_l) o |

where u;, i = 1,2, ...,n are eigenvalues of GR(G).
Therefore,

Ecgr(Dn(G)) = Z |m**H | = m** M Eqr(G)

i=1

O

Corollary 3.3. If Gy and G, are two general Randi¢ equienergetic graphs, then D,,(G) and
D,,(G,) are also general Randi¢ equienergetic graphs.

Proof. Proof of this corollary follows from Theorem 3.2. O
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4 General Randi¢ Energy of Duplication Graph

Definition 4.1. [24] Let G be a graph on n vertices labelled as V' = {vy, v2, vs, ..., v, }. Then take
another set U = {uy,uz, us3, ..., u, } of n vertices. Now define a graph H with V(H) =V U U
and edge set of H consisting only of those edges joining u; to neighbors of v; in G, for each
i. The resultant graph H is called the duplication graph of G denoted by DG. Also, define
D*(G) = D(D(G)) and D™(G) = D(D"1(Q)).

Proposition 4.2. [ /4] For any graph G, E(DG) = 2E(G).

Proposition 4.3. [6] Let G = G, UG, U...UG, then, Egr(G) = Eqr(G1) + Ecr(G2) + ... +
Ecr(Gp).

Theorem 4.4. Let G be any graph of order n with py, 2, ..., i, are as general Randic¢ eigenval-
ues of G then, Eqgr(DG) = 2Egr(G).

Proof. Let G be any graph on n vertices then construct a duplication graph DG of graph G by
considering two copies of vertex set of G as V' = {vy, v, v3, ..., v, } and U = {uy, up, uz, ..., upn }
and then join vertex u; to neighbors of v;, for each 1.

Then the general Randi¢ matrix of duplication graph DG of graph G can be written as

O  GR(G)

GR(DG) = | ., @ o

So, from Proposition 2.4 spectra of R(DG) can be given by

Spec(GR(D@G)) = Spec(GR(G)) U Spec(—GR(G))

So, Spec(GR(DQ)) = (lil _{“> ,foreachi=1,2,...,n.

Hence,

Egr(DG) =Y |l + > | — il
i=1 i=1

= 22|Mz‘|
i=1

=2Fqr(G)
O
Corollary 4.5. For any graph G, DG and G U G are general Randic¢ equienergetic graphs.
Proof. Proof of this corollary follows from Therem 4.4 and Proposition 4.3. O

Theorem 4.6. Let G be any graph of order n with u, ua, ..., pi, are as general Randic¢ eigenval-
ues of G then, Egr(D"G) = 2"Egr(G).

Proof. Let G be any graph on n vertices then construct a graph D" G of graph G by considering

duplication graph of D"~ G.
Then the general Randi¢ matrix of graph D" G of graph G can be written as

0 GR(D"'G)

R(D"G) = GR(D"'G) 0

So, from Proposition 2.4 spectra of GR(D™G) can be given by

Spec(GR(D"G)) = Spec(GR(D""'G)) U Spec(—~GR(D™'@))
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So, Spec(GR(D"G)) = <25i] 27f_%1> ,foreachi=1,2,...,n.

Hence,

Egr(D"G) =2""" Z |a| + 27 Z | — pil
i=1 i=1

=2" " |uil
i=1
=2"FEgr(G)
O

Definition 4.7. [26] Let G be a graph of order n with vertex set V(G) = {vy,v2,...,v,}. Then
take another m sets U;, U,,...,U,, of n vertices, where U; = {ui,ué, wut}, for each i =
1,2,...,m. Now define a new graph H with vertex set V(H) = V(G) UU; U ... U U,, and each
vertex u} is adjacent to neighbors of vertex v; of graph G. The resultant graph is known as
m—duplication graph of G denoted by m — DG.

Theorem 4.8. Let G be any graph of order n with u, ua, ..., pi, are as general Randic¢ eigenval-
ues of G then, Egr(m — DG) = 2m0‘+%EGR(G).

Proof. Let G be any graph of order n then, the general Randi¢ matrix of graph m — DG can be
written as

0 m*R(G) -+ m*R(G)
m*R(G) 0 e 0]
GR(m — DG) = )
m*R(G) 0 e 0]
That is,
0 m“ m
@ 0 0
GR(m — DG) = . ® GR(G)
m* 0 0
=A® GR(G)
0 m~ me
m* 0 0
wher,e A =
me 0 -~ 0 )

Since, A is a matrix of rank 2 so, it means that matrix A has only two non-zero eigenvalues, say
p1 and py.
Also, we know that

p1+p2=tr(A)=0 (4.1)
Now, consider the matrix

m2a+l 0 0
0 mZa m20¢
A? = )
0 mZa 2a

(m+1)
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Here,
p? + p3 = tr(A?) = 2m?o ! 4.2)
by solving equations (4.1) and (4.2), we have p; = m®*2 and p, = —m®+2.
0 at+y oo+l
Hence, Spec(A) = mes Tme
m— 1 1 1

Since, GR(m—DG) = AQGR(Q), it follows that if i1, u, ..., j1,, are eigenvalues of GR(G),
then by Proposition 2.3, we have
0 ma+%'ui _moz+%'ui
Spec(m — DG) =

n(m —1) 1 1

Hence,

Egr(m — DG) = Z ‘maJr%Mi‘ + Z ‘—maJr%Mi
i=1 i=1

= 2mats Z |i| = 2ma+%EGR(G)

i=1

O
Corollary 4.9. Let G| and G, be general Randi¢ equienergetic graphs then m — DG and m —
DG, are also general Randic¢ equienergetic graphs.
Proof. Proof of this corollary follows from Theorem 4.8. O
Corollary 4.10. For any graph G, Egr(m — DG) = Egr(DG) iff . = —3.
Proof. Proof of this corollary follows from Theorem 4.4 and Theorem 4.8. O
Corollary 4.11. For any graph G, Egr(D(G)) = Egr(DG) iff m =2 and o = 0.
Proof. Proof of this corollary follows from Theorem 3.2 and Theorem 4.4. O
Corollary 4.12. For any graph G, Egr(Dm(G)) = Egr(D"G) iff m =2 and o = nT—l
Proof. Proof of this corollary follows from Theorem 3.2 and Theorem 4.6. O
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