FORK-DECOMPOSITION OF SOME TOTAL GRAPHS

A. Samuel Issacraj and J. Paulraj Joseph
Communicated by R. Kala

MSC 2010 Classifications: 05C70, 05C51, 05C76.
Keywords and phrases: Decomposition, Fork, Total graph

Abstract

Let $G=(V, E)$ be a graph. Fork is a tree obtained by subdividing any edge of a star of size three exactly once. In this paper, we investigate a necessary and sufficient condition for the existence of fork-decomposition of some total graphs.

1 Introduction

We consider only simple, finite and undirected graphs. Let K_{n} denote the complete graph on n vertices and $K_{m, n}$ denote the complete bipartite graph with parts of sizes m and n. Let P_{k} denote the path of length $k-1$ and S_{k} denote the star of size $k-1$. A vertex of degree 1 is called a pendant vertex and the vertex adjacent to it is called a support. Terms not defined here are used in the sense of Bondy and Murty [4]. A decomposition of a graph G is a collection $\mathcal{C}=\left\{H_{1}, H_{2}, \ldots, H_{r}\right\}$ of subgraphs of G such that the set $\left\{E\left(H_{1}\right), E\left(H_{2}\right), \ldots, E\left(H_{r}\right)\right\}$ forms a partition of $E(G)$. If each H_{i} is isomorphic to a graph H, then \mathcal{C} is called a H-decomposition of G. If a graph G admits a H-decomposition, then $|E(H)|$ divides $|E(G)|$.

Decomposition of arbitrary graphs into subgraphs of small size are assuming importance in the literature. There are several studies on the isomorphic decomposition of graphs into paths [8, 11], cycles [2], trees [3], stars [12], sunlet [1] etc. Also there are studies on the isomorphic decomposition of total graphs into P_{4} [6]. The general problem of H-decompositions was proved to be NP-complete for any H of size greater than 2 by Dor and Tarsi [7].

A tree F obtained from the claw $K_{1,3}$ by subdividing one edge exactly once is called a fork. Since it resembles the graph model of human body in the stand-at-ease position, the vertices and edges are named as follows.
a - Head, $a b$ - Neck, b - Throat, $b c$ - Body, c - Hip, $c d \& c e$ - Legs, $d \& e$ - Feet as given in the Figure 1.

Figure 1. Fork
This graph was defined by Simone and Sassano in the name of chair graph in 1993, when they studied the stability number of bull and chair-free graphs [5]. In 2014, Barat and Gerbner [3] studied decomposition of 191-edge connected graphs which can be decomposed into unique trees of size 4 as a possible attempt to solve the following conjecture.
Conjecture 1 For each tree T, there exists a natural number k_{T} such that the following holds: if G is a k_{T}-edge-connected simple graph such that $|E(T)|$ divides $|E(G)|$, then G has a Tdecomposition.

The edge-connectivity constants in the solved cases of Conjecture 1 are seemingly far from best possible. Very little is known about lower bounds. A tree is a fork if and only if its degree
sequence is $(1,1,1,2,3)$. In this paper, we investigate the existence of fork-decomposition for some total graphs.

Since $|E(F)|=4$, it follows that if G admits a fork-decomposition, then

$$
\begin{equation*}
|E(G)| \equiv 0(\bmod 4) \tag{1.1}
\end{equation*}
$$

Definition 1.1. The total graph of G, denoted by $T(G)$ is defined as follows. The vertex set of $T(G)$ is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of $T(G)$ are adjacent in $T(G)$ in case one of the following holds;
(i) x, y are in $V(G)$ and x is adjacent to y in G.
(ii) x, y are in $E(G)$ and x, y are adjacent in G.
(iii) x is in $V(G), y$ is in $E(G)$ and x, y are incident in G.

Remark 1.2. The number of edges in the total graph is $2|E(G)|+\frac{1}{2} \sum_{v \in V(G)}(d(v))^{2}$.
The following results are used in the subsequent sections.
Theorem 1.3. [9] The complete bipartite graph $K_{m, n}$ is fork-decomposable if and only if $m n \equiv$ $0(\bmod 4)$ except $K_{2,4 i+2},(i=1,2, \ldots)$.
Theorem 1.4. [9] The Complete graph K_{n} can be decomposed into forks if and only if $n=8 k$ or $n=8 k+1$, for all $k \geq 1$

Theorem 1.5. [9]
(i) For $m \geq 3, K_{m} \circ K_{1}$ is fork-decomposable if and only if $m \equiv 0,7(\bmod 8)$
(ii) For $m \geq 3, K_{m} \circ \overline{K_{2}}$ is fork-decomposable if and only if $m \equiv 0,5(\bmod 8)$

2 Total graph of paths, cycles and wheels

In this section, we investigate a necessary and sufficient condition for the existence of decomposition of Total graph of paths, cycles and wheel into forks.

Example 2.1. The fork-decomposition of $T\left(K_{1,3}\right)$ is given in Figure 2.

Figure 2. Fork-decomposition of $T\left(K_{1,3}\right)$

Observation 2.2. $T\left(P_{n}\right)$ is not fork-decomposable, since the number of edges in $T\left(P_{n}\right)$ is odd.
Theorem 2.3. $T\left(C_{n}\right)$ is fork-decomposable for all values of $n \geq 3$.
Proof. Let the vertices of C_{n} be $v_{1}, v_{2}, \ldots, v_{n}$ and let the edges of C_{n} be $e_{1}, e_{2}, \ldots, e_{n}$ where $e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1$ and $e_{n}=v_{n} v_{1}$. Then the vertices of $T\left(C_{n}\right)$ is given by $\left\{v_{1}, v_{2}, \ldots, v_{n}\right.$, $\left.e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $E\left(T\left(C_{n}\right)\right)=\left\{e_{i} e_{i+1}, v_{i} v_{i+1}, v_{i} e_{i}, v_{i} e_{i-1}\right\}$ where $1 \leq i \leq n$ and the subscripts are taken modulo n.

The number of edges in $T\left(C_{n}\right)$ is $4 n$ and it satisfies the equation (1.1) for all values of n. Then a fork-decomposition of $T\left(C_{n}\right)$ is given by $\left\{e_{i} v_{i}, e_{i} v_{i+1}, e_{i} e_{i+1}, v_{i+1} v_{i+2}\right\}$ where $1 \leq i \leq n$ and the subscripts are taken modulo n.

Theorem 2.4. The graph $T\left(W_{n}\right)$ is fork-decomposable if and only if $n \equiv 0(\bmod 8)$ or $n \equiv$ $7(\bmod 8)$.

Proof. The number of edges in $T\left(W_{n}\right)$ is $2(2 n)+\frac{1}{2}\left(n .3^{2}+1 . n^{2}\right)=\frac{n^{2}+17 n}{2}$. If $T\left(W_{n}\right)$ is forkdecomposable, $\frac{n^{2}+17 n}{2}$ is a multiple of 4 . Then $n(n+17) \equiv 0(\bmod 8)$ which implies $n \equiv$ $0(\bmod 8)$ or $n \equiv-17(\bmod 8)$. Hence $n \equiv 0(\bmod 8)$ or $n \equiv 7(\bmod 8)$.

Now let us prove the converse part. Let the vertices of W_{n} be $\left\{u, v_{1}, v_{2}, \ldots, v_{n}\right\}$ where u is the central vertex and v_{i} 's are the vertices of C_{n} in W_{n}. Let the edges of W_{n} be $\left\{e_{i}, f_{i}\right\}$ where $e_{i}=v_{i} v_{i+1}, f_{i}=v_{i} u$ for $1 \leq i \leq n$ and the subscripts are taken modulo n.

Assume that $n \equiv 0(\bmod 8)$. Consider the set of forks $F_{1}=\left\{\left\{v_{i} v_{i+1}, v_{i} e_{i}, v_{i} f_{i}, f_{i} u\right\} / 1 \leq\right.$ $i \leq n\}$ and $F_{2}=\left\{\left\{e_{i} v_{i+1}, e_{i} e_{i+1}, e_{i} f_{i+1}, v_{i+1} u\right\} / 1 \leq i \leq n\right\}$. Here the subscripts are taken modulo n. The induced subgraph $\left\langle\left\{f_{1}, f_{2}, \ldots, f_{n}, e_{1}, e_{2}, \ldots, e_{n}\right\}\right\rangle$ obtained after removing F_{1} and F_{2} from $T\left(W_{n}\right)$ is isomorphic to $K_{n} \circ K_{1}$ which is fork-decomposable by Theorem 1.5.

Assume that $n \equiv 7(\bmod 8)$. Consider the set of forks $F_{3}=\left\{\left\{v_{i} v_{i+1}, v_{i} e_{i}, v_{i} f_{i}, f_{i} u\right\} / 1 \leq\right.$ $i \leq n\}$ and $F_{4}=\left\{\left\{e_{i} v_{i+1}, e_{i} e_{i+1}, e_{i} f_{i+1}, v_{i+1} u\right\} / 1 \leq i \leq n\right\}$. Here the subscripts are taken modulo n. The induced subgraph $\left\langle\left\{f_{1}, f_{2}, \ldots, f_{n}, e_{1}, e_{2}, \ldots, e_{n}\right\}\right\rangle$ obtained after removing F_{3} and F_{4} from $T\left(W_{n}\right)$ is isomorphic to $K_{n} \circ K_{1}$ which is fork-decomposable by Theorem 1.5.

3 Total graphs of Star and its subdivision graph

In this section, we investigate a necessary and sufficient condition for the existence of forkdecomposition of total graphs of star and its subdivision graph.

Theorem 3.1. $T\left(K_{1, n}\right)$ is fork-decomposable if and only if $n \equiv 0(\bmod 8)$ or $n \equiv 3(\bmod 8)$.
Proof. The number of edges in $T\left(K_{1, n}\right)$ is $2 n+\frac{1}{2}\left(1 . n^{2}+n .1^{2}\right)=\frac{n(n+5)}{2}$. If $T\left(K_{1, n}\right)$ is forkdecomposable, then $n(n+5) \equiv 0(\bmod 8)$ which implies $n \equiv 0(\bmod 8)$ or $n+5 \equiv 0(\bmod 8)$. Hence $n \equiv 0(\bmod 8)$ or $n \equiv 3(\bmod 8)$.

Conversely, assume that $n \equiv 0(\bmod 8)$ or $n \equiv 3(\bmod 8)$. Let the vertices of $K_{1, n}$ be $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let v_{0} be the vertex of degree n. Let the edges of $K_{1, n}$ be $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then the vertex set of $T\left(K_{1, n}\right)$ is given by $\left\{v_{0}, v_{1}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n}\right\}$ and the edge set of $T\left(K_{1, n}\right)$ is given by $\left\{v_{i} v_{0}, v_{i} e_{i}, e_{i} v_{0}, e_{i} e_{j}\right\}$ where $1 \leq i, j \leq n$ and $i \neq j$.

For $n=3$, the fork decomposition of $T\left(K_{1,3}\right)$ is given in Figure 2. For $n=8$, the induced subgraph obtained by removing the cycle $e_{1} e_{2} \ldots e_{8} e_{1}$ from the induced subgraph $\left\langle e_{1}, e_{2}, \ldots, e_{8}\right\rangle$ is isomorphic to $\overline{C_{8}}$ which is fork-decomposable by Figure 3.

Figure 3. Fork-decomposition of $\overline{C_{8}}$
The fork-decomposition of the subgraph obtained after removing $\overline{C_{8}}$ from $T\left(K_{1,8}\right)$ is given by $\left\{e_{i} v_{0}, e_{i} v_{i}, e_{i} e_{e+1}, v_{0} v_{i+1}\right\}$ for $1 \leq i \leq 8$ and the subscripts are taken modulo 8 .

Assume that $n \equiv 0(\bmod 8)$. Then the induced subgraph $\left\langle\left\{v_{0}, e_{i}, e_{i+1}, e_{i+1}, \ldots, e_{i+7}\right.\right.$, $\left.\left.v_{i}, v_{i+1}, \ldots, v_{i+8}\right\}\right\rangle$ where $i \equiv 1(\bmod 8)$ is isomorphic to $\frac{n}{8}$ copies of $T\left(K_{1,8}\right)$ which is forkdecomposable. After removing $\frac{n}{8}$ copies of $T\left(K_{1,8}\right)$, the induced subgraph $\left\langle\left\{e_{i} / 1 \leq i \leq n\right\}\right\rangle$ is decomposable into $\binom{n}{2}$ copies of $K_{8,8}$ which is fork-decomposable by Theorem 1.3. Thus,

$$
E\left(T\left(K_{1, n}\right)\right)=\underbrace{E\left(T\left(K_{1,8}\right)\right) \cup \ldots \cup E\left(T\left(K_{1,8}\right)\right)}_{\frac{n}{8} \text { times }} \cup \underbrace{E\left(K_{8,8}\right) \cup \ldots \cup E\left(K_{8,8}\right)}_{\binom{n}{2} \text { times }} . \text { Hence } T\left(K_{1, n}\right)
$$

is fork-decomposable.
Assume that $n \equiv 3(\bmod 8)$. Then the induced subgraph $\left\langle\left\{v_{0}, v_{1}, v_{2}, v_{3}, e_{1}, e_{2}, e_{3}\right\}\right\rangle$ is isomorphic to $T\left(K_{1,3}\right)$ and the induced subgraph $\left\langle\left\{v_{0}, v_{4}, v_{5}, \ldots, v_{n}, e_{4}, e_{5}, \ldots, e_{n}\right\}\right\rangle$ is isomorphic to $T\left(K_{1, n-3}\right)$ which is fork-decomposable. After removing $T\left(K_{1}, 3\right)$ and $T\left(K_{1, n-3}\right)$, the induced subgraph $\left\langle\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right\rangle$ is isomorphic to $K_{3, n-3}$ which is fork-decomposable by Theorem 1.3. Thus,
$E\left(T\left(K_{1, n}\right)\right)=E\left(T\left(K_{1,3}\right)\right) \cup E\left(T\left(K_{1, n-3}\right)\right) \cup K_{3, n-3}$.
Hence $T\left(K_{1, n}\right)$ is fork-decomposable.
Definition 3.2. A subdivision graph of a graph G, denoted by $S(G)$ is the graph obtained from G by subdividing each edge exactly once.

Theorem 3.3. $T\left(S\left(K_{1, n}\right)\right)$ is fork-decomposable if and only if $n \equiv 0(\bmod 8)$ or $n \equiv 3(\bmod 8)$.
Proof. Let G_{n} be the graph $S\left(K_{1, n}\right)$. The number of edges in $T\left(G_{n}\right)$ is $2(2 n)+\frac{1}{2}\left(1 . n^{2}+n .2^{2}+\right.$ $\left.n .1^{2}\right)$. If $T\left(G_{n}\right)$ is fork-decomposable, then $\frac{n^{2}+13 n}{2}$ is a multiple of 4 . This implies $n(n+13) \equiv$ $0(\bmod 8)$. Hence $n \equiv 0(\bmod 8)$ or $n \equiv 3(\bmod 8)$.

Now let us prove the converse part. Let the vertices of G_{n} be $v_{0}, v_{1}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}$, where u_{i} 's are the pendant vertices and $v_{i}(i \neq 0)$ are the support vertices to the corresponding u_{i} 's. Here $\operatorname{deg}\left(v_{0}\right)=n$. Let the edges of G_{n} be e_{i}, f_{i} where $e_{i}=v_{0} v_{i}, f_{i}=u_{i} v_{i}$ and $1 \leq i \leq n$. Then the vertex set of $T\left(G_{n}\right)$ is $\left\{v_{o}, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}, e_{1}, e_{2}, \ldots, e_{n}, f_{1}, f_{2}, \ldots, f_{n}\right\}$ and the edge set of $T\left(G_{n}\right)$ is $\left\{v_{0} e_{i}, v_{0} v_{i}, e_{i} v_{i}, e_{i} f_{i}, e_{i} e_{j}, v_{i} f_{i}, v_{i} u_{i}, f_{i} u_{i}\right\}$ where $1 \leq i, j \leq n$ and $i \neq j$.

For $n=3$, a fork-decomposition of $T\left(G_{3}\right)$ is given by $\left\{v_{i} v_{0}, v_{i} u_{i}, v_{i} e_{i}, e_{i} e_{i+1}\right\}$ and $\left\{f_{i} u_{i}\right.$, $\left.f_{i} v_{i}, f_{i} e_{i}, e_{i} v_{0}\right\}$ for $1 \leq i \leq n$ and the subscripts are taken modulo n. For $n=8$, the induced subgraph $\left\langle\left\{e_{1}, e_{2}, \ldots, e_{8}\right\}\right\rangle$ after removing the cycle $e_{1}, e_{2}, \ldots, e_{8}, e_{1}$ is isomorphic to $\overline{C_{8}}$ which is fork-decomposable by Figure 3. Then a fork-decomposition of $T\left(G_{8}\right)-\overline{C_{8}}$ is given by $\left\{v_{i} e_{i}, v_{i} v_{0}, v_{i} u_{i}, u_{i} f_{i}\right\}$ and $\left\{e_{i} v_{0}, e_{i} e_{i+1}, e_{i} f_{i}, f_{i} v_{i}\right\}$ for $i=1,2 \ldots, 8$ and the subscripts are taken modulo 8 .

Assume that $n \equiv 0(\bmod 8)$. The induced subgraph $\left\langle\left\{v_{0}, v_{i}, v_{i+1}, \ldots v_{i+7}, u_{i}, u_{i+1}, \ldots, u_{i+7}\right.\right.$, $\left.\left.e_{i}, e_{i+1}, \ldots, e_{i+7}, f_{i}, f_{i+1}, \ldots, f_{i+7}\right\}\right\rangle$ is isomorphic to $\frac{n}{8}$ copies of $T\left(G_{8}\right)$ for $i \equiv 1(\bmod 8)$. After removing $\frac{n}{8}$ copies of $T\left(G_{8}\right)$, the induced subgraph $\left\langle\left\{e_{i} / 1 \leq i \leq n\right\}\right\rangle$ is decomposable into $\binom{n}{2}$ copies of $K_{8,8}$ which is fork-decomposable by Theorem 1.3. Thus,
$E\left(T\left(K_{1, n}\right)\right)=\underbrace{E\left(T\left(S\left(K_{1,8}\right)\right)\right) \cup \ldots \cup E\left(T\left(S\left(K_{1,8}\right)\right)\right)}_{\frac{n}{8} \text { times }} \cup \underbrace{E\left(K_{8,8}\right) \cup \ldots \cup E\left(K_{8,8}\right)}_{\binom{n}{2} \text { times }}$. Hence $T\left(S\left(K_{1, n}\right)\right)$ is fork-decomposable.

Assume that $n \equiv 3(\bmod 8)$. The induced subgraph $\left\langle\left\{v_{0}, v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, e_{1}, e_{2}, e_{3}, f_{1}\right.\right.$, $\left.\left.f_{2}, f_{3}\right\}\right\rangle$ is isomorphic to $T\left(S\left(K_{1,3}\right)\right)$ and the induced subgraph $\left\langle\left\{v_{0}, v_{4}, v_{5}, \ldots, v_{n}, u_{4}, u_{5}, \ldots\right.\right.$, $\left.\left.u_{n}, e_{4}, e_{5}, \ldots, e_{n}, f_{4}, f_{5}, \ldots, f_{n}\right\}\right\rangle$ is isomorphic to $T\left(S\left(K_{1, n-3}\right)\right)$. Hence $T\left(S\left(K_{1,3}\right)\right)$ and $T\left(S\left(K_{1, n-3}\right)\right)$ are fork-decomposable, since $n \equiv 3(\bmod 8)$. After removing $T\left(S\left(K_{1}, 3\right)\right)$ and $T\left(S\left(K_{1, n-3}\right)\right)$, the induced subgraph $\left\langle\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right\rangle$ is isomorphic to $K_{3, n-3}$ which is forkdecomposable by Theorem 1.3. Thus $E\left(T\left(S\left(K_{1, n}\right)\right)\right)=E\left(T\left(S\left(K_{1,3}\right)\right)\right) \cup E\left(T\left(K_{1, n-3}\right)\right) \cup$ $K_{3, n-3}$. Hence $T\left(S\left(K_{1, n}\right)\right)$ is fork-decomposable.

4 Total graphs of Bi-stars

In this section, we investigate a necessary and sufficient condition for the existence of forkdecomposition of Total graph of Bi-stars.

Definition 4.1. Bi-star $B_{m, n}$ is the graph obtained by joining the center vertices of $K_{1, m}$ and $K_{1, n}$ by an edge.

Remark 4.2. Number of edges in Total graph of $B_{m, n}$ is $2(m+n+1)+\frac{1}{2}\left(m+m^{2}+1+2 m+\right.$ $\left.n+n^{2}+1+2 n\right)=\frac{1}{2}\left(4 m+4 n+4+m^{2}+n^{2}+3 m+3 n+2\right)=\frac{1}{2}(m(m+7)+n(n+7)+6)$.

Theorem 4.3. $T\left(B_{m, n}\right)$ is fork-decomposable if and only if it satisfies any one of the following conditions:
(i) $m \equiv 2,7(\bmod 8)$ and $n \equiv 0,1(\bmod 8)$
(ii) $m \equiv 3,6(\bmod 8)$ and $n \equiv 4,5(\bmod 8)$
(iii) $m \equiv 0,1(\bmod 8)$ and $n \equiv 2,7(\bmod 8)$
(iv) $m \equiv 4,5(\bmod 8)$ and $n \equiv 3,6(\bmod 8)$.

Proof. Let $V\left(B_{m, n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}, u_{0}, u_{1}, u_{2}, \ldots, u_{m}\right\}$ where $v_{i}^{\prime} s(1 \leq i \leq n)$ are pendant vertices wit support v_{0} and $u_{j}^{\prime} s(1 \leq j \leq m)$ are pendant vertices with support u_{0}. Let $E\left(B_{m, n}\right)=$ $\left\{e_{i}, f_{j}, g_{1} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$ where $e_{i}=v_{0} v_{i} ; 1 \leq i \leq n, f_{j}=u_{0} u_{j}$ where $1 \leq j \leq m$ and $g_{1}=v_{0} u_{0}$.

Then $V\left(T\left(B_{m, n}\right)\right)=\left\{v_{0}, v_{i}, u_{0}, u_{j}, e_{i}, f_{j}, g_{1} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E\left(T\left(B_{m, n}\right)\right)=$ $\left\{v_{0} v_{i}, v_{0} e_{i}, v_{i} e_{i} / 1 \leq i \leq n\right\} \cup\left\{e_{i} e_{j} / i \neq j, 1 \leq i, j \leq n\right\} \cup\left\{f_{i} f_{j} / i \neq j, 1 \leq i, j \leq m\right\}$ $\cup\left\{v_{0} g_{1}, u_{0} g_{1}, v_{0} u_{0}\right\} \cup\left\{u_{0} u_{j}, u_{0} f_{j}, f_{j} u_{j} / 1 \leq j \leq m\right\} \cup\left\{g_{1} e_{i}, g_{1} f_{j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$.

The number of edges in $T\left(B_{m, n}\right)$ is $\frac{1}{2}[m(m+7)+n(n+7)+6]$ If the graph $T\left(B_{m, n}\right)$ is fork-decomposable, then $m(m+7)+n(n+7)+6 \equiv 0(\bmod 8)$.

If $m \equiv 0(\bmod 8)$, then $m=8 a$, where a is any arbitrary integer. Hence $8 a(8 a+7)+$ $n(n+7)+6 \equiv 0(\bmod 8)$. Since $8 a(8 a+7) \equiv 0(\bmod 8), n^{2}+7 n+6 \equiv 0(\bmod 8)$. Thus $(n+1)(n+6) \equiv 0(\bmod 8)$ which implies that $n \equiv 7(\bmod 8)$ or $n \equiv 2(\bmod 8)$.

If $m \equiv 1(\bmod 8)$, then $m=8 a+1$, where a is any arbitrary integer. Then $(8 a+1)(8 a+1+$ $7)+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+8)+8 a+8+n^{2}+7 n+6 \equiv 0(\bmod 8)$. Thus $(n+1)(n+6) \equiv 0(\bmod 8)$, which implies that $n \equiv 7(\bmod 8)$ or $n \equiv 2(\bmod 8)$.

If $m \equiv 2(\bmod 8)$, then $m=8 a+2$, where a is any arbitrary integer. Then $(8 a+2)(8 a+2+$ $7)+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+9)+2(8 a)+18+n^{2}+7 n+6 \equiv$ $0(\bmod 8)$. Thus $n(n+7) \equiv 0(\bmod 8)$, which implies that $n \equiv 0(\bmod 8)$ or $n \equiv 1(\bmod 8)$.

If $m \equiv 3(\bmod 8)$, then $m=8 a+3$, where a is any arbitrary integer. Then $(8 a+3)(8 a+3+$ $7)+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+10)+3(8 a)+30+n^{2}+7 n+6 \equiv$ $0(\bmod 8)$. Thus $n^{2}+7 n+12+24 \equiv 0(\bmod 8)$ which implies that $(n+3)(n+4) \equiv 0(\bmod 8)$. Hence $n \equiv 5(\bmod 8)$ or $n \equiv 4(\bmod 8)$.

If $m \equiv 4(\bmod 8)$, then $m=8 a+4$, where a is any arbitrary integer. Then $(8 a+4)(8 a+4+$ 7) $+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+11)+4(8 a)+44+n^{2}+7 n+6 \equiv$ $0(\bmod 8)$. Thus $n^{2}+7 n+10 \equiv 0(\bmod 8)$ which implies that $(n+2)(n+5) \equiv 0(\bmod 8)$. Hence $n \equiv 6(\bmod 8)$ or $n \equiv 3(\bmod 8)$.

If $m \equiv 5(\bmod 8)$, then $m=8 a+5$, where a is any arbitrary integer. Then $(8 a+5)(8 a+5+$ $7)+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+12)+5(8 a)+60+n^{2}+7 n+6 \equiv$ $0(\bmod 8)$. Thus $n^{2}+7 n+10 \equiv 0(\bmod 8)$ which implies that $(n+2)(n+5) \equiv 0(\bmod 8)$. Hence $n \equiv 6(\bmod 8)$ or $n \equiv 3(\bmod 8)$.

If $m \equiv 6(\bmod 8)$, then $m=8 a+6$, where a is any arbitrary integer. Then $(8 a+6)(8 a+6+$ $7)+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+13)+6(8 a)+78+n^{2}+7 n+6 \equiv$ $0(\bmod 8)$. Thus $n^{2}+7 n+12 \equiv 0(\bmod 8)$ which implies that $(n+3)(n+4) \equiv 0(\bmod 8)$. Hence $n \equiv 5(\bmod 8)$ or $n \equiv 4(\bmod 8)$.

If $m \equiv 7(\bmod 8)$, then $m=8 a+7$, where a is any arbitrary integer. Then $(8 a+7)(8 a+7+$ 7) $+n(n+7)+6 \equiv 0(\bmod 8)$ which implies that $(8 a)(8 a+14)+7(8 a)+98+n^{2}+7 n+6 \equiv$ $0(\bmod 8)$. Thus $n^{2}+7 n \equiv 0(\bmod 8)$ which implies that $n(n+7) \equiv 0(\bmod 8)$. Hence $n \equiv 0(\bmod 8)$ or $n \equiv 1(\bmod 8)$.

Now let us prove the converse part. Since the graph $T\left(B_{m, n}\right)$ is same as the graph $T\left(B_{n, m}\right)$, it is enough to prove the result for the first two cases alone.

Case $1 . m \equiv 2,7(\bmod 8)$ and $n \equiv 0,1(\bmod 8)$.
Sub case $1 a . m \equiv 2(\bmod 8)$ and $n \equiv 0(\bmod 8)$.
First let us prove the result for $m=2$ and $n=8$. The induced subgraph $\left\langle\left\{e_{i} / i=1,2, \ldots, 8\right\}\right\rangle$ is isomorphic to K_{8} which is fork-decomposable by Theorem 1.4. The fork-decomposition of the subgraph obtained after removing the above induced subgraph is given by $\left\{f_{2} g_{1}, f_{2} u_{0}\right.$, $\left.f_{2} f_{1}, u_{0} u_{1}\right\},\left\{f_{1} u_{1}, f_{1} u_{0}, f_{1} g_{1}, g_{1} v_{0}\right\},\left\{u_{0} v_{0}, u_{0} g_{1}, u_{0} u_{2}, u_{2} f_{2}\right\},\left\{e_{i} v_{0}, e_{i} v_{i}, e_{i} g_{1}, v_{0} v_{i+1}\right\}$ where $1 \leq i \leq 8$ and the subscripts are taken modulo 8 .

For $m>2$ and $n>8$, the induced subgraph $\left\langle\left\{u_{0}, f_{m}, f_{m-1}, v_{m}, v_{m-1}, g_{1}, v_{0}, e_{n}, e_{n-1}, \ldots\right.\right.$, $\left.\left.e_{n-7}, v_{n}, v_{n-1}, \ldots, v_{n-7}\right\}\right\rangle$ is isomorphic to $T\left(B_{2,8}\right)$ which is fork-decomposable. The edge
induced subgraph $\left\langle\left\{e_{i} e_{k}, e_{i} v_{i}\right\}\right\rangle$ where $i \neq k$, and $i, k=1,2, \ldots, n-8$ and the edge induced subgraph $\left\langle\left\{f_{j} f_{l}, f_{j} u_{j}\right\}\right\rangle$ where $j \neq l$, and $j, l=1,2, \ldots, m-2$ is isomorphic to $K_{n-8} \circ K_{1}$ and $K_{m-2} \circ K_{1}$ respectively which are fork-decomposable by Theorem 1.5. Consider the induced subgraph obtained after removing the above forks. The induced subgraphs $\left\langle\left\{e_{i} / i=1,2, \ldots, n-\right.\right.$ $8\}\rangle$ and $\left\langle\left\{f_{j} / j=1,2, \ldots, m-2\right\}\right\rangle$ are respectively isomorphic to $K_{8, n-8}$ and $K_{2, m-2}$ which are fork-decomposable by Theorem 1.3. The remaining subgraph can be decomposed into $\frac{n-8}{8}+$ $\frac{m-2}{8}=\frac{m+n-10}{8}$ copies of H_{1} given in figure 4.

Figure 4. H_{1}
The fork-decomposition of the graph H_{1} is given by
$\left\{v_{0} v_{i}, v_{0} v_{i+5}, v_{0} e_{i}, e_{i} g_{1}\right\}$ where $i=1,2,3,\left\{v_{0} v_{i}, v_{0} e_{i}, v_{0} e_{i+2}, e_{i} g_{1}\right\}$ where $i=4,5,\left\{g_{1} e_{6}\right.$, $\left.g_{1} e_{7}, g_{1} e_{8}, e_{8} v_{0}\right\}\left\{u_{0} u_{i}, u_{0} u_{i+5}, u_{0} f_{i}, f_{i} g_{1}\right\}$ where $i=1,2,3,\left\{u_{0} u_{i}, u_{0} f_{i}, u_{0} f_{i+2}, f_{i} g_{1}\right\}$ where $i=4,5,\left\{g_{1} f_{6}, g_{1} f_{7}, g_{1} f_{8}, f_{8} u_{0}\right\}$. Hence $T\left(B_{m, n}\right)$ is fork-decomposable.

Sub case $1 b . m \equiv 2(\bmod 8)$ and $n \equiv 1(\bmod 8)$.
Let us prove the result for $m=2$ and $n=9$. The induced subgraph $\left\langle\left\{e_{i}\right\}\right\rangle$ is isomorphic to K_{9} which is fork-decomposable by Theorem 1.4. The fork-decomposition of the subgraph obtained after removing the above induced subgraph is given by $\left\{f_{2} g_{1}, f_{2} u_{0}, f_{2} f_{1}, u_{0} u_{1}\right\},\left\{f_{1} u_{1}\right.$, $\left.f_{1} u_{0}, f_{1} g_{1}, g_{1} v_{0}\right\},\left\{u_{0} v_{0}, u_{0} g_{1}, u_{0} u_{2}, u_{2} f_{2}\right\},\left\{e_{i} v_{0}, e_{i} v_{i}, e_{i} g_{1}, v_{0} v_{i+1}\right\}$ where $1 \leq i \leq 9$ and the subscripts are taken modulo 9 .

Now assume that $m \equiv 2(\bmod 8)$ and $n \equiv 1(\bmod 8)$. The induced subgraph $\left\langle\left\{u_{0}, f_{m}, f_{m-1}\right.\right.$, $\left.\left.v_{m}, v_{m-1}, g_{1}, v_{0}, e_{n}, e_{n-1}, \ldots, e_{n-8}, v_{n}, v_{n-1}, \ldots, v_{n-8}\right\}\right\rangle$ is isomorphic to $T\left(B_{2,9}\right)$ which is fork-decomposable. The edge induced subgraph $\left\langle\left\{e_{i} e_{k}, e_{i} v_{i}\right\}\right\rangle$ where $i \neq k$, and $i, k=1,2, \ldots$, $n-9$ and the edge induced subgraph $\left\langle\left\{f_{j} f_{l}, f_{j} u_{j}\right\}\right\rangle$ where $j \neq l$, and $j, l=1,2, \ldots, m-2$ are respecitvely isomorphic to $K_{n-9} \circ K_{1}$ and $K_{m-2} \circ K_{1}$ which are fork - decomposable by Theorem 1.5. Consider the induced subgraph obtained after removing the above forks. The induced subgraph $\left\langle\left\{e_{i} / i=1,2, \ldots, n-9\right\}\right\rangle$ and $\left\langle\left\{f_{j} / j=1,2, \ldots, m-2\right\}\right\rangle$ are respectively isomorphic to $K_{9, n-9}$ and $K_{2, m-2}$ which are fork-decomposable by Theorem 1.3. The remaining subgraph can be decomposed into $\frac{n-9}{8}+\frac{m-2}{8}=\frac{m+n-11}{8}$ copies of H_{1} given in figure 4 , which is fork-decomposable. Hence $T\left(B_{m, n}\right)$ is fork-decomposable.

Sub case 1 c. $m \equiv 7(\bmod 8)$ and $n \equiv 0,1(\bmod 8)$.
First let us prove the result for $m=7$ and $n \equiv 0,1(\bmod 8)$. The induced subgraph $\left\langle\left\{u_{0}, f_{7}, f_{6}, v_{7}, v_{6}, g_{1}, v_{0}, e_{1}, e_{2}, \ldots, e_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle$ is isomorphic to $T\left(B_{2, n}\right)$ which is forkdecomposable. The induced subgraph $\left\langle\left\{u_{0}, f_{3}, f_{4}, f_{5}, u_{3}, u_{4}, u_{5}\right\}\right\rangle$ is isomorphic to $T\left(K_{1,3}\right)$ which is fork-decomposable by Theorem 3.1. Consider the induced subgraph obtained after removing the above subgraphs $T\left(B_{2, n}\right)$ and $T\left(K_{1,3}\right)$. Consider the collection of forks $\left\{f_{1} g_{1}, f_{1} f_{6}, f_{1} f_{7}\right.$, $\left.g_{1} f_{5}\right\},\left\{g_{1} f_{2}, g_{1} f_{3}, g_{1} f_{4}, f_{2} f_{1}\right\},\left\{f_{2} f_{4}, f_{2} f_{5}, f_{2} u_{2}, u_{2} u_{0}\right\},\left\{u_{0} u_{1}, u_{0} f_{2}, u_{0} f_{1}, f_{1} f_{4}\right\},\left\{f_{1} u_{1}, f_{1} f_{3}\right.$, $\left.f_{1} f_{5}, f_{3} f_{2}\right\}$. Consider the induced subgraph obtained after removing above subgraphs and collection of forks. The induced subgraph thus obtained $\left\{f_{2}, f_{3}, \ldots, f_{7}\right\}$ is isomorphic to $K_{2,4}$ which is fork-decomposable by Theorem 1.3. Hence $T\left(B_{7, n}\right)$ is fork-decomposable.

For $m>7$, the induced subgraph $\left\langle\left\{u_{0}, f_{m}, f_{m-1}, \ldots, f_{m-6} v_{m}, v_{m-1}, \ldots, v_{m-6} g_{1}, v_{0}\right.\right.$, $\left.\left.e_{1}, e_{2}, \ldots, e_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle$ is isomorphic to $T\left(B_{7, n}\right)$ which is fork-decomposable. The edge induced subgraph $\left\langle\left\{f_{j} f_{l}, f_{j} u_{j}\right\}\right\rangle$ where $j \neq l$, and $j, l=1,2, \ldots, m-7$ is isomorphic to $K_{m-7} \circ K_{1}$ which is fork-decomposable by Theorem 1.5. Consider the induced subgraph obtained after removing the above forks. The induced subgraph $\left\langle\left\{f_{j} / j=1,2, \ldots, m-7\right\}\right\rangle$ is
isomorphic to $K_{7, m-7}$ which is fork-decomposable by Theorem 1.3. The remaining subgraph can be decomposed into $\frac{m-7}{8}$ copies of H_{1} given in figure 4 , which is fork-decomposable. Hence $T\left(B_{m, n}\right)$ is fork-decomposable.

Case 2. $m \equiv 3,6(\bmod 8)$ and $n \equiv 4,5(\bmod 8)$.
First we shall prove the result for $T\left(B_{3,4}\right), T\left(B_{3,5}\right), T\left(B_{6,4}\right), T\left(B_{6,5}\right)$. After proving these cases, the general case can be proved by repeating the above process. Consider $T\left(B_{3,4}\right)$. The induced subgraphs $\left\langle\left\{u_{0}, u_{1}, u_{2}, u_{3}, f_{1}, f_{2}, f_{3}\right\}\right\rangle$ and $\left\langle\left\{v_{0}, v_{1}, v_{2}, v_{3}, e_{1}, e_{2}, e_{3}\right\}\right\rangle$ are isomorphic to 2 copies of $T\left(K_{1,3}\right)$ which is fork-decomposable by Theorem 3.1. The remaining subgraph is fork-decomposable as follows: $\left\{g_{1} f_{1}, g_{1} f_{2}, g_{1} u_{0}, u_{0} v_{0}\right\},\left\{g_{1} e_{1}, g_{1} e_{2}, g_{1} e_{3}, e_{1} e_{4}\right\},\left\{v_{0} g_{1}, v_{0} e_{4}\right.$, $\left.v_{0} v_{4}, e_{4} e_{3}\right\},\left\{e_{4} v_{4}, e_{4} e_{3}, e_{4} g_{1}, g_{1} f_{3}\right\}$.

Consider $T\left(B_{3,5}\right)$. The induced subgraphs $\left\langle\left\{u_{0}, u_{1}, u_{2}, u_{3}, f_{1}, f_{2}, f_{3}\right\}\right\rangle$ and $\left\langle\left\{v_{0}, v_{1}, v_{2}, v_{3}, e_{1}\right.\right.$, $\left.\left.e_{2}, e_{3}\right\}\right\rangle$ are isomorphic to 2 copies of $T\left(K_{1,3}\right)$ which is fork-decomposable by Theorem 3.1. The remaining subgraph is fork-decomposable as follows: $\left\{e_{i} e_{4}, e_{i} e_{5}, e_{i} g_{1}, g_{1} f_{i}\right\}$, where $i=1,2,3$, $\left\{e_{4} v_{4}, e_{4} v_{0}, e_{4} g_{1}, v_{0} u_{0}\right\},\left\{e_{5} e_{4}, e_{5} v_{5}, e_{5} v_{0}, v_{0} v_{4}\right\},\left\{g_{1} u_{0}, g_{1} e_{5}, g_{1} v_{0}, v_{0} v_{5}\right\}$.

Consider $T\left(B_{6,4}\right)$. The induced subgraph $\left\langle\left\{g_{1}, u_{0}, u_{1}, u_{2}, u_{3}, f_{1}, f_{2}, f_{3}, v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, e_{1}, e_{2}\right.\right.$, $\left.\left.e_{3}, e_{4}\right\}\right\rangle$ is isomorphic to $T\left(B_{3,4}\right)$ which is fork-decomposable. The induced subgraph $\left\langle\left\{u_{0}, f_{4}\right.\right.$, $\left.\left.f_{5}, f_{6}, u_{4}, u_{5}, u_{6}\right\}\right\rangle$ is isomorphic to $T\left(K_{1,3}\right)$ which is fork-decomposable by Theorem 3.1. The induced subgraph $\left\langle\left\{g_{1}, f_{1}, f_{2}, \ldots, f_{6}\right\}\right\rangle$ obtained after removing above subgraphs $T\left(B_{3,4}\right)$ and $T\left(K_{1,3}\right)$ is isomorphic to $K_{3,4}$ which is fork-decomposable by Theorem 1.3.

Consider $T\left(B_{6,5}\right)$. The induced subgraph $\left\langle\left\{g_{1}, u_{0}, u_{1}, u_{2}, u_{3}, f_{1}, f_{2}, f_{3}, v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right.\right.$ $\left.\left.e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}\right\rangle$ is isomorphic to $T\left(B_{3,5}\right)$ which is fork-decomposable. The induced subgraph $\left\langle\left\{u_{0}, f_{4}, f_{5}, f_{6}, u_{4}, u_{5}, u_{6}\right\}\right\rangle$ is isomorphic to $T\left(K_{1,3}\right)$ which is fork-decomposable by Theorem 3.1. The induced subgraph $\left\langle\left\{g_{1}, f_{1}, f_{2}, \ldots, f_{6}\right\}\right\rangle$ obtained after removing above subgraphs $T\left(B_{3,5}\right)$ and $T\left(K_{1,3}\right)$ is isomorphic to $K_{3,4}$ which is fork-decomposable by Theorem 1.3.

5 Conclusion

In this paper, we have investigated the existence of fork-decomposition of some total graphs. A study on the fork-decomposition of product graphs and some more total graphs is finalized and will appear as a separate paper.

References

[1] Abolape D. Akwu, Deborah O.A. Ajayi, Sunlet Decomposition of Certain Equipartite Graphs, Int. J. Comb., (2013,) Article ID 907249, 4 pages.
[2] Alspach, B., Gavlas, H., Cycle decomposition of K_{n} and $K_{n}-I$, J .Combin. Theory (B), $\mathbf{8 1}$ (2001) 77-99.
[3] Barat, J., Gerbner, D., Edge decomposition of graph into copies of tree with four edges, Electron. J. Combin., 21 (1) (2014).
[4] Bondy, J.A., Murty, U.S.R., Graph Theory, Springer International Edition, 2008.
[5] Caterina De Simone and Antonio Sassano, Stability number of bull and chair-free graphs, Discrete Appl. Math., 41 (1993) 121-129.
[6] Chitra Devi P., Paulraj Joseph J., P4 Decomposition of Total Graphs, J. Discrete Math. Sci. Cryptogr., 17 (5-6), (2014) 473-498.
[7] Dor, D., Tarsi, M., Graph-decomposition is NP-complete: a complete proof of Holyer's conjecture, SIAM J. Comput., 26 (1997) 1166-1187.
[8] Ming-qing Zhai, Chang-hong Lu, Path Decomposition of Graph with given path length, Acta Math. Appl. Sin. Engl. Ser., 22, (4) (2006) 633-638.
[9] Paulraj Joseph, J., Samuel Issacraj, A., Fork-decomposition of graphs, Pre-Conference Proceedings of the International Conference on Discrete Mathematics, ISBN:978-93-91077-53-2, (2022) 426-431.
[10] Richard Hammack, Wilfied Imrich, Samndi Klavzar, Handbook of Product Graphs, Second Edition, Taylor and Francis Group, (2011).
[11] Sunil Kumar, C., On P4-decomposition of Graphs, Taiwanese J. Math., 7(4) (2003) 657-664.
[12] Yang Zhao, Baoyindureng Wu, Star decomposition of graphs, Discrete Math. Algorithms Appl., 7(2) (2015) 1550016 (9 pages). Resource. http://mathworld.wolfram.com/ForkGraph.html

Author information

A. Samuel Issacraj, Research Scholar, Reg. No. 17214012091092, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India.
E-mail: samuelissacraj@gmail.com
J. Paulraj Joseph, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India.
E-mail: prof.jpaulraj@gmail.com

