FORK-DECOMPOSITION OF SOME TOTAL GRAPHS

A. Samuel Issacraj and J. Paulraj Joseph

Communicated by R. Kala

MSC 2010 Classifications: 05C70, 05C51, 05C76.

Keywords and phrases: Decomposition, Fork, Total graph

Abstract Let G = (V, E) be a graph. Fork is a tree obtained by subdividing any edge of a star of size three exactly once. In this paper, we investigate a necessary and sufficient condition for the existence of fork-decomposition of some total graphs.

1 Introduction

We consider only simple, finite and undirected graphs. Let K_n denote the complete graph on n vertices and $K_{m,n}$ denote the complete bipartite graph with parts of sizes m and n. Let P_k denote the path of length k - 1 and S_k denote the star of size k - 1. A vertex of degree 1 is called a *pendant vertex* and the vertex adjacent to it is called a *support*. Terms not defined here are used in the sense of Bondy and Murty [4]. A decomposition of a graph G is a collection $C = \{H_1, H_2, \ldots, H_r\}$ of subgraphs of G such that the set $\{E(H_1), E(H_2), \ldots, E(H_r)\}$ forms a partition of E(G). If each H_i is isomorphic to a graph H, then C is called a H-decomposition of G. If a graph G admits a H-decomposition, then |E(H)| divides |E(G)|.

Decomposition of arbitrary graphs into subgraphs of small size are assuming importance in the literature. There are several studies on the isomorphic decomposition of graphs into paths [8, 11], cycles [2], trees [3], stars [12], sunlet [1] etc. Also there are studies on the isomorphic decomposition of total graphs into P_4 [6]. The general problem of H-decompositions was proved to be NP-complete for any H of size greater than 2 by Dor and Tarsi [7].

A tree F obtained from the claw $K_{1,3}$ by subdividing one edge exactly once is called a *fork*. Since it resembles the graph model of human body in the stand-at-ease position, the vertices and edges are named as follows.

a - Head, ab - Neck, b - Throat, bc - Body, c - Hip, cd & ce - Legs, d & e - Feet as given in the Figure 1.

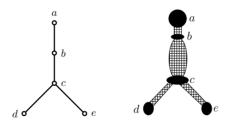


Figure 1. Fork

This graph was defined by Simone and Sassano in the name of *chair graph* in 1993, when they studied the stability number of bull and chair-free graphs [5]. In 2014, Barat and Gerbner [3] studied decomposition of 191-edge connected graphs which can be decomposed into unique trees of size 4 as a possible attempt to solve the following conjecture.

Conjecture 1 For each tree T, there exists a natural number k_T such that the following holds: if G is a k_T -edge-connected simple graph such that |E(T)| divides |E(G)|, then G has a T-decomposition.

The edge-connectivity constants in the solved cases of Conjecture 1 are seemingly far from best possible. Very little is known about lower bounds. A tree is a fork if and only if its degree

sequence is (1, 1, 1, 2, 3). In this paper, we investigate the existence of fork-decomposition for some total graphs.

Since |E(F)| = 4, it follows that if G admits a fork-decomposition, then

$$|E(G)| \equiv 0 \pmod{4} \tag{1.1}$$

Definition 1.1. The total graph of G, denoted by T(G) is defined as follows. The vertex set of T(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of T(G) are adjacent in T(G) in case one of the following holds;

- (i) x, y are in V(G) and x is adjacent to y in G.
- (ii) x, y are in E(G) and x, y are adjacent in G.
- (iii) x is in V(G), y is in E(G) and x, y are incident in G.

Remark 1.2. The number of edges in the total graph is $2|E(G)| + \frac{1}{2} \sum_{v \in V(G)} (d(v))^2$.

The following results are used in the subsequent sections.

Theorem 1.3. [9] The complete bipartite graph $K_{m,n}$ is fork-decomposable if and only if $mn \equiv 0 \pmod{4}$ except $K_{2,4i+2}$, (i = 1, 2, ...).

Theorem 1.4. [9] The Complete graph K_n can be decomposed into forks if and only if n = 8k or n = 8k + 1, for all $k \ge 1$

Theorem 1.5. [9]

- (i) For $m \ge 3$, $K_m \circ K_1$ is fork-decomposable if and only if $m \equiv 0, 7 \pmod{8}$
- (ii) For $m \ge 3$, $K_m \circ \overline{K_2}$ is fork-decomposable if and only if $m \equiv 0, 5 \pmod{8}$

2 Total graph of paths, cycles and wheels

In this section, we investigate a necessary and sufficient condition for the existence of decomposition of Total graph of paths, cycles and wheel into forks.

Example 2.1. The fork-decomposition of $T(K_{1,3})$ is given in Figure 2.

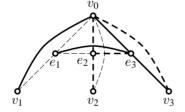


Figure 2. Fork-decomposition of $T(K_{1,3})$

Observation 2.2. $T(P_n)$ is not fork-decomposable, since the number of edges in $T(P_n)$ is odd.

Theorem 2.3. $T(C_n)$ is fork-decomposable for all values of $n \ge 3$.

Proof. Let the vertices of C_n be v_1, v_2, \ldots, v_n and let the edges of C_n be e_1, e_2, \ldots, e_n where $e_i = v_i v_{i+1}, 1 \le i \le n-1$ and $e_n = v_n v_1$. Then the vertices of $T(C_n)$ is given by $\{v_1, v_2, \ldots, v_n, e_1, e_2, \ldots, e_n\}$ and $E(T(C_n)) = \{e_i e_{i+1}, v_i v_{i+1}, v_i e_i, v_i e_{i-1}\}$ where $1 \le i \le n$ and the subscripts are taken modulo n.

The number of edges in $T(C_n)$ is 4n and it satisfies the equation (1.1) for all values of n. Then a fork-decomposition of $T(C_n)$ is given by $\{e_iv_i, e_iv_{i+1}, e_ie_{i+1}, v_{i+1}v_{i+2}\}$ where $1 \le i \le n$ and the subscripts are taken modulo n.

Theorem 2.4. The graph $T(W_n)$ is fork-decomposable if and only if $n \equiv 0 \pmod{8}$ or $n \equiv 7 \pmod{8}$.

Proof. The number of edges in $T(W_n)$ is $2(2n) + \frac{1}{2}(n.3^2 + 1.n^2) = \frac{n^2 + 17n}{2}$. If $T(W_n)$ is fork-decomposable, $\frac{n^2 + 17n}{2}$ is a multiple of 4. Then $n(n + 17) \equiv 0 \pmod{8}$ which implies $n \equiv 0 \pmod{8}$ or $n \equiv -17 \pmod{8}$. Hence $n \equiv 0 \pmod{8}$ or $n \equiv 7 \pmod{8}$.

Now let us prove the converse part. Let the vertices of W_n be $\{u, v_1, v_2, \ldots, v_n\}$ where u is the central vertex and v_i 's are the vertices of C_n in W_n . Let the edges of W_n be $\{e_i, f_i\}$ where $e_i = v_i v_{i+1}, f_i = v_i u$ for $1 \le i \le n$ and the subscripts are taken modulo n.

Assume that $n \equiv 0 \pmod{8}$. Consider the set of forks $F_1 = \{\{v_i v_{i+1}, v_i e_i, v_i f_i, f_i u\}/1 \le i \le n\}$ and $F_2 = \{\{e_i v_{i+1}, e_i e_{i+1}, e_i f_{i+1}, v_{i+1} u\}/1 \le i \le n\}$. Here the subscripts are taken modulo n. The induced subgraph $\langle\{f_1, f_2, \ldots, f_n, e_1, e_2, \ldots, e_n\}\rangle$ obtained after removing F_1 and F_2 from $T(W_n)$ is isomorphic to $K_n \circ K_1$ which is fork-decomposable by Theorem 1.5.

Assume that $n \equiv 7 \pmod{8}$. Consider the set of forks $F_3 = \{\{v_i v_{i+1}, v_i e_i, v_i f_i, f_i u\}/1 \le i \le n\}$ and $F_4 = \{\{e_i v_{i+1}, e_i e_{i+1}, e_i f_{i+1}, v_{i+1} u\}/1 \le i \le n\}$. Here the subscripts are taken modulo n. The induced subgraph $\langle\{f_1, f_2, \ldots, f_n, e_1, e_2, \ldots, e_n\}\rangle$ obtained after removing F_3 and F_4 from $T(W_n)$ is isomorphic to $K_n \circ K_1$ which is fork-decomposable by Theorem 1.5. \Box

3 Total graphs of Star and its subdivision graph

In this section, we investigate a necessary and sufficient condition for the existence of forkdecomposition of total graphs of star and its subdivision graph.

Theorem 3.1. $T(K_{1,n})$ is fork-decomposable if and only if $n \equiv 0 \pmod{8}$ or $n \equiv 3 \pmod{8}$.

Proof. The number of edges in $T(K_{1,n})$ is $2n + \frac{1}{2}(1.n^2 + n.1^2) = \frac{n(n+5)}{2}$. If $T(K_{1,n})$ is fork-decomposable, then $n(n+5) \equiv 0 \pmod{8}$ which implies $n \equiv 0 \pmod{8}$ or $n+5 \equiv 0 \pmod{8}$. Hence $n \equiv 0 \pmod{8}$ or $n \equiv 3 \pmod{8}$.

Conversely, assume that $n \equiv 0 \pmod{8}$ or $n \equiv 3 \pmod{8}$. Let the vertices of $K_{1,n}$ be $\{v_0, v_1, v_2, \ldots, v_n\}$ and let v_0 be the vertex of degree n. Let the edges of $K_{1,n}$ be $\{e_1, e_2, \ldots, e_n\}$. Then the vertex set of $T(K_{1,n})$ is given by $\{v_0, v_1, \ldots, v_n, e_1, e_2, \ldots, e_n\}$ and the edge set of $T(K_{1,n})$ is given by $\{v_iv_0, v_ie_i, e_iv_0, e_ie_j\}$ where $1 \leq i, j \leq n$ and $i \neq j$.

For n = 3, the fork decomposition of $T(K_{1,3})$ is given in Figure 2. For n = 8, the induced subgraph obtained by removing the cycle $e_1e_2 \dots e_8e_1$ from the induced subgraph $\langle e_1, e_2, \dots, e_8 \rangle$ is isomorphic to $\overline{C_8}$ which is fork-decomposable by Figure 3.

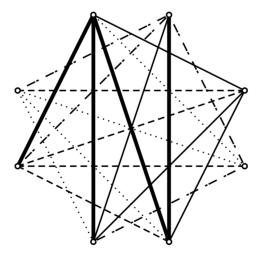


Figure 3. Fork-decomposition of $\overline{C_8}$

The fork-decomposition of the subgraph obtained after removing $\overline{C_8}$ from $T(K_{1,8})$ is given by $\{e_i v_0, e_i v_i, e_i e_{e+1}, v_0 v_{i+1}\}$ for $1 \le i \le 8$ and the subscripts are taken modulo 8.

Assume that $n \equiv 0 \pmod{8}$. Then the induced subgraph $\langle \{v_0, e_i, e_{i+1}, e_{i+1}, \dots, e_{i+7}, v_i, v_{i+1}, \dots, v_{i+8}\} \rangle$ where $i \equiv 1 \pmod{8}$ is isomorphic to $\frac{n}{8}$ copies of $T(K_{1,8})$ which is fork-decomposable. After removing $\frac{n}{8}$ copies of $T(K_{1,8})$, the induced subgraph $\langle \{e_i/1 \leq i \leq n\} \rangle$ is decomposable into $\binom{n}{2}$ copies of $K_{8,8}$ which is fork-decomposable by Theorem 1.3. Thus,

$$E(T(K_{1,n})) = \underbrace{E(T(K_{1,8})) \cup \ldots \cup E(T(K_{1,8}))}_{\frac{n}{8} \ times} \cup \underbrace{E(K_{8,8}) \cup \ldots \cup E(K_{8,8})}_{\binom{n}{2} \ times}.$$
 Hence $T(K_{1,n})$

is fork-decomposable.

Assume that $n \equiv 3 \pmod{8}$. Then the induced subgraph $\langle \{v_0, v_1, v_2, v_3, e_1, e_2, e_3\} \rangle$ is isomorphic to $T(K_{1,3})$ and the induced subgraph $\langle \{v_0, v_4, v_5, \ldots, v_n, e_4, e_5, \ldots, e_n\} \rangle$ is isomorphic to $T(K_{1,n-3})$ which is fork-decomposable. After removing $T(K_1, 3)$ and $T(K_{1,n-3})$, the induced subgraph $\langle \{e_1, e_2, \ldots, e_n\} \rangle$ is isomorphic to $K_{3,n-3}$ which is fork-decomposable by Theorem 1.3. Thus,

$$E(T(K_{1,n})) = E(T(K_{1,3})) \cup E(T(K_{1,n-3})) \cup K_{3,n-3}.$$

Hence $T(K_{1,n})$ is fork-decomposable.

Definition 3.2. A subdivision graph of a graph G, denoted by S(G) is the graph obtained from G by subdividing each edge exactly once.

Theorem 3.3. $T(S(K_{1,n}))$ is fork-decomposable if and only if $n \equiv 0 \pmod{8}$ or $n \equiv 3 \pmod{8}$.

Proof. Let G_n be the graph $S(K_{1,n})$. The number of edges in $T(G_n)$ is $2(2n) + \frac{1}{2}(1.n^2 + n.2^2 + n.1^2)$. If $T(G_n)$ is fork-decomposable, then $\frac{n^2+13n}{2}$ is a multiple of 4. This implies $n(n+13) \equiv 0 \pmod{8}$. Hence $n \equiv 0 \pmod{8}$ or $n \equiv 3 \pmod{8}$.

Now let us prove the converse part. Let the vertices of G_n be $v_0, v_1, \ldots, v_n, u_1, u_2, \ldots, u_n$, where u_i 's are the pendant vertices and v_i $(i \neq 0)$ are the support vertices to the corresponding u_i 's. Here $deg(v_0) = n$. Let the edges of G_n be e_i, f_i where $e_i = v_0v_i, f_i = u_iv_i$ and $1 \le i \le n$. Then the vertex set of $T(G_n)$ is $\{v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n, e_1, e_2, \ldots, e_n, f_1, f_2, \ldots, f_n\}$ and the edge set of $T(G_n)$ is $\{v_0e_i, v_0v_i, e_iv_i, e_if_i, e_ie_j, v_if_i, v_iu_i, f_iu_i\}$ where $1 \le i, j \le n$ and $i \ne j$.

For n = 3, a fork-decomposition of $T(G_3)$ is given by $\{v_i v_0, v_i u_i, v_i e_i, e_i e_{i+1}\}$ and $\{f_i u_i, f_i v_i, f_i e_i, e_i v_0\}$ for $1 \le i \le n$ and the subscripts are taken modulo n. For n = 8, the induced subgraph $\langle \{e_1, e_2, \ldots, e_8\} \rangle$ after removing the cycle $e_1, e_2, \ldots, e_8, e_1$ is isomorphic to $\overline{C_8}$ which is fork-decomposable by Figure 3. Then a fork-decomposition of $T(G_8) - \overline{C_8}$ is given by $\{v_i e_i, v_i v_0, v_i u_i, u_i f_i\}$ and $\{e_i v_0, e_i e_{i+1}, e_i f_i, f_i v_i\}$ for $i = 1, 2 \ldots, 8$ and the subscripts are taken modulo 8.

Assume that $n \equiv 0 \pmod{8}$. The induced subgraph $\langle \{v_0, v_i, v_{i+1}, \dots, v_{i+7}, u_i, u_{i+1}, \dots, u_{i+7}, e_i, e_{i+1}, \dots, e_{i+7}, f_i, f_{i+1}, \dots, f_{i+7} \} \rangle$ is isomorphic to $\frac{n}{8}$ copies of $T(G_8)$ for $i \equiv 1 \pmod{8}$. After removing $\frac{n}{8}$ copies of $T(G_8)$, the induced subgraph $\langle \{e_i/1 \leq i \leq n\} \rangle$ is decomposable into $\binom{n}{2}$ copies of $K_{8,8}$ which is fork-decomposable by Theorem 1.3. Thus,

$$E(T(K_{1,n})) = \underbrace{E(T(S(K_{1,8}))) \cup \ldots \cup E(T(S(K_{1,8})))}_{\frac{n}{8} \ times} \cup \underbrace{E(K_{8,8}) \cup \ldots \cup E(K_{8,8})}_{\binom{n}{2} \ times}.$$
 Hence

 $T(S(K_{1,n}))$ is fork-decomposable.

Assume that $n \equiv 3 \pmod{8}$. The induced subgraph $\langle \{v_0, v_1, v_2, v_3, u_1, u_2, u_3, e_1, e_2, e_3, f_1, f_2, f_3\} \rangle$ is isomorphic to $T(S(K_{1,3}))$ and the induced subgraph $\langle \{v_0, v_4, v_5, \ldots, v_n, u_4, u_5, \ldots, u_n, e_4, e_5, \ldots, e_n, f_4, f_5, \ldots, f_n\} \rangle$ is isomorphic to $T(S(K_{1,n-3}))$. Hence $T(S(K_{1,3}))$ and $T(S(K_{1,n-3}))$ are fork-decomposable, since $n \equiv 3 \pmod{8}$. After removing $T(S(K_1, 3))$ and $T(S(K_{1,n-3}))$, the induced subgraph $\langle \{e_1, e_2, \ldots, e_n\} \rangle$ is isomorphic to $K_{3,n-3}$ which is fork-decomposable by Theorem 1.3. Thus $E(T(S(K_{1,n}))) = E(T(S(K_{1,3}))) \cup E(T(K_{1,n-3})) \cup K_{3,n-3}$. Hence $T(S(K_{1,n}))$ is fork-decomposable.

4 Total graphs of Bi-stars

In this section, we investigate a necessary and sufficient condition for the existence of forkdecomposition of Total graph of Bi-stars.

Definition 4.1. Bi-star $B_{m,n}$ is the graph obtained by joining the center vertices of $K_{1,m}$ and $K_{1,n}$ by an edge.

Remark 4.2. Number of edges in Total graph of $B_{m,n}$ is $2(m+n+1) + \frac{1}{2}(m+m^2+1+2m+n+n^2+1+2n) = \frac{1}{2}(4m+4n+4+m^2+n^2+3m+3n+2) = \frac{1}{2}(m(m+7)+n(n+7)+6).$

Theorem 4.3. $T(B_{m,n})$ is fork-decomposable if and only if it satisfies any one of the following conditions:

- (*i*) $m \equiv 2,7 \pmod{8}$ and $n \equiv 0,1 \pmod{8}$
- (*ii*) $m \equiv 3, 6 \pmod{8}$ and $n \equiv 4, 5 \pmod{8}$
- (iii) $m \equiv 0, 1 \pmod{8}$ and $n \equiv 2, 7 \pmod{8}$
- (*iv*) $m \equiv 4,5 \pmod{8}$ and $n \equiv 3,6 \pmod{8}$.

Proof. Let $V(B_{m,n}) = \{v_0, v_1, v_2, \dots, v_n, u_0, u_1, u_2, \dots, u_m\}$ where $v'_i s(1 \le i \le n)$ are pendant vertices wit support v_0 and $u'_j s(1 \le j \le m)$ are pendant vertices with support u_0 . Let $E(B_{m,n}) = \{e_i, f_j, g_1 \mid 1 \le i \le n, 1 \le j \le m\}$ where $e_i = v_0 v_i; 1 \le i \le n, f_j = u_0 u_j$ where $1 \le j \le m$ and $g_1 = v_0 u_0$.

 $\begin{array}{l} \text{Then } V(T(B_{m,n})) = \{v_0, v_i, u_0, u_j, e_i, f_j, g_1 \ / \ 1 \le i \le n, \ 1 \le j \le m\} \text{ and } E(T(B_{m,n})) = \{v_0 v_i, v_0 e_i, v_i e_i \ / \ 1 \le i \le n\} \cup \{e_i e_j \ / \ i \ne j, \ 1 \le i, j \le n\} \cup \{f_i f_j \ / \ i \ne j, \ 1 \le i, j \le m\} \cup \{v_0 g_1, u_0 g_1, v_0 u_0\} \cup \{u_0 u_j, u_0 f_j, f_j u_j \ / \ 1 \le j \le m\} \cup \{g_1 e_i, g_1 f_j \ / \ 1 \le i \le n, \ 1 \le j \le m\}. \end{array}$

The number of edges in $T(B_{m,n})$ is $\frac{1}{2}[m(m+7) + n(n+7) + 6]$ If the graph $T(B_{m,n})$ is fork-decomposable, then $m(m+7) + n(n+7) + 6 \equiv 0 \pmod{8}$.

If $m \equiv 0 \pmod{8}$, then m = 8a, where a is any arbitrary integer. Hence $8a(8a + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$. Since $8a(8a + 7) \equiv 0 \pmod{8}$, $n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $(n+1)(n+6) \equiv 0 \pmod{8}$ which implies that $n \equiv 7 \pmod{8}$ or $n \equiv 2 \pmod{8}$.

If $m \equiv 1 \pmod{8}$, then m = 8a + 1, where a is any arbitrary integer. Then $(8a + 1)(8a + 1 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a+8) + 8a+8+n^2+7n+6 \equiv 0 \pmod{8}$. Thus $(n+1)(n+6) \equiv 0 \pmod{8}$, which implies that $n \equiv 7 \pmod{8}$ or $n \equiv 2 \pmod{8}$.

If $m \equiv 2 \pmod{8}$, then m = 8a + 2, where *a* is any arbitrary integer. Then $(8a + 2)(8a + 2 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a + 9) + 2(8a) + 18 + n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $n(n+7) \equiv 0 \pmod{8}$, which implies that $n \equiv 0 \pmod{8}$ or $n \equiv 1 \pmod{8}$.

If $m \equiv 3 \pmod{8}$, then m = 8a + 3, where *a* is any arbitrary integer. Then $(8a + 3)(8a + 3 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a + 10) + 3(8a) + 30 + n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $n^2 + 7n + 12 + 24 \equiv 0 \pmod{8}$ which implies that $(n+3)(n+4) \equiv 0 \pmod{8}$. Hence $n \equiv 5 \pmod{8}$ or $n \equiv 4 \pmod{8}$.

If $m \equiv 4 \pmod{8}$, then m = 8a + 4, where *a* is any arbitrary integer. Then $(8a + 4)(8a + 4 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a + 11) + 4(8a) + 44 + n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $n^2 + 7n + 10 \equiv 0 \pmod{8}$ which implies that $(n+2)(n+5) \equiv 0 \pmod{8}$. Hence $n \equiv 6 \pmod{8}$ or $n \equiv 3 \pmod{8}$.

If $m \equiv 5 \pmod{8}$, then m = 8a + 5, where *a* is any arbitrary integer. Then $(8a + 5)(8a + 5 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a + 12) + 5(8a) + 60 + n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $n^2 + 7n + 10 \equiv 0 \pmod{8}$ which implies that $(n+2)(n+5) \equiv 0 \pmod{8}$. Hence $n \equiv 6 \pmod{8}$ or $n \equiv 3 \pmod{8}$.

If $m \equiv 6 \pmod{8}$, then m = 8a + 6, where *a* is any arbitrary integer. Then $(8a + 6)(8a + 6 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a + 13) + 6(8a) + 78 + n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $n^2 + 7n + 12 \equiv 0 \pmod{8}$ which implies that $(n+3)(n+4) \equiv 0 \pmod{8}$. Hence $n \equiv 5 \pmod{8}$ or $n \equiv 4 \pmod{8}$.

If $m \equiv 7 \pmod{8}$, then m = 8a + 7, where *a* is any arbitrary integer. Then $(8a + 7)(8a + 7 + 7) + n(n+7) + 6 \equiv 0 \pmod{8}$ which implies that $(8a)(8a + 14) + 7(8a) + 98 + n^2 + 7n + 6 \equiv 0 \pmod{8}$. Thus $n^2 + 7n \equiv 0 \pmod{8}$ which implies that $n(n+7) \equiv 0 \pmod{8}$. Hence $n \equiv 0 \pmod{8}$ or $n \equiv 1 \pmod{8}$.

Now let us prove the converse part. Since the graph $T(B_{m,n})$ is same as the graph $T(B_{n,m})$, it is enough to prove the result for the first two cases alone.

Case 1. $m \equiv 2,7 \pmod{8}$ and $n \equiv 0,1 \pmod{8}$.

Sub case 1a. $m \equiv 2 \pmod{8}$ and $n \equiv 0 \pmod{8}$.

First let us prove the result for m = 2 and n = 8. The induced subgraph $\langle \{e_i/i = 1, 2, ..., 8\} \rangle$ is isomorphic to K_8 which is fork-decomposable by Theorem 1.4. The fork-decomposition of the subgraph obtained after removing the above induced subgraph is given by $\{f_2g_1, f_2u_0, f_2f_1, u_0u_1\}, \{f_1u_1, f_1u_0, f_1g_1, g_1v_0\}, \{u_0v_0, u_0g_1, u_0u_2, u_2f_2\}, \{e_iv_0, e_iv_i, e_ig_1, v_0v_{i+1}\}$ where $1 \le i \le 8$ and the subscripts are taken modulo 8.

For m > 2 and n > 8, the induced subgraph $\langle \{u_0, f_m, f_{m-1}, v_m, v_{m-1}, g_1, v_0, e_n, e_{n-1}, \dots, e_{n-7}, v_n, v_{n-1}, \dots, v_{n-7}\} \rangle$ is isomorphic to $T(B_{2,8})$ which is fork-decomposable. The edge

induced subgraph $\langle \{e_i e_k, e_i v_i\} \rangle$ where $i \neq k$, and i, k = 1, 2, ..., n-8 and the edge induced subgraph $\langle \{f_j f_l, f_j u_j\} \rangle$ where $j \neq l$, and j, l = 1, 2, ..., m-2 is isomorphic to $K_{n-8} \circ K_1$ and $K_{m-2} \circ K_1$ respectively which are fork-decomposable by Theorem 1.5. Consider the induced subgraph obtained after removing the above forks. The induced subgraphs $\langle \{e_i/i = 1, 2, ..., n-8\} \rangle$ and $\langle \{f_j/j = 1, 2, ..., m-2\} \rangle$ are respectively isomorphic to $K_{8,n-8}$ and $K_{2,m-2}$ which are fork-decomposable by Theorem 1.3. The remaining subgraph can be decomposed into $\frac{n-8}{8} + \frac{m-2}{8} = \frac{m+n-10}{8}$ copies of H_1 given in figure 4.

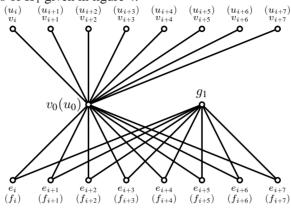


Figure 4. H₁

The fork-decomposition of the graph H_1 is given by $\{v_0v_i, v_0v_{i+5}, v_0e_i, e_ig_1\}$ where $i = 1, 2, 3, \{v_0v_i, v_0e_i, v_0e_{i+2}, e_ig_1\}$ where $i = 4, 5, \{g_1e_6, g_1e_7, g_1e_8, e_8v_0\}$ $\{u_0u_i, u_0u_{i+5}, u_0f_i, f_ig_1\}$ where $i = 1, 2, 3, \{u_0u_i, u_0f_i, u_0f_{i+2}, f_ig_1\}$ where $i = 4, 5, \{g_1f_6, g_1f_7, g_1f_8, f_8u_0\}$. Hence $T(B_{m,n})$ is fork-decomposable.

Sub case 1b. $m \equiv 2 \pmod{8}$ and $n \equiv 1 \pmod{8}$.

Let us prove the result for m = 2 and n = 9. The induced subgraph $\langle \{e_i\} \rangle$ is isomorphic to K_9 which is fork-decomposable by Theorem 1.4. The fork-decomposition of the subgraph obtained after removing the above induced subgraph is given by $\{f_2g_1, f_2u_0, f_2f_1, u_0u_1\}, \{f_1u_1, f_1u_0, f_1g_1, g_1v_0\}, \{u_0v_0, u_0g_1, u_0u_2, u_2f_2\}, \{e_iv_0, e_iv_i, e_ig_1, v_0v_{i+1}\}$ where $1 \le i \le 9$ and the subscripts are taken modulo 9.

Now assume that $m \equiv 2 \pmod{8}$ and $n \equiv 1 \pmod{8}$. The induced subgraph $\langle \{u_0, f_m, f_{m-1}, v_m, v_{m-1}, g_1, v_0, e_n, e_{n-1}, \ldots, e_{n-8}, v_n, v_{n-1}, \ldots, v_{n-8} \} \rangle$ is isomorphic to $T(B_{2,9})$ which is fork-decomposable. The edge induced subgraph $\langle \{e_i e_k, e_i v_i\} \rangle$ where $i \neq k$, and $i, k = 1, 2, \ldots, n-9$ and the edge induced subgraph $\langle \{f_j f_l, f_j u_j\} \rangle$ where $j \neq l$, and $j, l = 1, 2, \ldots, m-2$ are respectively isomorphic to $K_{n-9} \circ K_1$ and $K_{m-2} \circ K_1$ which are fork - decomposable by Theorem 1.5. Consider the induced subgraph obtained after removing the above forks. The induced subgraph $\langle \{e_i/i = 1, 2, \ldots, n-9\} \rangle$ and $\langle \{f_j/j = 1, 2, \ldots, m-2\} \rangle$ are respectively isomorphic to $K_{9,n-9}$ and $K_{2,m-2}$ which are fork-decomposable by Theorem 1.3. The remaining subgraph can be decomposed into $\frac{n-9}{8} + \frac{m-2}{8} = \frac{m+n-11}{8}$ copies of H_1 given in figure 4, which is fork-decomposable. Hence $T(B_{m,n})$ is fork-decomposable.

Sub case 1c. $m \equiv 7 \pmod{8}$ and $n \equiv 0, 1 \pmod{8}$.

First let us prove the result for m = 7 and $n \equiv 0, 1 \pmod{8}$. The induced subgraph $\langle \{u_0, f_7, f_6, v_7, v_6, g_1, v_0, e_1, e_2, \dots, e_n, v_1, v_2, \dots, v_n\} \rangle$ is isomorphic to $T(B_{2,n})$ which is fork-decomposable. The induced subgraph $\langle \{u_0, f_3, f_4, f_5, u_3, u_4, u_5\} \rangle$ is isomorphic to $T(K_{1,3})$ which is fork-decomposable by Theorem 3.1. Consider the induced subgraph obtained after removing the above subgraphs $T(B_{2,n})$ and $T(K_{1,3})$. Consider the collection of forks $\{f_1g_1, f_1f_6, f_1f_7, g_1f_5\}, \{g_1f_2, g_1f_3, g_1f_4, f_2f_1\}, \{f_2f_4, f_2f_5, f_2u_2, u_2u_0\}, \{u_0u_1, u_0f_2, u_0f_1, f_1f_4\}, \{f_1u_1, f_1f_3, f_1f_5, f_3f_2\}$. Consider the induced subgraph obtained after removing above subgraphs and collection of forks. The induced subgraph thus obtained $\{f_2, f_3, \dots, f_7\}$ is isomorphic to $K_{2,4}$ which is fork-decomposable by Theorem 1.3. Hence $T(B_{7,n})$ is fork-decomposable.

For m > 7, the induced subgraph $\langle \{u_0, f_m, f_{m-1}, \ldots, f_{m-6}, v_m, v_{m-1}, \ldots, v_{m-6}, g_1, v_0, e_1, e_2, \ldots, e_n, v_1, v_2, \ldots, v_n\} \rangle$ is isomorphic to $T(B_{7,n})$ which is fork-decomposable. The edge induced subgraph $\langle \{f_j f_l, f_j u_j\} \rangle$ where $j \neq l$, and $j, l = 1, 2, \ldots, m-7$ is isomorphic to $K_{m-7} \circ K_1$ which is fork-decomposable by Theorem 1.5. Consider the induced subgraph obtained after removing the above forks. The induced subgraph $\langle \{f_j/j = 1, 2, \ldots, m-7\} \rangle$ is

isomorphic to $K_{7,m-7}$ which is fork-decomposable by Theorem 1.3. The remaining subgraph can be decomposed into $\frac{m-7}{8}$ copies of H_1 given in figure 4, which is fork-decomposable. Hence $T(B_{m,n})$ is fork-decomposable.

Case 2. $m \equiv 3, 6 \pmod{8}$ and $n \equiv 4, 5 \pmod{8}$.

First we shall prove the result for $T(B_{3,4})$, $T(B_{3,5})$, $T(B_{6,4})$, $T(B_{6,5})$. After proving these cases, the general case can be proved by repeating the above process. Consider $T(B_{3,4})$. The induced subgraphs $\langle \{u_0, u_1, u_2, u_3, f_1, f_2, f_3\} \rangle$ and $\langle \{v_0, v_1, v_2, v_3, e_1, e_2, e_3\} \rangle$ are isomorphic to 2 copies of $T(K_{1,3})$ which is fork-decomposable by Theorem 3.1. The remaining subgraph is fork-decomposable as follows: $\{g_1f_1, g_1f_2, g_1u_0, u_0v_0\}$, $\{g_1e_1, g_1e_2, g_1e_3, e_1e_4\}$, $\{v_0g_1, v_0e_4, v_0v_4, e_4e_3\}$, $\{e_4v_4, e_4e_3, e_4g_1, g_1f_3\}$.

Consider $T(B_{3,5})$. The induced subgraphs $\langle \{u_0, u_1, u_2, u_3, f_1, f_2, f_3\} \rangle$ and $\langle \{v_0, v_1, v_2, v_3, e_1, e_2, e_3\} \rangle$ are isomorphic to 2 copies of $T(K_{1,3})$ which is fork-decomposable by Theorem 3.1. The remaining subgraph is fork-decomposable as follows: $\{e_ie_4, e_ie_5, e_ig_1, g_1f_i\}$, where i = 1, 2, 3, $\{e_4v_4, e_4v_0, e_4g_1, v_0u_0\}$, $\{e_5e_4, e_5v_5, e_5v_0, v_0v_4\}$, $\{g_1u_0, g_1e_5, g_1v_0, v_0v_5\}$.

Consider $T(B_{6,4})$. The induced subgraph $\langle \{g_1, u_0, u_1, u_2, u_3, f_1, f_2, f_3, v_0, v_1, v_2, v_3, v_4, e_1, e_2, e_3, e_4\}\rangle$ is isomorphic to $T(B_{3,4})$ which is fork-decomposable. The induced subgraph $\langle \{u_0, f_4, f_5, f_6, u_4, u_5, u_6\}\rangle$ is isomorphic to $T(K_{1,3})$ which is fork-decomposable by Theorem 3.1. The induced subgraph $\langle \{g_1, f_1, f_2, \dots, f_6\}\rangle$ obtained after removing above subgraphs $T(B_{3,4})$ and $T(K_{1,3})$ is isomorphic to $K_{3,4}$ which is fork-decomposable by Theorem 1.3.

Consider $T(B_{6,5})$. The induced subgraph $\langle \{g_1, u_0, u_1, u_2, u_3, f_1, f_2, f_3, v_0, v_1, v_2, v_3, v_4, v_5 e_1, e_2, e_3, e_4, e_5\}\rangle$ is isomorphic to $T(B_{3,5})$ which is fork-decomposable. The induced subgraph $\langle \{u_0, f_4, f_5, f_6, u_4, u_5, u_6\}\rangle$ is isomorphic to $T(K_{1,3})$ which is fork-decomposable by Theorem 3.1. The induced subgraph $\langle \{g_1, f_1, f_2, \dots, f_6\}\rangle$ obtained after removing above subgraphs $T(B_{3,5})$ and $T(K_{1,3})$ is isomorphic to $K_{3,4}$ which is fork-decomposable by Theorem 1.3.

5 Conclusion

In this paper, we have investigated the existence of fork-decomposition of some total graphs. A study on the fork-decomposition of product graphs and some more total graphs is finalized and will appear as a separate paper.

References

- Abolape D. Akwu, Deborah O.A. Ajayi, Sunlet Decomposition of Certain Equipartite Graphs, Int. J. Comb., (2013,) Article ID 907249, 4 pages.
- [2] Alspach, B., Gavlas, H., Cycle decomposition of K_n and $K_n I$, J. Combin. Theory (B), **81** (2001) 77-99.
- [3] Barat, J., Gerbner, D., Edge decomposition of graph into copies of tree with four edges, Electron. J. Combin., 21 (1) (2014).
- [4] Bondy, J.A., Murty, U.S.R., Graph Theory, Springer International Edition, 2008.
- [5] Caterina De Simone and Antonio Sassano, *Stability number of bull and chair-free graphs*, Discrete Appl. Math., 41 (1993) 121-129.
- [6] Chitra Devi P., Paulraj Joseph J., P₄ Decomposition of Total Graphs, J. Discrete Math. Sci. Cryptogr., 17 (5-6), (2014) 473-498.
- [7] Dor, D., Tarsi, M., Graph-decomposition is NP-complete: a complete proof of Holyer's conjecture, SIAM J. Comput., 26 (1997) 1166–1187.
- [8] Ming-qing Zhai, Chang-hong Lu, Path Decomposition of Graph with given path length, Acta Math. Appl. Sin. Engl. Ser., 22, (4) (2006) 633-638.
- [9] Paulraj Joseph, J., Samuel Issacraj, A., Fork-decomposition of graphs, Pre-Conference Proceedings of the International Conference on Discrete Mathematics, ISBN:978-93-91077-53-2, (2022) 426-431.
- [10] Richard Hammack, Wilfied Imrich, Samndi Klavzar, *Handbook of Product Graphs, Second Edition*, Taylor and Francis Group, (2011).
- [11] Sunil Kumar, C., On P4-decomposition of Graphs, Taiwanese J. Math., 7(4) (2003) 657-664.
- [12] Yang Zhao, Baoyindureng Wu, Star decomposition of graphs, Discrete Math. Algorithms Appl., 7(2) (2015) 1550016 (9 pages). Resource. http://mathworld.wolfram.com/ForkGraph.html

Author information

A. Samuel Issacraj, Research Scholar, Reg. No. 17214012091092, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India. E-mail: samuelissacraj@gmail.com

J. Paulraj Joseph, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamilnadu, India.

E-mail: prof.jpaulraj@gmail.com