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Abstract A k-coupon coloring of a graph G without isolated vertices is an assignment of
colors from [k] = {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex of
G contains vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists
is called the coupon coloring number of G. The rooted product, G ◦v H , of two graphs G and
H without isolated vertices is defined as the graph obtained by taking one copy of G and |V (G)|
copies of H and identifying the ith vertex of G with the root vertex v in the ith copy of H , for
every i = 1, 2, . . . , |V (G)|. We have studied the coupon coloring of rooted product graphs and
found the coupon coloring number of some graphs. We also found some sharp bounds for the
coupon coloring number of G ◦v H . If G and H are two graphs without isolated vertices and
δ(G) = 1, then the coupon coloring number of the rooted product G ◦v H is either k or k + 1,
where k is the coupon coloring number of H .

1 Introduction

The concept of coupon coloring number was introduced by Chen et al. in [4]. Let G be a graph
without isolated vertices. A k-vertex coloring or simply a k-coloring of G is a mapping c from
the vertices of G to [k] = {1, 2, . . . , k}. A k-coupon coloring of G is an assignment of colors
from [k] = {1, 2, . . . , k} to the vertices of G such that the neighborhood of every vertex of G
contains vertices of all colors from [k]. The maximum k for which a k-coupon coloring exists
is called the coupon coloring number of G and it is denoted by χc(G). The coupon coloring of
a graph G without isolated vertices is well defined, since we may assign every vertex the same
color.

Applications of coupon coloring is in the network science and some other related fields. If we
imagine the colors as coupons of different types, then in a coupon coloring every vertex collects
coupons of all different types from its neighbors. Imagine that there are n users v1, v2, . . . , vn
and that every user has contact with a set of other users. Suppose we have to transfer a k-bit
message to all the n users v1, v2, . . . , vn, but each user is assigned only a bit from the k-bit
message. Then every user can reconstruct the entire message from her contacts if and only if the
graph of contacts has a k-coupon coloring. To maximize the length of the message that can be
transmitted, we have to determine the coupon coloring number of the graph of contacts.

The results on coupon colorings have concrete applications in network science. One applica-
tion is to large multi-robot networks [1]. We can imagine a network large enough so that robots
must act based on local information. A graph can be constructed with robots in the network
as vertices and there is an edge between two vertices if the corresponding robots are able to
communicate with each other. An example is described in [1]: a group of robots is assigned
to monitor an environment. A robot must monitor many different statistics like temperature,
humidity, etc., of the environment. But each robot is only equipped with a single sensor (ther-
mometer, barometer, etc.) due to power limitations. Thus, each robot must communicate with
its neighbors to obtain the remaining data. A similar example arises in allocating resources to
a network [1]. Suppose that there is a graph of contacts in which each vertex of the graph may
only use resources available at the vertex or its neighbors. If some resource (e.g. a printer) must
be available to every vertex in the network, then copies of that resource must be allocated to a
dominating set of the network. If every node in the network can accommodate one resource,
then finding the coupon coloring number of the network is equivalent to finding the maximum
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number of resources that can be made available to every node in the network.
In this paper, we have studied the coupon coloring number of rooted product of two graphs.

we have found the exact coupon coloring number of the rooted product G ◦v H , when G is any
graph and H is either a cycle or a complete graph. We also found some sharp bounds for the
coupon coloring number of rooted product graphs. If G and H are two graphs without isolated
vertices and δ(G) = 1, then the coupon coloring number of the rooted product G ◦v H is either
k or k + 1, where k is the coupon coloring number of H . We found some class of graphs for
which the coupon coloring number of G ◦v H is k and k + 1.

2 Preliminaries

All graphs considered in this paper are simple, finite and undirected. As usual Kn and Cn

denote the complete graph and the cycle with n vertices. The minimum and maximum degrees
of vertices in a graph G are denoted by δ(G) and ∆(G) respectively. Let v be a vertex of a graph
G and V (G) is the set of vertices of G. Then G − v is the graph induced by V (G) \ {v} and
|V (G)| denotes the number of vertices of the graph G.

Let G be a graph without isolated vertices. A k-vertex coloring, or simply a k-coloring of
G is a mapping c from the vertex set of G to [k] = {1, 2, ..., k}. A vertex v is said to be a bad
vertex in a k-coloring c, if its neighborhood does not contain vertices of all colors from [k] and
obviously, there is no bad vertices in a coupon coloring. Clearly, coupon coloring is an improper
coloring and χc(G) ≤ δ(G).

Let G = (V,E) be a graph. D ⊆ V is a dominating set if every vertex in V \D is adjacent
to at least one vertex in D. Let G = (V,E) be a graph without isolated vertices. D′ ⊆ V is a
total dominating set if every vertex of G is adjacent to at least one vertex in D′. The minimum
cardinality among all the total dominating sets inG is called the total domination number, γt(G).
The coupon coloring number is also referred to as the total domatic number introduced in [2],
which is the maximum number of disjoint total dominating sets. In [9] Y Shi et al. determined
coupon coloring number of complete graphs, complete k-partite graphs, wheels, cycles, unicyclic
graphs and bicyclic graphs. Coupon coloring is also studied in [5, 6, 8]. P Francis and Deepak
Rajendraprasad studied the coupon coloring of Cartesian product of some graphs in [6].

The rooted product of two graphs was introduced by Godsil and McKay in 1978 [7]. The
rooted product of two graphs G and H is defined as the graph obtained from G and H by taking
one copy of G and |V (G)| copies of H and identifying the ith vertex of G with the root vertex v
in the ith copy of H for every i = 1, 2, . . . , |V (G)|. It is denoted by G ◦v H . A large number of
research papers are published in different domination parameters of rooted product graphs. The
total domination of rooted product graphs were studied in [3].

The following results will be useful for the upcoming sections.

Theorem 2.1. [9]

(1) Let G be a complete graph with n vertices. Then χc(G) =
⌊
n
2

⌋
.

(2) Let G = Kn1,n2,...,nk
be a complete k-partite graph where k ≥ 3 and n1 ≤ n2 ≤, . . . ,≤ nk

such that s =
∑k−1

i=1 ni and n =
∑k

i=1 ni. Then

χc(G) =

{⌊
n
2

⌋
if s ≥ n

2 ,

s otherwise.

Theorem 2.2. [9] Let Cn be the cycle with n vertices. Then

χc(Cn) =

{
1 if n ≡ 0 (mod 4),
2 otherwise.

3 Coupon coloring ofG ◦v H

In this section we study the coupon coloring number ofG◦vH . We first show that the root vertex
in G ◦v H has the following property which will be useful throughout this paper.
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Lemma 3.1. Let G and H be two graphs without isolated vertices and let χc(H) = k. If v is the
root vertex of H and Hi be the ith copy of H in G ◦v H , then the adjacent vertices of v in Hi

can have at most k colors in any coupon coloring of G ◦v H .

Proof. Suppose that c is a coupon coloring of G ◦v H with at least k + 1 colors. If the adjacent
vertices of v that are in Hi have k + 1 colors, then the coloring c restricted to the vertices of
Hi is a (k + 1)-coupon coloring of H , because c is the coupon coloring of G ◦v H and v is
the only vertex having neighbors from other copy of H . Therefore, χc(H) ≥ k + 1, which is a
contradiction.

The next result gives the exact coupon coloring number of rooted product of a graph without
isolated vertices with cycle Cn.

Theorem 3.2. Let G be a graph without isolated vertices. Then

χc(G ◦v Cn) =

{
χc(Cn) + 1, if n ≡ 1, 3 (mod 4)
χc(Cn), otherwise.

Proof. Note that δ(G ◦v Cn) = 2. So, χc(G ◦v Cn) ≤ 2. Imagine the vertices of G ◦v Cn

as v11, v12, . . . , v1n, v21, v22, . . . , v2n, . . . , . . . , vm1, vm2, . . . , vmn, where v11, v21, . . . , vm1 are the
vertices of the copy of G in G ◦v Cn and vi1 − vi2 − · · · − vin − vi1 is the ith copy Ci

n of cycle
Cn in G ◦v Cn corresponding to the root vertex vi1 for all i = 1, 2, . . . ,m.

If n ≡ 0 (mod 4), then χc(Cn) = 2 and Cn has a 2-coupon coloring. Color all the vertices
of each copy of Cn in G ◦v Cn with this coloring. Clearly it is a coupon coloring of G ◦v Cn. So,
χc(G ◦v Cn) = 2 = χc(Cn).

If n ≡ 1 (mod 4), then χc(Cn) = 1. Define the coloring c1 of G ◦v H as follows. color the
vertices v11, v21, . . . , vm1 of the copy of G in such a way that a vertex with color 1 is adjacent to
at least one vertex with color 2 and vice versa. This is possible since G has no isolated vertices.
If c1(vi1) = 1, then define

c1(vij) =

{
1, if j ≡ 1, 2 (mod 4)
2, otherwise.

If c1(vi1) = 2, then define

c1(vij) =

{
1, if j ≡ 0, 3 (mod 4)
2, otherwise.

Clearly, the only possible bad vertex is vi1. Because vi1, vi2 and vin have the same color. But vi1
has a neighbor in the copy of G in G ◦v Cn with a different color. So, c1 is a coupon coloring
and χc(G ◦v Cn) = 2 = χc(Cn) + 1.

If n ≡ 2 (mod 4), then χc(Cn) = 1. It is enough to show that there does not exist a 2-coupon
coloring of G ◦v Cn. Suppose that c2 is any 2-coupon coloring of G ◦v Cn. Then by Lemma 3.1,
vi2 and vin must have same color. Without loss of generality assume that c2(vi2) = 1 = c2(vin).
If c2(vi1) = 1 and define for all j = 2, 3, . . . , n,

c2(vij) =

{
1, if j ≡ 1, 2 (mod 4)
2, otherwise,

then c2(vi(n−1)) = 1 and vin is a bad vertex. If c2(vi1) = 2 and define for all j = 2, 3, . . . , n,

c2(vij) =

{
1, if j ≡ 2, 3 (mod 4)
2, otherwise,

then c2(vi(n−1)) = 2 and vin is a bad vertex. Hence, c2 cannot be a 2-coupon coloring. Therefore,
χc(G ◦v Cn) = 1 = χc(Cn).
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If n ≡ 3 (mod 4), then χc(Cn) = 1. Define the coloring c3 of G ◦v H by

c3(vij) =

{
1, if j ≡ 2, 3 (mod 4)
2, otherwise.

Here, the only possible bad vertex is vi1 and it is adjacent to vi2 and vin with color 2 and vs1 with
color 1 for some s ∈ {1, 2, . . . ,m}, since G has no isolated vertices. Hence, c3 is a 2-coupon
coloring of G ◦v Cn and χc(G ◦v Cn) = 2 = χc(Cn) + 1.

4 Bounds for χc(G ◦v H)

In this section, we establish some sharp bounds for the coupon coloring number of G ◦v H . To
show that k is an lower bound for the coupon coloring number, it is enough to show that there
exist a k-coupon coloring.

Theorem 4.1. Let G and H be two graphs without isolated vertices. Then

χc(G ◦v H) ≥ χc(H).

Proof. Let χc(H) = k and c be a k-coupon coloring ofH . Note thatG◦vH is obtained by taking
|V (G)| copies of H and one copy of G and identifying the ith vertex of G with the root vertex v
in the ith copy of H for every i = 1, 2, . . . , |V (G)|. So, if we give the coloring c to the |V (G)|
copies of H in G ◦H , then it is a k-coupon coloring of G ◦v H . Thus, χc(G ◦v H) ≥ χc(H).

A trivial upper bound for the coupon coloring number of a graph without isolated vertices is
δ(G). So, if G ◦v H is a graph without isolated vertices, then χc(G ◦v H) ≤ δ(G ◦v H).

Theorem 4.2. Let G and H be two graphs without isolated vertices. Then

χc(G ◦v H) ≤ χc(H) + δ(G).

Proof. Suppose that χc(H) = k. By Lemma 3.1, the root vertex can be adjacent to vertices
with at most k colors in the corresponding copy of H . Note that the root vertex v identifies a
vertex with degree δ(G) in G. In that case, v can be adjacent to at most δ(G) vertices in the
copy of G. Thus, in G ◦v H , v can be adjacent to vertices with at most k + δ(G) colors. Hence,
χc(G ◦v H) ≤ k + δ(G).

v

HG

Figure 1.

Theorem 3.2 shows that the lower bound in Theorem 4.1 is sharp. The upper bound in
Theorem 4.2 is also sharp. For, let G = Kn and H be the graph obtained by adjoining a vertex
v with an edge to a vertex of K2n. The above figure 1 gives the the graphs G and H with n = 4.
Since the degree of the vertex v is one, χc(H) = 1. Define a coloring c of G ◦v H as follows:
color all the vertices of G with n different colors. If the root vertex has color s in a copy of H ,
then color the vertex in H which is adjacent to v with s and color the remaining vertices with
appropriate colors so that K2n has an n- coupon coloring. Clearly, c is an n- coupon coloring of
G◦vH . Hence, χc(G◦vH) ≥ n = 1+(n−1) = χc(H)+δ(G). So, χc(G◦vH) = χc(H)+δ(G).
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Corollary 4.3. Let G and H be two graphs without isolated vertices and let δ(G) = 1. Then
χc(G ◦v H) ≤ χc(H) + 1, and so χc(G ◦v H) ∈ {χc(H), χc(H) + 1}.

Theorem 4.4. Suppose that G and H be two graphs without isolated vertices. If v is a vertex in
H such that the graph H − v has no isolated vertices, then

χc(G ◦v H) ≤ χc(H − v) + 1.

Proof. Let χc(H − v) = l and c be an (l+ 2)- coupon coloring of G ◦v H .
Claim - Every vertex in H − v must be adjacent to vertices with at least l+ 1 colors.
Otherwise, there exists a vertex u in H − v such that u is not adjacent to vertices with l + 1
colors. That is, u is adjacent to vertices with at most l colors in H . Note that in G ◦v H , u is a
vertex which is adjacent only to the vertices of that copy of H . So in G ◦v H , u can be adjacent
to vertices with at most l+ 1 colors (since u can be adjacent to v). Thus, G ◦v H cannot have an
(l+ 2)- coupon coloring, a contradiction. Hence the claim.

By the above claim, H − v has a (l + 1)- coupon coloring. But it is a contradiction, since
χc(H − v) = l. Thus, G ◦v H cannot have a (l+ 2)- coupon coloring. Therefore, χc(G ◦v H) ≤
l+ 1.

The following corollary shows that the upper bound in Theorem 4.4 is sharp.

Corollary 4.5. Let G be a graph without isolated vertices. Then

χc(G ◦v Kn) =
⌈n

2

⌉
.

Proof. Suppose that n is odd. Then χc(Kn − v) = χc(Kn−1) =
⌊
n−1

2

⌋
= n−1

2 . By Theorem
4.4, χc(G ◦v Kn) ≤

⌊
n−1

2

⌋
+ 1 = n+1

2 =
⌈
n
2

⌉
. Define the coloring c : V (G ◦v Kn) → [n+1

2 ] as
follows: color the n− 1 vertices of each copy of Kn − v with the colors 1, 2, . . . , n−1

2 such that
each color appears twice and color the vertex v of each copy of Kn with the color n+1

2 . Clearly,
c is a coupon coloring of G ◦v Kn and so χc(G ◦v Kn) ≥ n+1

2 =
⌈
n
2

⌉
.

If n is even, then χc(Kn) =
⌊
n
2

⌋
= n

2 . By Theorem 4.1, χc(G ◦v Kn) ≥ n
2 =

⌈
n
2

⌉
. By

Theorem 4.4, χc(G ◦v Kn) ≤ χc(Kn−1) + 1 =
⌊
n−1

2

⌋
+ 1 = n

2 =
⌈
n
2

⌉
.

In Corollary 4.3, we have proved that χc(G ◦v H) is either χc(H) or χc(H) + 1 whenever
δ(G) = 1. The following corollary which follows from Theorem 4.1 and Theorem 4.4, gives a
class of rooted product graphs for which χc(G ◦v H) = χc(H) holds.

Corollary 4.6. Suppose that the graphs G, H and H − v (where v is a vertex in H) have no
isolated vertices and δ(G) = 1. If χc(H) = k and H − v cannot have a k-coupon coloring, then

χc(G ◦v H) = k.

Let G and H be two graphs without isolated vertices and δ(G) = 1. Assume that the root
vertex v ∈ V (H) is adjacent to all the other vertices of H . If χc(H) = k and H − v have a k-
coupon coloring, then χc(G ◦v H) = k + 1.
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