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Abstract Let G = (V,E) be a graph. A set S ⊆ V is said to be a restrained dominating set
if each vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. Let Dr(G, i) be
the collection of restrained dominating sets of G of cardinality i and dr(G, i) = |Dr(G, i)|. The
restrained domination polynomial of G is denoted by Dr(G, x) and is defined as Dr(G, x) =
|V (G)|∑
i=γr(G)

dr(G, i)xi. In this paper we construct Dr(Cn, i) and obtain a formula for dr(Cn, i).

1 Introduction

All graphs considered here are simple and undirected. The terms not defined here are taken as in
[4]. Let G = (V,E) be a graph of order |V | = n. A set S ⊆ V is said to be a dominating set [5]
of G if each vertex in V −S is adjacent to a vertex in S. The domination number of G is denoted
by γ(G) and is defined as the minimum cardinality of a dominating set of G. Let D(G, i) be
the collection of dominating sets of G of cardinality i and d(G, i) = |D(G, i)|. The domination

polynomial of a graph G is defined as D(G, x) =
n∑

i=γ(G)

d(G, i)xi. The concept of domination

polynomial was introduced by Arocha and further developed by S.Alikhani [1, 2]. A set S ⊆ V
is said to be a restrained dominating set [3] of G if each vertex in V −S is adjacent to a vertex in
S and to a vertex in V −S. The restrained domination number of a graph G is denoted by γr(G)
and is defined as the minimum cardinality of a restrained dominating set ofG. A restrained dom-
inating set of G of minimum cardinality is called γr−set of G. Let Dr(G, i) be the collection of
restrained dominating sets of G of cardinality i and let dr(G, i) = |Dr(G, i)|. We call the poly-

nomial Dr(G, x) =
n∑

i=γr(G)

dr(G, i)xi, the restrained domination polynomial of a graph G. The

concept of restrained domination polynomial was introduced by K.Kayathri and G.Kokilambal
in 2019. In [6] K.Kayathri and G.Kokilambal gave a recurrence relation for finding the restrained
domination polynomial of cycles which was given by Dr(Cn, x) = 3Dr(Pn−2, x) +Dr(Pn, x)
for n ≥ 3. They constructed the familes of restrained dominating sets of Cn of cardinality i
by the families of restrained dominating sets of Pn and Pn−2 of cardinality i. In this paper we
construct the families of restrained dominating sets of Cn with cardinality i by the families of
restrained dominating sets of Cn−1 and Cn−3 with cardinality i− 1.

As usual we use bxc, for the greatest integer less than or equal to x. In this paper we use the
notation [n] to denote the set {1, 2, . . . , n}.

2 Restrained Dominating Sets of Cycles

Let Cn, n ≥ 3 be the cycle with n vertices. In this paper we denote the set of all vertices and
edges of Cn by V (Cn) = {1, 2, . . . , n} and E(Cn) = {(i, i + 1)/1 ≤ i ≤ n − 1} ∪ {(1, n)}
respectively. Let Dr(Cn, i) be the collection of restrained dominating sets of Cn of cardinality
i and |Dr(Cn, i)| = dr(Cn, i). We need the following lemmas to prove our main results in the
section:

Lemma 2.1. For any cycle Cn with n ≥ 3, the following results hold:
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(i) [3] γr(Cn) = n− 2bn3 c.

(ii) Dr(Cn, i) = φ⇔ Any one of the following hold
(a) n− i ≡ 1(mod 2)
(b) i > n
(c) i < n− 2bn3 c.

(iii) Dr(Cn, i) 6= φ⇔ n− 2bn3 c ≤ i ≤ n and n− i ≡ 0(mod 2).

Proof. As (ii) and (iii) are contra positive statements, it is enough to prove one among them. We
shall prove (iii).
Assume that Dr(Cn, i) 6= φ. Then there exists a restrained dominating set S of Cn of cardinality
i. It is clear that γr(Cn) ≤ i ≤ n. First we notice that if n is odd(even), then γr(Cn) = n− 2bn3 c
is odd(even). It is enough to prove that n − i ≡ 0 (mod 2). Suppose that the induced subgraph
of V −S has a component H of order ≥ 3. Then H contains an induced P3 : vjvj+1vj+2 and the
vertex vj+1 is not dominated by any other vertex of S which is a contradiction to S is a restrained
dominating set of Cn. Thus order of each component of 〈V − S〉 is at most 2. Also 〈V − S〉
has no isolated vertices. It follows that 〈V − S〉 is isomorphic to φ or mP2 for m ≥ 1. Hence
n− i ≡ 0 (mod 2).

Conversely suppose that n − 2bn3 c ≤ i ≤ n and n − i ≡ 0 (mod 2). It is enough to show
that there exists a restrained dominating set S of Cn of cardinality i. If |S| = n − 2bn3 c, then
any γr− set of Cn satisfies our requirement. Also if |S| = n, then S = V (Cn). Suppose that
n− 2bn3 c < i < n. Let T be a γr− set of Cn. Then each component of 〈V − T 〉 is isomorphic to
P2. Let S = T

⋃
H where H is the union of some components of 〈V − T 〉 chosen in such a way

that |S| = i. Then S is also a restrained dominating set of Cn. Thus n−i = n−(n−2bn3 c+ |H|)
is even. Hence Dr(Cn, i) 6= φ.

To find the collection of restrained dominating sets of Cn of cardinality i, it is enough to
consider Dr(Cn−1, i − 1) and Dr(Cn−3, i − 1) and it is not necessary to consider restrained
dominating sets of Cn−5 of cardinality i−1. This is proved in Lemma 2.2 and we do not consider
Dr(Cn−7, i − 1) because it is impossible to find Y ∈ Dr(Cn−7, i − 1) such that Y

⋃
{x} ∈

Dr(Cn, i) for any x ∈ [n].

Lemma 2.2. Suppose that Y ∈ Dr(Cn−5, i − 1) with Y
⋃
{x} ∈ Dr(Cn, i) for some x ∈ [n].

Then Y ∈ Dr(Cn−3, i− 1).

Proof. Suppose that Y ∈ Dr(Cn−5, i − 1) and Y
⋃
{x} ∈ Dr(Cn, i) for some x ∈ [n]. It is

clear that {1, n − 5} is a subset of Y . Otherwise Y
⋃
{x} /∈ Dr(Cn, i) for any x ∈ [n]. Hence

Y ∈ Dr(Cn−3, i− 1).

Lemma 2.3. If Dr(Cn, i) 6= φ, then we have

(i) Dr(Cn−1, i− 1) 6= φ and Dr(Cn−3, i− 1) 6= φ⇔ n− 2bn−1
3 c ≤ i ≤ n− 2.

(ii) Dr(Cn−3, i− 1) = φ and Dr(Cn−1, i− 1) 6= φ⇔ i = n.

(iii) Dr(Cn−1, i − 1) = φ and Dr(Cn−3, i − 1) 6= φ ⇔ i = q and n = 3q for some positive
integer q.

Proof. It is given that Dr(Cn, i) 6= φ. Then by applying (iii) of Lemma 2.1, we have n − i ≡
0(mod 2) and n− 2bn3 c ≤ i ≤ n.
(i) Assume that Dr(Cn−1, i− 1) 6= φ. Then by applying (iii) of Lemma 2.1, we have (n− 1)−
(i − 1) ≡ 0 (mod 2) and n − 2bn−1

3 c ≤ i ≤ n. Also Dr(Cn−3, i − 1) 6= φ. Again by applying
(iii) of Lemma 2.1, we have (n − 3) − (i − 1) ≡ 0 (mod 2) and n − 2 − 2bn−3

3 c ≤ i ≤ n − 2.
From these we can conclude that n− 2bn−1

3 c ≤ i ≤ n− 2.
Conversely assume that n− 2bn−1

3 c ≤ i ≤ n− 2 and n− i ≡ 0 (mod 2). Then by applying
(iii) of Lemma 2.1, we have Dr(Cn−1, i− 1) 6= φ and Dr(Cn−3, i− 1) 6= φ.
(ii) Assume that Dr(Cn−3, i − 1) = φ. Then by Lemma 2.1 (ii), we have i − 1 > n − 3 or
i−1 < (n−3)−2bn−3

3 c and the condition (n−3)− (i−1) ≡ 1 (mod 2) is not possible . Since
Dr(Cn−1, i − 1) 6= φ, by applying (iii) of Lemma 2.1, we have (n − 1) − (i − 1) ≡ 0 (mod 2)
and (n−1)−2bn−1

3 c ≤ i−1 ≤ n−1. If (i−1) < (n−3)−2bn−3
3 c, then Dr(Cn−1, i−1) = φ
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which is a contradiction. Hence we have n − 3 < i − 1 and also the possible conditions are
i − 1 ≤ (n − 1) and (n − 1) − (i − 1) ≡ 0 (mod 2). Other conditions do not hold due to
(n−2) < i. Thus we conclude that n−2 < i ≤ n. Since n ≡ i (mod 2), i = n−1 is impossible.
Hence i = n.

Conversely assume that i = n. Then by applying (ii) of Lemma 2.1, we haveDr(Cn−3, i) = φ
and Dr(Cn−1, i) 6= φ.
(iii) Assume that Dr(Cn−3, i − 1) 6= φ. Then by applying (ii) of Lemma 2.1, we have n − 3 −
2bn−3

3 c ≤ i − 1 ≤ n − 3 and (n − 3) − (i − 1) ≡ 0 (mod 2). Also Dr(Cn−1, i − 1) = φ, then
by applying (ii) of Lemma 2.1, we have i − 1 > n − 1 or n − 1 − 2bn−1

3 c > i − 1 and the
condition (n − 1) − (i − 1) ≡ 1(mod 2) is not possible. Since i − 1 ≤ n − 3, the condition
i− 1 > n− 1 is not possible. Hence the only possible condition is i− 1 < n− 1− 2bn−1

3 c. Now
n− 3− 2bn−3

3 c ≤ i < n− 2bn−1
3 c which gives us n = 3q and i = q for some q ∈ N.

Conversely assume that n = 3q and i = q for some q ∈ N. Then by applying (ii) of Lemma
2.1, we have Dr(Cn−1, i− 1) = φ and Dr(Cn−3, i− 1) 6= φ.

Theorem 2.4. For every n ≥ 3 and i is a positive integer satisfying the condition that n−2bn3 c ≤
i ≤ n and n− i ≡ 0 (mod 2), the following are true:

(i) If Dr(Cn−1, i− 1) = φ and Dr(Cn−3, i− 1) 6= φ, then
Dr(Cn, i) = Dr(Cn, n3 ) = {{1, 4, 7, . . . , n− 2}, {2, 5, 8, . . . , n− 1}, {3, 6, 9, . . . , n}}.

(ii) If Dr(Cn−3, i− 1) = φ and Dr(Cn−1, i− 1) 6= φ, then Dr(Cn, i) = Dr(Cn, n) = {[n]}.

(iii) If Dr(Cn−1, i− 1) 6= φ and Dr(Cn−3, i− 1) 6= φ, then Dr(Cn, i) =
6⋃
k=1
Ak

where A1 = {Z
⋃
{n}, Z

⋃
{n− 2}/Z ∈ Dr(Cn−1, i− 1)

⋂
Dr(Cn−3, i− 1)}

A2 = {Z
⋃
{n}/Z ∈ Dr(Cn−1, i− 1)−Dr(Cn−3, i− 1) and n− 1 ∈ Z}

A3 = {Z
⋃
{n− 1}/Z ∈ Dr(Cn−1, i− 1)−Dr(Cn−3, i− 1) and 1, n− 1 /∈ Z}

A4 = {Z
⋃
{n− 2}/Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) and 1 ∈ Z, n− 3 /∈ Z}

A5 = {Z
⋃
{n}/Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) and 1 /∈ Z, n− 3 ∈ Z}

A6 = {Z
⋃
{n− 1}/Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) and 1, n− 3 /∈ Z}.

Proof. (i) Assume that Dr(Cn−1, i−1) = φ and Dr(Cn−3, i−1) 6= φ. Then by Lemma 2.3 (iii),
n = 3q and i = q for some q ∈ N. SoDr(Cn, i) = Dr(Cn, n3 ) = {{1, 4, . . . , n−2}, {2, 5, . . . , n−
1}, {3, 6, . . . , n}}.
(ii) Assume that Dr(Cn−3, i− 1) = φ and Dr(Cn−1, i− 1) 6= φ. Then by Lemma 2.3 (ii), i = n.
We have Dr(Cn, i) = Dr(Cn, n) = {[n]}.
(iii) Suppose that Dr(Cn−1, i − 1) 6= φ and Dr(Cn−3, i − 1) 6= φ. Let Y ∈ A1. Then either
Y = Z

⋃
{n} or Y = Z

⋃
{n − 2} for some Z ∈ Dr(Cn−1, i − 1)

⋂
Dr(Cn−3, i − 1). In

both cases the vertices labeled n − 3 and 1 must belong to Z. Otherwise Z /∈ Dr(Cn−1, i −
1)

⋂
Dr(Cn−3, i − 1). Hence Y ∈ Dr(Cn, i). It follows that A1 ⊂ Dr(Cn, i). Let Y ∈ A2.

Then there exists Z ∈ Dr(Cn−1, i − 1) − Dr(Cn−3, i − 1) such that Y = Z
⋃
{n} and n −

1 ∈ Z. Clearly Y = Z
⋃
{n} ∈ Dr(Cn, i). Thus A2 ⊂ Dr(Cn, i). Suppose Y ∈ A3, then

Y = Z ∪ {n − 1} for some Z ∈ Dr(Cn−1, i − 1) − Dr(Cn−3, i − 1) with 1, n − 1 /∈ Z. In this
case Y = Z

⋃
{n− 1} ∈ Dr(Cn, i). Hence A3 ⊂ Dr(Cn, i). Suppose Y ∈ A4, then there exists

Z ∈ Dr(Cn−3, i−1)−Dr(Cn−1, i−1) with 1 ∈ Z, n−3 /∈ Z and Y = Z
⋃
{n−2} ∈ Dr(Cn, i).

Hence A4 ⊂ Dr(Cn, i). Similarly we can show that A5 ⊂ Dr(Cn, i) and A6 ⊂ Dr(Cn, i). Thus
6⋃
i=1
Ai ⊆ Dr(Cn, i).

Let Y ∈ Dr(Cn, i). Then at least one of the vertices labeled with 1, n, n − 1, n − 2 must
belong to Y since otherwise Y /∈ Dr(Cn, i). It is enough to show that for each Y ∈ Dr(Cn, i),
there exists k with 1 ≤ k ≤ 6 such that Y ∈ Ak. Here we consider six cases. Other cases are
similar.
Case 1. n ∈ Y and 1, n− 1, n− 2 /∈ Y .
Since Y ∈ Dr(Cn, i), the vertex n− 2 is dominated by n− 3 and so n− 3 ∈ Y . Then there is an
element Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) with 1 /∈ Z, n− 3 ∈ Z such that Y = Z

⋃
{n}

and 1, n− 1, n− 2 /∈ Z .Thus Y ∈ A5.
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Case 2. 1, n ∈ Y and n− 1, n− 2 /∈ Y .
The vertex n−2 is dominated by n−3 and n−3 ∈ Y . In this case we can find Z ∈ Dr(Cn−1, i−
1)

⋂
Dr(Cn−3, i− 1) such that Y = Z

⋃
{n}. In this case Y ∈ A1.

Case 3. n, n− 1 ∈ Y and 1, n− 2 /∈ Y .
In this case there is an element Z ∈ Dr(Cn−1, i − 1) − Dr(Cn−3, i − 1) with n − 1 ∈ Z and
Y = Z

⋃
{n}. Thus Y ∈ A2.

Case 4. 1, n− 2 ∈ Y and n, n− 1 /∈ Y .
Then there exists Z ∈ Dr(Cn−3, i−1)−Dr(Cn−1, i−1) with 1 ∈ Z such that Y = Z

⋃
{n−2}.

Hence Y ∈ A4.
Case 5. n− 1 ∈ Y and 1, n, n− 2 /∈ Y .
Since Y ∈ Dr(Cn, i), the vertex n − 3 /∈ Y . In this case there is an element Z ∈ Dr(Cn−3, i −
1)−Dr(Cn−1, i− 1) such that Y = Z

⋃
{n− 1} and 1, n− 3 /∈ Z. Also 1, n, n− 2 /∈ Z. Hence

Y ∈ A6.
Case 6. n− 2, n− 1 ∈ Y and 1, n /∈ Y .
In this case there exists Z ∈ Dr(Cn−1, i − 1) − Dr(Cn−3, i − 1) with 1, n − 1 /∈ Z such that
Y = Z ∪ {n− 1}. Hence Y ∈ A3.
The following cases are not possible:
(a) 1 ∈ Y and n, n− 1, n− 2 /∈ Y (b) n− 2 ∈ Y and 1, n, n− 1 /∈ Y
(c) 1, n− 1 ∈ Y and n, n− 2 /∈ Y (d) n, n− 2 ∈ Y and 1, n− 1 /∈ Y
(e) 1, n− 1, n− 2 ∈ Y and n /∈ Y (f) 1, n, n− 2 ∈ Y and n− 1 /∈ Y

In this case Y /∈ Dr(Cn, i). From the above argument we can see that if Y ∈ Dr(Cn, i), there

exists a positive integer k (1 ≤ k ≤ 6) such that Y ∈ Ak. Hence Dr(Cn, i) =
6⋃
k=1
Ak.

Theorem 2.5. If Dr(Cn, i) is the collection of restrained dominating sets of cycle Cn of cardi-
nality i, then |Dr(Cn, i)| = |Dr(Cn−1, i− 1)|+ |Dr(Cn−3, i− 1)|.

Proof. We consider the three cases in Theorem 2.4 and we rewrite in the following form

(i) IfDr(Cn−1, i−1) = φ andDr(Cn−3, i−1) 6= φ, thenDr(Cn, i) = {Z1
⋃
{n−2}, Z2

⋃
{n−

1}, Z3
⋃
{n}/1 ∈ Z1, 2 ∈ Z2, 3 ∈ Z3 and Z1, Z2, Z3 ∈ Dr(Cn−3, i− 1)}.

(ii) If Dr(Cn−3, i − 1) = φ and Dr(Cn−1, i − 1) 6= φ, then Dr(Cn, i) = {Z ∪ {n}/Z ∈
Dr(Cn−1, i− 1)}.

(iii) If Dr(Cn−1, i− 1) 6= φ and Dr(Cn−3, i− 1) 6= φ, then Dr(Cn, i) =
6⋃
k=1
Ak.

Where A1 = {Z
⋃
{n}, Z

⋃
{n− 2}/Z ∈ Dr(Cn−1, i− 1)

⋂
Dr(Cn−3, i− 1)}

A2 = {Z
⋃
{n}/Z ∈ Dr(Cn−1, i− 1)−Dr(Cn−3, i− 1) and n− 1 ∈ Z}

A3 = {Z
⋃
{n− 1}/Z ∈ Dr(Cn−1, i− 1)−Dr(Cn−3, i− 1) and 1, n− 1 /∈ Z}

A4 = {Z
⋃
{n− 2}/Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) and 1 ∈ Z, n− 3 /∈ Z}

A5 = {Z
⋃
{n}/Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) and 1 /∈ Z, n− 3 ∈ Z}

A6 = {Z
⋃
{n− 1}/Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1) and 1, n− 3 /∈ Z}.

We consider here three cases.
Case 1. For n = 3q and i = q, from (i) we have |Dr(Cn, i)| = 3 = |Dr(Cn−3, i − 1)| and
|Dr(Cn−1, i− 1)| = 0. Hence |Dr(Cn, i)| = |Dr(Cn−1, i− 1)|+ |Dr(Cn−3, i− 1)|.
Case 2. For i = n, from (ii) we have |Dr(Cn, i)| = 1 = |Dr(Cn−1, i−1)| and |Dr(Cn−3, i−1)| =
0. Hence |Dr(Cn, i)| = |Dr(Cn−1, i− 1)|+ |Dr(Cn−3, i− 1)|.
Case 3. For n − 2bn−1

3 c ≤ i ≤ n − 2, since A′

ks are pairwise disjoint for 1 ≤ k ≤ 6, from (iii)

we have |Dr(Cn, i)| =
6∑
k=1
|Ak|.

Claim 1. |A1| = 2|Dr(Cn−1, i− 1)
⋂
Dr(Cn−3, i− 1)|.

For any Z ∈ Dr(Cn−3, i − 1)
⋂
Dr(Cn−1, i − 1), we have two sets Z

⋃
{n} and Z

⋃
{n − 2}

which are restrained dominating sets of cardinality i. Thus each element in Dr(Cn−3, i −
1)

⋂
Dr(Cn−1, i−1) is counted twice in |A1|. Hence |A1| = 2|Dr(Cn−3, i−1)

⋂
Dr(Cn−1, i−

1)|.
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Claim 2. |A2|+ |A3| = |Dr(Cn−1, i− 1)−Dr(Cn−3, i− 1)|.
For any element Z ∈ Dr(Cn−1, i− 1)−Dr(Cn−3, i− 1) we consider two possibilities:

(i) 1, n− 1 /∈ Z.

(ii) n− 1 ∈ Z.

For (i), we have the set Z
⋃
{n−1} which is inA3. For (ii), we have the set Z

⋃
{n} which is in

A2. Thus in each of the possibilties, the element Z ∈ Dr(Cn−1, i − 1) is counted exactly once,
either in A2 or in A3 and Ak’s are disjoint. Hence we have |A2| + |A3| = |Dr(Cn−1, i − 1) −
Dr(Cn−3, i− 1)|.
Claim 3. |A4|+ |A5|+ |A6| = |Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1)|.
For Z ∈ Dr(Cn−3, i− 1)−Dr(Cn−1, i− 1), we consider the following possiblities:

(i) 1 ∈ Z but n− 3 /∈ Z .

(ii) 1 /∈ Z but n− 3 ∈ Z.

(iii) 1, n− 3 /∈ Z.

The case when 1, n − 3 ∈ Z is included as a part of claim 1. For each of the possibility we
have the unique set Z

⋃
{n−2} (for (i)), Z

⋃
{n}(for (ii)) and Z

⋃
{n−1} (for(iii)). Thus each

element in Dr(Cn−3, i − 1) − Dr(Cn−1, i − 1) is counted exactly once in one of A4, A5 or A6.
Hence we have the result.

Theorem 2.6. For any cycle Cn with n ≥ 6, Dr(Cn, x) = x[Dr(Cn−1, x)+Dr(Cn−3, x)] where
Dr(C3, x) = 3x+ x3, Dr(C4, x) = 4x2 + x4 and Dr(C5, x) = 5x3 + x5.

Proof. Follows from Theorem 2.5.

Theorem 2.7. If Dr(Cn, x) is the restrained domination polynomial of Cn, then the following
holds:

(i) For every n ∈ N, dr(Cn, n) = 1.

(ii) For every n ∈ N, dr(Cn, n− 2) = n.

(iii) For every n ∈ N, dr(C3n, n) = 3.

(iv) For every n ∈ N, dr(C3n+1, n+ 1) = 3n+ 1.

(v) For every natural number n ≥ 5, dr(Cn, n− 4) = n(n−5)
2 .

Proof. (i) For any graph G, the only restrained dominating set of G of cardinality n is V (G). It
follows that dr(Cn, n) = 1.
(ii) Since δ(Cn) = 2, for any edge e = uv the set V (G) − {u, v} is a restrained dominating set
of cardinality n− 2. Hence dr(Cn, n− 2) = |E(Cn)| = n.
(iii) By Theorem 2.4,Dr(C3n, n) = {{1, 4, 7, . . . , 3n−2}, {2, 5, 8, . . . , 3n−1}, {3, 6, 9, . . . , 3n}}.
Hence dr(C3n, n) = 3.
(iv) We shall prove this by mathematical induction on n.
For n = 1, Dr(C4, 2) = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} and hence dr(C4, 2) = 4. Thus the result
is true for n = 1. Assume that the result is true for all natural numbers less than n. To prove that
the result is true for n. By applying induction hypothesis, (iii) and Theorem 2.5, we have

dr(C3n+1, n+ 1) = dr(C3n, n) + dr(C3n−2, n)

= 3 + dr(C3(n−1)+1, (n− 1) + 1)

= 3 + 3(n− 1) + 1

= 3n+ 1.

(v) We shall prove this result by mathematical induction on n.
For n = 5, Dr(C5, 4) = φ and dr(C5, 4) = |Dr(C5, 4)| = 0 . Also 5(5−5)

2 = 0. The result is true
for n = 5. For n = 6, Dr(C6, 2) = {{1, 4}, {2, 5}, {3, 6}} and dr(C6, 2) = 3. Also 6(6−5)

2 = 3.
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Thus the result is true for n = 5, 6. Assume that the reult is true for all natural numbers less than
n. By induction hypothesis, (ii) and Theorem 2.5, we have

dr(Cn, n− 4) = dr(Cn−1, n− 5) + dr(Cn−3, n− 5)

=
(n− 1)(n− 6)

2
+ (n− 3)

=
n(n− 5)

2
.

By using Theorem 2.5 we obtain dr(Cn, i) for 1 ≤ n ≤ 10 in Table 1.
H
HHHHn

i 1 2 3 4 5 6 7 8 9 10

3 3 0 1
4 0 4 0 1
5 0 0 5 0 1
6 0 3 0 6 0 1
7 0 0 7 0 7 0 1
8 0 0 0 12 0 8 0 1
9 0 0 3 0 18 0 9 0 1
10 0 0 0 10 0 25 0 10 0 1

Table 1

Theorem 2.8. Suppose that n ≥ 3 and i is a positive integer satisfying the condition that
n − 2bn3 c ≤ i ≤ n. Then the coefficient of unvi in the expansion of the function f(u, v) =

u4v2(4 + 3u2 + v2 + uv + u2v2)

1− uv − u3v
is equal to dr(Cn, i).

Proof. Set f(u, v) =
∞∑
n=4

∞∑
i=2

dr(Cn, i)unvi. By the recursive formula for dr(Cn, i) in Theorem

2.5 we can write f(u, v) in the following form

f(u, v) =
∞∑
n=4

∞∑
i=2

(dr(Cn−1, i− 1) + dr(Cn−3, i− 1))unvi.

= uv
∞∑
n=4

∞∑
i=2

dr(Cn−1, i− 1)un−1vi−1 + u3v
∞∑
n=4

∞∑
i=2

dr(Cn−3, i− 1)un−3vi−1

= uv(dr(C3, 1)u3v + dr(C3, 3)u3v3) + uvf(u, v) + u3v(dr(C1, 1)uv +
dr(C2, 2)u2v2 + dr(C3, 1)u3v + dr(C3, 3)u3v3) + u3vf(u, v)

By substituting the values from Table 1, we have
f(u, v)(1− uv − u3v) = uv(3u3v + u3v3) + u3v(uv + u2v2 + 3u3v + u3v3)

f(u, v) =
u4v2(4 + 3u2 + v2 + uv + u2v2)

1− uv − u3v
.

3 Conclusion

In this paper we have found a recurrence relation for the restrained domination polynomial ofCn.
We have also found some properties of the coefficients of the restrained domination polynomial
of cycles. In future we plan to investigate the polynomial for several other graphs.
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