The construction (k + 1; n)-arcs and (k + 2; n)-arcs from incomplete (k; n)- arc in PG(3, q)

Amal Abdulaziz Younis and Nada Yassen Kasm Yahya

Communicated by Rostam K. Saeed

AMS (MOS) Subject Classifications: 14N05, 51N15, 51N35.

Keywords and phrases: Curves, incomplete (k; n)-arcs, Subspaces, construction of (k + 1; n)-arcs and (k + 2; n)-arcs in PG(3, q), Algebraic Geometry.

Abstract Our research is related to the projective space over the finite field. The aim of this paper is to construct new arcs of various degrees in the three-dimensional projective space over the Galois field of order 2, 3, 4, 5. In PG(3,q), q = 2, 3, 4 and 5, an arc of degree n and order k + 1, k + 2 has found from incomplete (k; n)- arc. Also, two geometrical methods are used to formed (k + 1; n)-arc and (k + 2; n)-arcs from incomplete (k; n)-arc. Many other properties of these arcs are given as T_i distributions and c_i distributions. The MATLAB programing is used to do all calculations.

1 Introduction

A projective 3-space PG(3,q) over Galois field GF(q), where $q = p^m$ for some prime number P and some integer m is a 3-dimensional projective space which consists of points, lines and planes with incidence relation between them. PG(3,q) is satisfying the following axioms:

- (a) Any three distinct non-collinear points, also any line and point not on it are contained in a unique plane.
- (b) Any two distinct coplanar lines intersect in a unique point.
- (c) Any line not on a given plane intersects the plane in a unique point.
- (d) Any two distinct planes intersection in a unique line.

Any point in PG(3,q) has the form of a quadrable (x_1, x_2, x_3, x_4) , where x_1, x_2, x_3, x_4 are elements in GF(q) with the exception of the quadrable consisting of four zero elements. Two quadrables (x_1, x_2, x_3, x_4) and (y_1, y_2, y_3, y_4) represent the same point if there exists λ in $GF(q) \setminus \{0\}$ such that $(x_1, x_2, x_3, x_4) = \lambda(y_1, y_2, y_3, y_4)$, Similarly, any plane in PG(3,q) has the form of a quadrable $[x_1, x_2, x_3, x_4]$, where x_1, x_2, x_3, x_4 are elements in GF(q) with the exception of the quadrable consisting of four zero elements.

Two quadrables $[x_1, x_2, x_3, x_4]$ and $[y_1, y_2, y_3, y_4]$ represent the same plane if there exists λ in $GF(q) \setminus \{0\}$ such that $[x_1, x_2, x_3, x_4] = \lambda[y_1, y_2, y_3, y_4]$.

A point $P(x_1, x_2, x_3, x_4)$ is incident with the plane $\pi[a_1, a_2, a_3, a_4]$ iff $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0$. As a historical background, the construct new arcs of various degrees in the twodimensional projective space over the Galois field of order 2,3,...,etc. are constructed by Hirschfeld [6]-[8].

2 Basic Concepts

Definition 2.1. [3],[7] A plane π in PG(3,q) is a set of all points $P(x_1, x_2, x_3, x_4)$ satisfying a linear equation $u_1x_1 + u_2x_2 + u_3x_3 + u_4x_4 = 0$. This plane is denoted by $\pi[u_1, u_2, u_3, u_4]$, where x_1, x_2, x_3, x_4 are elements in GF(q) with the exception of the quadrable consisting of four zero elements.

Theorem 2.2. [3],[7] The points of PG(3, q) have unique forms which are (1, 0, 0, 0), (x, 1, 0, 0), (x, y, 1, 0) and (x, y, z, 1) for all x, y, z in GF(q). which are (1, 0, 0, 0) is one point, (x, 1, 0, 0) are q points, (x, y, 1, 0) are q^2 points, and (x, y, z, 1) are q^3 points, for all x, y, z in GF(3, q).

Theorem 2.3. [3],[7] The planes of PG(3, q) have unique forms which are [1, 0, 0, 0], [x, 1, 0, 0], [x, y, 1, 0], [x, y, z, 1] for all x, y, z in GF(q). which are [1, 0, 0, 0] is one plane, [x, 1, 0, 0] are q planes, [x, y, 1, 0] are q^2 planes, and [x, y, z, 1] are q^3 planes, for all x, y, z in GF(3, q).

Theorem 2.4. [3],[7] There exists $q^3 + q^2 + q + 1$ of points in PG(3,q).

Theorem 2.5. [3],[7] There exist $q^3 + q^2 + q + 1$ planes in PG(3,q).

Theorem 2.6. [3],[7] Every plane in PG(3,q) contains exactly $q^2 + q + 1$ points (lines) and every point is on exactly $q^2 + q + 1$ planes.

Theorem 2.7. [3],[7] Every line in PG(3,q) contains exactly q + 1 points and every point is on exactly q + 1 lines."

Theorem 2.8. [3],[7] Any two points in PG(3,q) are on exactly q + 1 planes.

Theorem 2.9. [3],[7] Any two planes in PG(3,q) intersect in exactly q + 1 points.

Theorem 2.10. [3],[7] there exist $(q^2 + 1)(q^2 + q + 1)$ lines in PG(3,q).

Theorem 2.11. [3],[7] Any line in PG(3,q) is on exactly q + 1 planes.

Definition 2.12. [3],[7] A (k; n)-arcA in PG(3, q) is a set of k points such that at most n points of which lie in any plane, $n \ge 3$. n is called degree of the (k; n)-arc.

Definition 2.13. [3],[7] In PG(3,q) if k is any k-set, then an n-secant of k is a line (a plane) ℓ such that $|\ell \cap k| = n$. A 0-secant is called an external line (plane) of k, a 1-secant is called a unisecant line (plane), a 2-secant is called a bisecant line and 3-secant is called a trisecant line.

Definition 2.14. [8] Let T_i be the total number of the i-secants of a (k; n)-arc A, then the type of A denoted by $(T_n, T_{n-1}, T_{n-2}, \ldots, T_0)$.

Definition 2.15. [8] A point R not on a (k; n)-arc A has index i if there exists exactly i (n-secant) of A through R, one can denoted the number of points R of index i by c_i .

It is concluded that the (k; n)-arc set is complete iff $c_0 = 0$. Thus the k-set is complete iff every points of PG(3,q) lies on som n-secant of the (k; n)-set.

Definition 2.16. [8] (k; n)-arc A is complete if it is not contained in (k + 1; n)-arc.

Remark 2.17. [8] A (k; n)-arc is complete iff $c_0 = 0$, in other words the (k; n)-arc is complete iff every point of PG(3, q) lies on some *n*-secant of the (k; n)-arc.

Theorem 2.18. [8] Let c_i be the number of points of index i in PG(3,q) which are not on a (k; n)-arc A, then the constants c_i of A satisfy the following equations:

(i)
$$\sum_{\alpha}^{\beta} c_i = q^3 + q^2 + q + 1 - k.$$

(ii) $\sum_{\alpha}^{\beta} ic_i = \frac{k(k-1)\dots(k-n+1)}{n!} + (q^2 + q + 1 - n)$

where α is the smallest *i* for which $c_i \neq 0$, β be the largest *i* for which $c_i \neq 0$.

Theorem 2.19. [8] Let t(p) represents the number of unsecants (planes) through a point P of a (k; n)-arc A in PG(3, q), and let T_i represent the numbers of *i*-secants (planes) for the arc A, then:

(i)
$$t = t(p) = q^2 + q + 2 - k - \frac{(k-1)(k-2)}{2} - \dots - \frac{(k-1)(k-2)\dots(k-n+1)}{(n-1)!}$$

(ii) $T_1 = kt$
(iii) $T_2 = \frac{k(k-1)}{2}$
(iv) $T_3 = \frac{k(k-1)(k-2)}{3!}$
(v) $T_n = \frac{k(k-1)\dots(k-n+1)}{n!}$
(vi) $T_0 = q^3 + q^2 + q + 1 - kt - \frac{k(k-1)}{2} - \frac{k(k-1)(k-2)}{3!} - \dots - \frac{k(k-1)(k-2)\dots(k-n+1)}{n!}$.

i	P_i				π_i			
1	(1,0,0,0)	2	3	4	6	7	10	12
2	(0,1,0,0)	1	3	4	7	9	14	15
3	(0,0,1,0)	1	2	4	5	8	10	15
4	(0,0,0,1)	1	2	3	5	6	9	11
5	(1,1,0,0)	3	4	5	7	8	11	13
6	(0, 1, 1, 0)	1	4	6	11	12	13	15
7	(0,0,1,1)	1	2	5	7	12	13	14
8	(1, 1, 0, 1)	3	5	10	11	12	14	15
9	(1,0,1,0)	2	4	9	10	11	13	14
10	(0, 1, 0, 1)	1	3	8	9	10	12	13
11	(1, 1, 1, 0)	4	5	6	8	9	12	14
12	(0, 1, 1, 1)	1	6	7	8	10	11	14
13	(1, 1, 1, 1)	5	6	7	9	10	13	15
14	(1,0,1,1)	2	7	8	9	11	12	15
15	(1,0,0,1)	2	3	6	8	13	14	15

Table 1. points and plaens in PG(3, 2).

3 The construction (k + 1; n)-arcs from incomplete (k, n)-arc

We can construct (k + 1; n)-arcs from any incomplete arc with the same dgree as follows:

- (i) we define the (k; n)-arc points in the table of points and planes for PG(3, q).
- (ii) we delete all points which lie in n-secant from the projective space PG(3,q).
- (iii) we add in each time 1 point of the remaining points to (k; n)-arc to obtain (k + 1; n)- arcs.

To illustrate this method, we take the following examples:

3.1 Construction (8;5)-arcs from incomplete (7,5)-arc in PG(3,2)

A projective space PG(3,2) over Galois field GF(2) contains 15 points and 15 planes, each plane contain 7 points and every 2 planes intersct in three points. since a (k; n)-arc is a set of k points there is no n + 1 of them are coplener, we can construct arc by choosing a set of k points such that there are no n + 1 of them in the same plane for example let $\overline{A} = \{1, 2, 3, 4, 5, 6, 13\}$ is a (7,5)-arc, now we define points of \overline{A} on the table 1.

We cancel out the points which lie in 5-secant from the space which are 9, 11. now we add on each time one point from the remaining poins to the (7;5)-arc \overline{A} , we get the following incomplete (8;5)-arc:

$$\overline{A}_i : \overline{A}_1 = \{1, 2, 3, 4, 5, 6, 7, 13\}, \qquad \overline{A}_2 = \{1, 2, 3, 4, 5, 6, 8, 13\}, \overline{A}_3 = \{1, 2, 3, 4, 5, 6, 10, 13\}, \\ \overline{A}_4 = \{1, 2, 3, 4, 5, 6, 12, 13\}, \qquad \overline{A}_5 = \{1, 2, 3, 4, 5, 6, 13, 14\}, \overline{A}_6 = \{1, 2, 3, 4, 5, 6, 13, 15\}.$$

3.2 Construction of (9,5)-arcs from Incomplete (8;5)-arc in PG(3,3)

PG(3,3) consists of 40 points and 40 plane, every points is on exactly 13 planes, every two plane intersect in to four points, so as to constract (k, n)-arc in PG(3,3) we choose any set of space points such that lie on n-secant and there is no n + 1 of them are coplenar for example let $\dot{B} = \{1, 2, 3, 6, 9, 19, 27, 33\}$ where \dot{B} incomplete (8;5)- arc, now to construct (9;5)-arcs from \dot{B} define points of \dot{B} in table 2.

i	Dointe						- <u>r</u>	Dlonag	- (-)=):				
ι 1	(1000)	2	5	0	0	14	17	20	22	26	20	22	25	20
2	(1,0,0,0)	1	0	0	9	14	17	16	23	20	29	22	22	24
2	(0,1,0,0)	1	9	10	11	14	10	21	23	24	20	32	27	20
3	(1,1,0,0)	4	6	9	12	14	19	21	23	20	30	32	36	- 39 - 40
4	(2,1,0,0)	3	0	10	13	14	10	16	23	20	21	25	26	40
5	(0,1,1,0)	1	6	12	15	14	10	21	29	20	20	22	25	37
7	(1,1,1,0)	4	7	0	10	14	19	21	23	27	29	24	25	20
/	(2,1,1,0)	3	5	0	7	14	10	16	24	28	29	29	20	39
0	(0,2,1,0)	1	2	2	1	14	15	16	20	10	28	30	39	40
9	(0,0,1,0)	1	2	3	4	14	13	10	17	10	21	20	21	22
10	(1,0,1,0)	2	1	10	13	14	17	20	23	28	20	24	30	39
11	(2,0,1,0)	2	0	10	12	14	1/	20	24	27	30	34	27	40
12	(1,2,1,0)	3	5	10	12	14	18	22	23	20	30	23	31	38
13	(2,2,1,0)	4	2	10	13	14	19	21	24	26	31	34	36	38
14	(0,0,0,1)	1	2	3	4)	6	/	8	9	10	11	12	13
15	(1,0,0,1)	2	5	8	9	16	19	22	25	28	31	34	31	40
16	(2,0,0,1)	2	5	8	9	15	18	21	24	27	30	33	36	39
17	(0,1,0,1)	1	9	10	11	20	21	22	29	30	31	38	39	40
18	(1,1,0,1)	4	1	9	12	16	18	20	25	27	29	34	36	38
19	(2,1,0,1)	3	6	9	13	15	19	20	24	28	29	- 33	37	38
20	(0,2,0,1)	1	9	10	11	17	18	19	26	27	28	35	36	37
21	(1,2,0,1)	3	6	9	13	16	17	21	25	26	30	34	35	39
22	(2,2,0,1)	4	7	9	12	15	17	22	24	26	31	33	35	40
23	(0,0,1,1)	1	2	3	4	32	33	34	35	36	37	38	39	40
24	(1,0,1,1)	2	7	11	13	16	19	22	24	27	30	32	35	38
25	(2,0,1,1)	2	6	10	12	15	18	21	25	28	31	32	35	38
26	(0,1,1,1)	1	8	12	13	20	21	22	26	27	28	32	33	34
27	(1,1,1,1)	4	6	8	11	16	18	20	24	26	31	32	37	39
28	(2,1,1,1)	3	7	8	10	15	19	20	25	26	30	32	36	40
29	(0,2,1,1)	1	5	6	7	17	18	19	29	30	31	32	33	34
30	(1,2,1,1)	3	5	11	12	16	17	21	24	28	29	32	36	40
31	(2,2,1,1)	4	5	10	13	15	17	22	25	27	29	32	37	39
32	(0,0,2,1)	1	2	3	4	23	24	25	26	27	28	29	30	31
33	(1,0,2,1)	2	6	10	12	16	19	22	23	26	29	33	36	39
34	(2,0,2,1)	2	7	11	13	15	18	21	23	26	29	34	37	40
35	(0,1,2,1)	1	5	6	7	20	21	22	23	24	25	35	36	37
36	(1,1,2,1)	4	5	10	13	16	18	20	23	28	30	33	35	40
37	(2,1.2.1)	3	5	11	12	15	19	20	23	27	31	34	35	39
38	(0.2.2.1)	1	8	12	13	17	18	19	23	24	25	38	39	40
39	(1,2,2,1)	3	7	8	10	16	17	21	23	27	31	33	37	38
40	(2,2,2,1)	4	6	8	11	15	17	22	23	28	30	34	36	38

Table 2. points and planes in PG(3,3).

We delete all points that lie into 5-secant from the space and add in each time one point from the remaining points of the space to the (8;5)-arc \dot{B} , the resulting arcs is:

$$\begin{split} \dot{B}_1\{1,2,3,6,9,14,19,27,33\}, & \dot{B}_2\{1,2,3,6,9,16,19,27,33\}, \dot{B}_3\{1,2,3,6,9,17,19,27,33\}, \\ \dot{B}_4\{1,2,3,6,9,18,19,27,33\}, & \dot{B}_5\{1,2,3,6,9,19,21,27,33\}, \dot{B}_6\{1,2,3,6,9,19,22,27,33\}, \\ \dot{B}_7\{1,2,3,6,9,19,23,27,33\}, & \dot{B}_8\{1,2,3,6,9,19,25,27,33\}, \dot{B}_9\{1,2,3,6,9,19,26,27,33\}, \\ \dot{B}_{10}\{1,2,3,6,9,19,27,30,33\}, & \dot{B}_{11}\{1,2,3,6,9,19,27,31,33\}, \dot{B}_{12}\{1,2,3,6,9,19,27,32,33\}, \\ \dot{B}_{13}\{1,2,3,6,9,19,27,33,34\}, & \dot{B}_{14}=1,2,3,6,9,19,27,33,35, \dot{B}_{15}\{1,2,3,6,9,19,27,33,36\}, \\ \dot{B}_{16}\{1,2,3,6,9,19,27,33,39\}, & \dot{B}_{17}\{1,2,3,6,9,19,27,33,40\}. \end{split}$$

3.3 Construction of (7,4)-arcs

From Incomplete (6,4)-arc in PG(3,4) : PG(3,4) consist of (85) points and 85 plane, every points is on exactly 21 planes, every two plane intersect in five points, let $\hat{C} = \{1, 2, 3, 6, 22, 43\}$ is incomplete (6;4)-arc in PG(3,4), now to construct (7;4)-arcs from \hat{C} define points of \hat{C} in the following table:

We cancel out all points that lie into 4-secant from the space and add in each time one point from the remaining points of the space to the (6;4)-arc?, we get (7;4)- arcs which are:

$\hat{C}_1 = \{1, 2, 3, 6, 22, 31, 43\}.$	$\hat{C}_2 = \{1, 2, 3, 6, 22, 32, 43\}.$ $\hat{C}_3 = \{1, 2, 3, 6, 22, 33, 43\}.$
$\hat{C}_4 = \{1, 2, 3, 6, 22, 35, 43\}.$	$\hat{C}_5 = \{1, 2, 3, 6, 22, 36, 43\}. \\ \hat{C}_6 = \{1, 2, 3, 6, 22, 37, 43\}.$
$\hat{C}_7 = \{1, 2, 3, 6, 22, 43, 46\}.$	$\hat{C}_8 = \{1, 2, 3, 6, 22, 43, 48\}. \\ \hat{C}_9 = \{1, 2, 3, 6, 22, 43, 49\}.$
$\hat{C}_{10} = \{1, 2, 3, 6, 22, 43, 50\}.$	$\hat{C}_{11} = \{1, 2, 3, 6, 22, 43, 52\}. \\ \hat{C}_{12} = \{1, 2, 3, 6, 22, 43, 53\}.$
$\hat{C}_{13} = \{1, 2, 3, 6, 22, 43, 62\}.$	$\hat{C}_{14} = \{1, 2, 3, 6, 22, 43, 63\}. \\ \hat{C}_{15} = \{1, 2, 3, 6, 22, 43, 65\}.$
$\hat{C}_{16} = \{1, 2, 3, 6, 22, 43, 66\}.$	$\hat{C}_{17} = \{1, 2, 3, 6, 22, 43, 67\}. \\ \hat{C}_{18} = \{1, 2, 3, 6, 22, 43, 69\}.$
$\hat{C}_{19} = \{1, 2, 3, 6, 22, 43, 78\}.$	$\hat{C}_{20} = \{1, 2, 3, 6, 22, 43, 79\}. \\ \hat{C}_{21} = \{1, 2, 3, 6, 22, 43, 80\}.$
$\hat{C}_{22} = \{1, 2, 3, 6, 22, 43, 82\}.$	$\hat{C}_{23} = \{1, 2, 3, 6, 22, 43, 83\}. \\ \hat{C}_{24} = \{1, 2, 3, 6, 22, 43, 84\}.$

3.4 Construction (8,4)-arcs from Incomplete (7;4)-arc in PG(3,5)

A projective space PG(3, 5) consists of 156 points and 156 planes every plane contains 31 points and every point is on 31 plane, any two planes from this space intersect in five points, we will construct (8;4)-arcs from incomplete (7;4)-arc.

Let $\dot{D} = \{1, 2, 7, 32, 63, 100, 101\}$ where \dot{D} is an arc in PG(3, 5), the first step define points of \dot{D} in table 4.

We delete all points that lie on 4- secant from the projective space , the remaining points of the space are: 12, 14, 15, 16, 22, 23, 24, 26, 37, 39, 40, 41, 42, 43, 45, 46, 58, 59, 60, 61, 67, 68, 70, 71, 114, 115, 116, 127, 128, 129, 130, 133, 134, 135, 136, 152, 153, 154, 155, add one of the remaining points in each time to incomplete (14;7)-arc \dot{D} , then we get (15;7)-arc \dot{D} , where i = 1, 2, ..., 40:

$\dot{D}_1 = \{1, 2, 7, 12, 32, 63, 100, 101\},\$	$\dot{D}_2 = \{1, 2, 7, 14, 32, 63, 100, 101\},\$
$\dot{D}_3 = \{1, 2, 7, 15, 32, 63, 100, 101\},\$	$\dot{D}_4 = \{1, 2, 7, 16, 32, 63, 100, 101\},\$
$\dot{D}_5 = \{1, 2, 7, 22, 32, 63, 100, 101\},\$	$\dot{D}_6 = \{1, 2, 7, 23, 32, 63, 100, 101\},\$
$\dot{D}_7 = \{1, 2, 7, 24, 32, 63, 100, 101\},\$	$\dot{D}_8 = \{1, 2, 7, 26, 32, 63, 100, 101\}$

i	P_i											π_i										
1	(1,0,0,0)	2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70	74	78	82
2	(0,1,0,0)	1	6	7	8	9	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
3	(1,1,0,0)	3	6	11	16	21	22	26	30	34	39	43	47	51	56	60	64	68	73	77	81	85
4	(2,1,0,0)	5	6	13	15	20	22	26	30	34	41	45	49	53	55	59	63	67	72	76	80	84
5	(3,1,0,0)	4	6	12	17	19	22	26	30	34	40	44	48	52	57	61	65	69	71	75	79	83
6	(0,0,1,0)	1	2	3	4	5	22	23	24	25	38	39	40	41	54	55	56	57	70	71	72	73
7	(1,0,1,0)	2	7	11	15	19	22	27	32	37	38	43	48	53	54	59	64	69	70	75	80	85
8	(2,0,1,0)	2	9	13	17	21	22	29	31	36	38	45	47	52	54	61	63	68	70	77	79	84
9	(3,0,1,0)	2	8	12	16	20	22	28	33	35	38	44	49	51	54	60	65	67	70	76	81	83
10	(0,1,1,0)	1	10	11	12	13	22	23	24	25	42	43	44	45	62	63	64	65	82	83	84	85
11	(1,1,1,0)	3	7	10	17	20	22	27	32	37	39	42	49	52	56	61	62	67	73	76	79	82
12	(2,1,1,0)	5	9	10	16	19	22	29	31	36	41	42	48	51	55	60	62	69	72	75	81	82
13	(3,1,1,0)	4	8	10	15	21	22	28	33	35	40	42	47	53	57	59	62	68	71	77	80	82
14	(0,2,1,0)	1	18	19	20	21	22	23	24	25	46	47	48	49	66	67	68	69	74	75	76	77
15	(1,2,1,0)	4	7	13	16	18	22	27	32	37	40	45	46	51	57	60	63	66	71	74	81	84
16	(2,2,1,0)	3	9	12	15	18	22	29	31	36	39	44	46	53	56	59	65	66	73	74	80	83
17	(3,2,1,0)	5	8	11	17	18	22	28	33	35	41	43	46	52	55	61	64	66	72	74	79	85
18	(0,3,1,0)	1	14	15	16	17	22	23	24	25	50	51	52	53	58	59	60	61	78	79	80	81
19	(1,3,1,0)	5	7	12	14	21	22	27	32	37	41	44	47	50	55	58	65	68	72	77	78	83
20	(2,3,1,0)	4	9	11	14	20	22	29	31	36	40	43	49	50	57	58	64	67	71	76	78	85
21	(3,3,1,0)	3	8	13	14	19	22	28	33	35	39	45	48	50	56	58	63	69	73	75	78	84
22	(0,0,0,1)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
23	(1,0,0,1)	2	6	10	14	18	23	27	31	35	39	43	47	51	55	59	63	67	71	75	79	83
24	(2,0,0,1)	2	6	10	14	18	25	29	33	37	41	45	49	53	57	61	65	69	73	77	81	85
25	(3,0,0,1)	2	6	10	14	18	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84
26	(0,0,1,1)	1	2	3	4	5	26	27	28	29	42	43	44	45	58	59	60	61	74	75	76	77
27	(1,0,1,1)	2	7	11	15	19	23	26	33	36	39	42	49	52	55	58	65	68	71	74	81	84
28	(2,0,1,1)	2	9	13	17	21	25	26	32	35	41	42	48	51	57	58	64	67	73	74	80	83
29	(3,0,1,1)	2	8	12	16	20	24	26	31	37	40	42	47	53	56	58	63	69	72	74	79	85
30	(0,0,2,1)	1	2	3	4	5	34	35	36	37	50	51	52	53	66	67	68	69	82	83	84	85
31	(1,0,2,1)	2	8	12	16	20	23	29	32	34	39	45	48	50	55	61	64	66	71	77	80	82
32	(2,0,2,1)	2	7	11	15	19	25	28	31	34	41	44	47	50	57	60	63	66	73	76	79	82
33	(3,0,2,1)	2	9	13	17	21	24	27	33	34	40	43	49	50	56	59	65	66	72	75	81	82
34	(0,0,3,1)	1	2	3	4	5	30	31	32	33	46	47	48	49	62	63	64	65	78	79	80	81
35	(1,0,3,1)	2	9	13	17	21	23	28	30	37	39	44	46	53	55	60	62	69	71	76	78	85
36	(2,0,3,1)	2	8	12	16	20	25	27	30	36	41	43	46	52	57	59	62	68	73	75	78	84
37	(3,0,3,1)	2	7	11	15	19	24	29	30	35	40	45	46	51	56	61	62	67	72	77	78	83
38	(0,1,0,1)	1	6	7	8	9	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
39	(1,1,0,1)	3	6	11	16	21	23	27	31	35	38	42	46	50	57	61	65	69	72	76	80	84
40	(2,1,0,1)	5	6	13	15	20	25	29	33	37	38	42	46	50	56	60	64	68	71	75	79	83
41	(3,1,0,1)	4	6	12	17	19	24	28	32	36	38	42	46	50	55	59	63	67	73	77	81	85
42	(0,1,1,1)	1	10	11	12	13	26	27	28	29	38	39	40	41	66	67	68	69	78	79	80	81
43	(1,1,1,1)	3	7	10	17	20	23	26	33	36	38	43	48	53	57	60	63	66	72	77	78	83

Table 3. Points and planes in PG(3, 2).

i	P_i											π_i										
44	(2, 1, 1, 1)	5	9	10	16	19	25	26	32	35	38	45	47	52	56	59	65	66	71	76	78	85
45	(3, 1, 1, 1)	4	8	10	15	21	24	26	31	37	38	44	49	51	55	61	64	66	73	75	78	84
46	(0,1,2,1)	1	14	15	16	17	34	35	36	37	38	39	40	41	62	63	64	65	74	75	76	77
47	(1,1,2,1)	3	8	13	14	19	23	29	32	34	38	44	49	51	57	59	62	68	72	74	79	85
48	(2,1,2,1)	5	7	12	14	21	25	28	31	34	38	43	48	53	56	61	62	67	71	74	81	84
49	(3,1,2,1)	4	9	11	14	20	24	27	33	34	38	45	47	52	55	60	62	69	73	74	80	83
50	(0,1,3,1)	1	18	19	20	21	30	31	32	33	38	39	40	41	58	59	60	61	82	83	84	85
51	(1,1,3,1)	3	9	12	15	18	23	28	30	37	38	45	47	52	57	58	64	67	72	75	81	82
52	(2,1,3,1)	5	8	11	17	18	25	27	30	36	38	44	49	51	56	58	63	69	71	77	80	82
53	(3,1,3,1)	4	7	13	16	18	24	29	30	35	38	43	48	53	55	58	65	68	73	76	79	82
54	(0,2,0,1)	1	6	7	8	9	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
55	(1,2,0,1)	4	6	12	17	19	23	27	31	35	41	45	49	53	56	60	64	68	70	74	78	82
56	(2,2,0,1)	3	6	11	16	21	25	29	33	37	40	44	48	52	55	59	63	67	70	74	78	82
57	(3,2,0,1)	5	6	13	15	20	24	28	32	36	39	43	47	51	57	61	65	69	70	74	78	82
58	(0,2,1,1)	1	18	19	20	21	26	27	28	29	50	51	52	53	62	63	64	65	70	71	72	73
59	(1,2,1,1)	4	7	13	16	18	23	26	33	36	41	44	47	50	56	61	62	67	70	75	80	85
60	(2,2,1,1)	3	9	12	15	18	25	26	32	35	40	43	49	50	55	60	62	69	70	77	79	84
61	(3,2,1,1)	5	8	11	17	18	24	26	31	37	39	45	48	50	57	59	62	68	70	76	81	83
62	(0,2,2,1)	1	10	11	12	13	34	35	36	37	46	47	48	49	58	59	60	61	70	71	72	73
63	(1,2,2,1)	4	8	10	15	21	23	29	32	34	41	43	46	52	56	58	63	69	70	76	81	83
64	(2,2,2,1)	3	7	10	17	20	25	28	31	34	40	45	46	51	55	58	65	68	70	75	80	85
65	(3,2,2,1)	5	9	10	16	19	24	27	33	34	39	44	46	53	57	58	64	67	70	77	79	84
66	(0,2,3,1)	1	14	15	16	17	30	31	32	33	42	43	44	45	66	67	68	69	70	71	72	73
67	(1,2,3,1)	4	9	11	14	20	23	28	30	37	41	42	48	51	56	59	65	66	70	77	79	84
68	(2,2,3,1)	3	8	13	14	19	25	27	30	36	40	42	47	53	55	61	64	66	70	76	81	83
69	(3,2,3,1)	5	7	12	14	21	24	29	30	35	39	42	49	52	57	60	63	66	70	75	80	85
70	(0,3,0,1)	1	6	7	8	9	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
71	(1,3,0,1)	5	6	13	15	20	23	27	31	35	40	44	48	52	54	58	62	66	73	77	81	85
72	(2,3,0,1)	4	6	12	17	19	25	29	33	37	39	43	47	51	54	58	62	66	72	76	80	84
73	(3,3,0,1)	3	6	11	16	21	24	28	32	36	41	45	49	53	54	58	62	66	71	75	79	83
74	(0,3,1,1)	1	14	15	16	17	26	28	29	45	46	47	48	49	54	55	56	57	82	83	84	85
75	(1,3,1,1)	5	7	12	14	21	23	26	33	36	40	45	46	51	54	59	64	69	73	76	79	82
76	(2,3,1,1)	4	9	11	14	20	25	26	32	35	39	44	46	55	54	61	63	68	72	15	81	82
70	(3,3,1,1)	3	δ 10	15	14	19	24	26	31	37	41	43	46	52	54	60 55	65	67	71	77	80	82
78	(0,3,2,1)	1	18	19	20	21 10	34	30	30	31	42	43	44	43	54	33	30	57	78	75	80 70	δ1 04
19	(1,3,2,1)	3	ð	11	1/	18	25	29	34 21	34	40	42	47	55	54	50	64	67	15	15	70 70	δ4 02
δU 01	(2,3,2,1)	4	/	13	10	1ð	25	28	31	34 24	<u>39</u>	42	49	52	54	39	04	09 69	72	11	78 79	85 05
δ1 82	(3,3,2,1)	3	9	12	15	18	24	21	33	34	41	42	48	51	54	01 55	03	60	/1	70	18	85 77
82	(0,3,3,1)	1	10	11	12	13	30	31	32	33	50	51	52	53	54	35	56	57	74	15	76	11
83 04	(1,3,3,1)	2	9	10	16	19	23	28	30	31	40	43	49	50	54	01	03	68	13	74	80 70	83 05
84	(2,3,3,1)	4	8	10	15	21	25	27	30	36	39	45	48	50	54	60	65	67	12	74	/9	85
85	(3,3,3,1)	3	1	10	17	20	24	29	30	35	41	44	47	50	54	59	64	69	71	74	81	84

i	P_i						πί					
		1	7	12	17	22	27	32	37	42	47	52
1	(1.0.0.0)		57	62	67	72	77	82	87	92	97	102
	(-,-,-,-,-,		107	112	117	122	127	132	137	142	147	152
		1	7	8	9	10	11	32	33	34	35	36
2	(0,1,0,0)		57	58	59	60	61	82	83	84	85	86
			107	108	109	110	111	132	133	134	135	136
		6	7	16	20	24	28	32	41	45	49	53
3	(1,1,0,0)		57	66	70	74	78	82	91	95	99	103
			107	116	120	124	128	132	141	145	149	153
		4	7	14	21	23	30	32	39	46	48	55
4	(2,1,0,0)		57	64	71	73	80	82	89	96	98	105
			107	114	121	123	130	132	139	146	148	155
		5	7	15	18	26	29	32	40	43	51	54
5	(3,1,0,0)		57	65	68	76	79	82	90	93	101	104
			107	115	118	126	129	132	140	143	151	154
		3	7	13	19	25	31	32	38	44	50	56
6	(4,1,0,0)		57	63	69	75	81	82	88	94	100	106
			107	113	119	125	131	132	138	144	150	156
		1	2	3	4	5	6	32	33	34	35	36
7	(0,0,1,0)		37	38	39	40	41	42	43	44	45	46
			47	48	49	50	51	52	53	54	55	56
		2	11	16	21	26	31	32	37	42	47	52
8	(1,0,1,0)		61	66	71	76	81	85	90	95	100	105
			109	114	119	124	129	133	138	143	148	153
		2	9	14	19	24	29	32	37	42	47	52
9	(2,0,1,0)		59	64	69	74	79	86	91	96	101	106
			108	113	118	123	128	135	140	145	150	155
		2	10	15	20	25	30	32	37	42	47	52
10	(3,0,1,0)		60	65	70	75	80	83	88	93	98	103
		_	111	116	121	126	131	134	139	144	149	154
		2	8	13	18	23	28	32	37	42	47	52
11	(4,0,1,0)		58	63	68	73	78	84	89	94	99	104
			110	115	120	125	130	136	141	146	151	156
		1	27	28	29	30	31	32	33	34	35	36
12	(0,1,1,0)		77	78	79	80	81	97	98	99	100	101
			117	118	119	120	121	137	138	139	140	141
		6	11	15	19	23	27	32	41	45	49	53
13	(1,1,1,0)		61	65	69	73	77	85	89	93	97	106
			109	113	117	126	130	133	137	146	150	154
		4	9	16	18	25	27	32	39	46	48	55
14	(2,1,1,0)		59	66	68	75	77	86	88	95	97	104
			108	115	117	124	131	135	137	144	151	153
15	(3,1,1,0)	5	10	13	21	24	27	32	40	43	51	54

Table 4. Points and planes in PG(3, 5).

i	P _i						πί					
			60	63	71	74	77	83	91	94	97	105
			111	114	117	125	128	134	137	145	148	156
		3	8	14	20	26	27	32	38	44	50	56
16	(4,1,1,0)		58	64	70	76	77	84	90	96	97	103
			110	116	117	123	129	136	137	143	149	155
		1	17	18	19	20	21	32	33	34	35	36
17	(0,2,1,0)		67	68	69	70	71	102	103	104	105	106
			112	113	114	115	116	147	148	149	150	151
		5	11	14	17	25	28	32	40	43	51	54
18	(1,2,1,0)		61	64	67	75	78	85	88	96	99	102
			109	112	120	123	131	133	141	144	147	155
		6	9	13	17	26	30	32	41	45	49	53
19	(2,2,1,0)		59	63	67	76	80	86	90	94	98	102
			108	112	121	125	129	135	139	143	147	156
		3	10	16	17	23	29	32	38	44	50	56
20	(3,2,1,0)		60	66	67	73	79	83	89	95	101	102
			111	112	118	124	130	134	140	146	147	153
		4	8	15	17	24	31	32	39	46	48	55
21	(4,2,1,0)		58	65	67	74	81	84	91	93	100	102
			110	112	119	126	128	136	138	145	147	154
		1	22	23	24	25	26	32	33	34	35	36
22	(0,3,1,0)		72	73	74	75	76	87	88	89	90	91
			127	128	129	130	131	142	143	144	145	146
		4	11	13	20	22	29	32	39	46	48	55
23	(1,3,1,0)		61	63	70	72	79	85	87	94	101	103
			109	116	118	125	127	133	140	142	149	156
		3	9	15	21	22	28	32	38	44	50	56
24	(2,3,1,0)		59	65	71	72	78	86	87	93	99	105
			108	114	120	126	127	135	141	142	148	154
		6	10	14	18	22	31	32	41	45	49	53
25	(3,3,1,0)		60	64	68	72	81	83	87	96	100	104
			111	115	119	123	127	134	138	142	151	155
		5	8	16	19	22	30	32	40	43	51	54
26	(4,3,1,0)		58	66	69	72	80	84	87	95	98	106
			110	113	121	124	127	136	139	142	150	153
		1	12	13	14	15	16	32	33	34	35	36
27	(0,4,1,0)		62	63	64	65	66	92	93	94	95	96
			122	123	124	125	126	152	153	154	155	156
		3	11	12	18	24	30	32	38	44	50	56
28	(1,4,1,0)		61	62	68	74	80	85	91	92	98	104
			109	115	121	122	128	133	139	145	151	152
		5	9	12	20	23	31	32	40	43	51	54
29	(2,4,1,0)		59	62	70	73	81	86	89	92	100	103
			108	116	119	122	130	135	138	146	149	152

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	i	P_i						πί					
30 (3,4,1,0) 60 62 69 76 78 83 90 92 99 106 111 113 120 122 129 134 141 143 150 152 31 (4,4,1,0) 58 62 71 75 79 84 88 92 10 105 32 (0,0,0,1) 12 13 14 15 16 17 18 19 20 21 32 (0,0,0,1) 61 66 71 76 81 86 91 96 101 106 111 116 121 17 22 27 36 41 46 51 56 33 (1,0,0,1) 61 66 71 76 81 86 91 96 101 106 111 116 121 17 22 27 34 39 44 49 54 <			4	10	12	19	26	28	32	39	46	48	55
111 113 120 122 129 134 141 143 150 152 31 (4,4,1,0) 58 62 71 75 79 84 88 92 101 105 32 (0,0,0,1) 12 3 4 5 6 7 84 88 92 101 105 32 (0,0,0,1) 12 3 4 5 6 7 84 88 92 0 31 33 (1,0,0,1) 12 13 14 15 16 17 18 19 20 21 34 (2,0,0,1) 61 66 71 76 81 86 91 96 101 106 <td>30</td> <td>(3,4,1,0)</td> <td></td> <td>60</td> <td>62</td> <td>69</td> <td>76</td> <td>78</td> <td>83</td> <td>90</td> <td>92</td> <td>99</td> <td>106</td>	30	(3,4,1,0)		60	62	69	76	78	83	90	92	99	106
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				111	113	120	122	129	134	141	143	150	152
31 (4,4,1,0) 58 62 71 75 79 84 88 92 101 105 32 (0,0,0,1) 1 2 3 4 5 6 7 8 9 10 11 32 (0,0,0,1) 12 13 14 15 16 17 18 19 20 21 33 (1,0,0,1) 61 66 71 76 81 86 91 96 101 106 34 (2,0,0,1) 61 66 71 76 81 86 91 96 100 106 34 (2,0,0,1) 109 114 119 124 129 134 139 144 149 154 35 (3,0,0,1) 60 65 70 75 80 85 90 95 100 105 36 (4,0,0,1) 58 68 68 73 78 <td></td> <td></td> <td>6</td> <td>8</td> <td>12</td> <td>21</td> <td>25</td> <td>29</td> <td>32</td> <td>41</td> <td>45</td> <td>49</td> <td>53</td>			6	8	12	21	25	29	32	41	45	49	53
110 114 118 122 131 136 140 144 148 152 32 (0,0,0,1) 12 13 14 15 16 17 18 9 10 11 32 (0,0,0,1) 12 13 14 15 16 17 18 9 20 21 33 (1,0,0,1) 61 66 71 76 81 86 91 96 101 106 34 (2,0,0,1) 61 66 71 72 27 34 39 44 49 54 34 (2,0,0,1) 59 64 69 74 79 84 89 94 104 154 35 (3,0,0,1) 60 65 70 75 80 85 90 95 100 105 36 (4,0,0,1) 58 66 68 73 78 83 88 93	31	(4,4,1,0)		58	62	71	75	79	84	88	92	101	105
32 0,0,0,1 1 2 3 4 5 6 7 8 9 10 11 32 0,0,0,1 12 13 14 15 16 17 18 19 20 21 33 (1,0,0,1) 2 7 12 17 22 27 36 41 46 51 56 34 (1,0,0,1) 2 7 12 17 22 27 34 39 44 49 54 34 (2,0,0,1) 59 64 69 74 79 84 89 94 99 104 35 (3,0,0,1) 2 7 12 17 22 27 35 40 45 50 55 36 (4,0,0,1) 2 7 12 17 22 27 33 38 43 48 53 37 (0,1,0,1) 10 15				110	114	118	122	131	136	140	144	148	152
32 (0,0,0,1) 12 13 14 15 16 17 18 19 20 21 33 (1,0,0,1) 2 23 24 25 26 27 28 29 30 31 33 (1,0,0,1) 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 34 (2,0,0,1) 59 64 69 74 79 84 89 94 99 104 109 114 119 124 129 134 139 144 149 154 35 (3,0,0,1) 60 65 70 75 80 85 90 95 100 105 36 (4,0,0,1) 177 78 79 80 81 102 103 104 105 <td< td=""><td></td><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td></td<>			1	2	3	4	5	6	7	8	9	10	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	32	(0,0,0,1)		12	13	14	15	16	17	18	19	20	21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				22	23	24	25	26	27	28	29	30	31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	7	12	17	22	27	36	41	46	51	56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	33	(1,0,0,1)		61	66	71	76	81	86	91	96	101	106
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				111	116	121	126	131	136	141	146	151	156
34 (2,0,0,1) 59 64 69 74 79 84 89 94 99 104 109 114 119 124 129 134 139 144 149 154 35 (3,0,0,1) 60 65 70 75 80 85 90 95 100 105 36 (4,0,0,1) 58 65 68 73 78 83 88 93 98 103 36 (4,0,0,1) 58 65 68 73 78 83 88 93 98 103 37 (0,1,0,1) 77 78 79 80 81 102 103 104 105 106 127 128 129 130 131 152 153 154 155 156 38 (1,1,0,1) 61 65 69 73 77 86 90 94 98 <t< td=""><td></td><td></td><td>2</td><td>7</td><td>12</td><td>17</td><td>22</td><td>27</td><td>34</td><td>39</td><td>44</td><td>49</td><td>54</td></t<>			2	7	12	17	22	27	34	39	44	49	54
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	(2,0,0,1)		59	64	69	74	79	84	89	94	99	104
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				109	114	119	124	129	134	139	144	149	154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	7	12	17	22	27	35	40	45	50	55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35	(3,0,0,1)		60	65	70	75	80	85	90	95	100	105
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				110	115	120	125	130	135	140	145	150	155
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	7	12	17	22	27	33	38	43	48	53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	36	(4,0,0,1)		58	63	68	73	78	83	88	93	98	103
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				108	113	118	123	128	133	138	143	148	153
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	7	8	9	10	11	52	53	54	55	56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	37	(0,1,0,1)		77	78	79	80	81	102	103	104	105	106
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				127	128	129	130	131	152	153	154	155	156
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	7	16	20	24	28	36	40	44	48	52
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	(1,1,0,1)		61	65	69	73	77	86	90	94	98	102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				111	115	119	123	127	136	140	144	148	152
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	7	14	21	23	30	34	41	43	50	52
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	(2,1,0,1)		59	66	68	75	77	84	91	93	100	102
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				109	116	118	125	127	134	141	143	150	152
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	7	15	18	26	29	35	38	46	49	52
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	(3,1,0,1)		60	63	71	74	77	85	88	96	99	102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				110	113	121	124	127	135	138	146	149	152
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	7	13	19	25	31	33	39	45	51	52
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	(4,1,0,1)		58	64	70	76	77	83	89	95	101	102
42 (0,2,0,1) 1 7 8 9 10 11 42 43 44 45 46 42 (0,2,0,1) 67 68 69 70 71 92 93 94 95 96 117 118 119 120 121 142 143 144 145 146				108	114	120	126	127	133	139	145	151	152
42 (0,2,0,1) 67 68 69 70 71 92 93 94 95 96 117 118 119 120 121 142 143 144 145 146			1	7	8	9	10	11	42	43	44	45	46
117 118 119 120 121 142 143 144 145 146	42	(0,2,0,1)		67	68	69	70	71	92	93	94	95	96
				117	118	119	120	121	142	143	144	145	146
5 7 15 18 26 29 36 39 42 50 53			5	7	15	18	26	29	36	39	42	50	53
43 (1,2,0,1) 61 64 67 75 78 86 89 92 100 103	43	(1,2,0,1)		61	64	67	75	78	86	89	92	100	103
111 114 117 125 128 136 139 142 150 153				111	114	117	125	128	136	139	142	150	153
44 (2 2 0 1) 6 7 16 20 24 28 34 38 42 51 55	11	(2201)	6	7	16	20	24	28	34	38	42	51	55
$\begin{vmatrix} ++ \\ -++ \\ -++ \end{vmatrix}$ $\begin{vmatrix} (2,2,0,1) \\ 59 \\ 63 \\ 67 \\ 76 \\ 80 \\ 84 \\ 88 \\ 92 \\ 101 \\ 105 \end{vmatrix}$	44	(2,2,0,1)		59	63	67	76	80	84	88	92	101	105

i	P _i						πί					
			109	113	117	126	130	134	138	142	151	155
		3	7	13	19	25	31	35	41	42	48	54
45	(3,2,0,1)		60	66	67	73	79	85	91	92	98	104
			110	116	117	123	129	135	141	142	148	154
		4	7	14	21	23	30	33	40	42	49	56
46	(4,2,0,1)		58	65	67	74	81	83	90	92	99	106
			108	115	117	124	131	133	140	142	149	156
		1	7	8	9	10	11	47	48	49	50	51
47	(0,3,0,1)		72	73	74	75	76	97	98	99	100	101
			122	123	124	125	126	147	148	149	150	151
		4	7	14	21	23	30	36	38	45	47	54
48	(1,3,0,1)		61	63	70	72	79	86	88	95	97	104
			111	113	120	122	129	136	138	145	147	154
		3	7	13	19	25	31	34	40	46	47	53
49	(2,3,0,1)		59	65	71	72	78	84	90	96	97	103
			109	115	121	122	128	134	140	146	147	153
		6	7	16	20	24	28	35	39	43	47	56
50	(3,3,0,1)		60	64	68	72	81	85	89	93	97	106
			110	114	118	122	131	135	139	143	147	156
		5	7	15	18	26	29	33	41	44	47	55
51	(4,3,0,1)		58	66	69	72	80	83	91	94	97	105
			108	116	119	122	130	133	141	144	147	155
		1	7	8	9	10	11	37	38	39	40	41
52	(0,4,0,1)		62	63	64	65	66	87	88	89	90	91
			112	113	114	115	116	137	138	139	140	141
		3	7	13	19	25	31	36	37	43	49	55
53	(1,4,0,1)		61	62	68	74	80	86	87	93	99	105
			111	112	118	124	130	136	137	143	149	155
		5	7	15	18	26	29	34	37	45	48	56
54	(2,4,0,1)		59	62	70	73	81	84	87	95	98	106
			109	112	120	123	131	134	137	145	148	156
		4	7	14	21	23	30	35	37	44	51	53
55	(3,4,0,1)		60	62	69	76	78	85	87	94	101	103
			110	112	119	126	128	135	137	144	151	153
		6	7	16	20	24	28	33	37	46	50	54
56	(4,4,0,1)		58	62	71	75	79	83	87	96	100	104
		_	108	112	121	125	129	133	137	146	150	154
		1	2	3	4	5	6	132	133	134	135	136
57	(0,0,1,1)		137	138	139	140	141	142	143	144	145	146
			147	148	149	150	151	152	153	154	155	156
		2	11	16	21	26	31	36	41	46	51	56
58	(1,0,1,1)		60	65	70	75	80	84	89	94	99	104
			108	113	118	123	128	132	137	142	147	152
59	(2,0,1,1)	2	9	14	19	24	29	34	39	44	49	54

i	Pi						πί					
			61	66	71	76	81	83	88	93	98	103
			110	115	120	125	130	132	137	142	147	152
		2	10	15	20	25	30	35	40	45	50	55
60	(3.0.1.1)		58	63	68	73	78	86	91	96	101	106
			109	114	119	124	129	132	137	142	147	152
		2	8	13	18	23	28	33	38	43	48	53
61	(4.0.1.1)		59	64	69	 74	20 79	85	90	95	100	105
	(., ., ., ., .)		111	116	121	126	131	132	137	142	147	152
		1	27	28	29	30	31	52	53	54	55	56
62	(0.1.1.1)		72	73	74	75	76	92	93	94	95	96
700750	(-)-)-)-)		112	113	114	115	116	132	133	134	135	136
		6	11	15	19	23	27	36	40	44	48	52
63	(1.1.1.1)		60	64	68	72	81	84	88	92	101	105
			108	112	121	125	129	132	141	145	149	153
		4	9	16	18	25	27	34	41	43	50	52
64	(2, 1, 1, 1)		61	63	70	72	79	83	90	92	99	106
			110	112	119	126	128	132	139	146	148	155
		5	10	13	21	24	27	35	38	46	49	52
65	(3,1,1,1)		58	66	69	72	80	86	89	92	100	103
			109	112	120	123	131	132	140	143	151	154
		3	8	14	20	26	27	33	39	45	51	52
66	(4,1,1,1)		59	65	71	72	78	85	91	92	98	104
			111	112	118	124	130	132	138	144	150	156
		1	17	18	19	20	21	42	43	44	45	46
67	(0,2,1,1)		77	78	79	80	81	87	88	89	90	91
			122	123	124	125	126	132	133	134	135	136
		5	11	14	17	25	28	36	39	42	50	53
68	(1,2,1,1)		60	63	71	74	77	84	87	95	98	106
			108	116	119	122	130	132	140	143	151	154
		6	9	13	17	26	30	34	38	42	51	55
69	(2,2,1,1)		61	65	69	73	77	83	87	96	100	104
			110	114	118	122	131	132	141	145	149	153
		3	10	16	17	23	29	35	41	42	48	54
70	(3,2,1,1)		58	64	70	76	77	86	87	93	99	105
			109	115	121	122	128	132	138	144	150	156
		4	8	15	17	24	31	33	40	42	49	56
71	(4,2,1,1)		59	66	68	75	77	85	87	94	101	103
			111	113	120	122	129	132	139	146	148	155
		1	22	23	24	25	26	47	48	49	50	51
72	(0,3,1,1)		62	63	64	65	66	102	103	104	105	106
			117	118	119	120	121	132	133	134	135	136
		4	11	13	20	22	29	36	38	45	47	54
73	(1,3,1,1)		60	62	69	76	78	84	91	93	100	102
			108	115	117	124	131	132	139	146	148	155

i	P_i						πί					
		3	9	15	21	22	28	34	40	46	47	53
74	(2,3,1,1)		61	62	68	74	80	83	89	95	101	102
			110	116	117	123	129	132	138	144	150	156
		6	10	14	18	22	31	35	39	43	47	56
75	(3,3,1,1)		58	62	71	75	79	86	90	94	98	102
			109	113	117	126	130	132	141	145	149	153
		5	8	16	19	22	30	33	41	44	47	55
76	(4,3,1,1)		59	62	70	73	81	85	88	96	99	102
			111	114	117	125	128	132	140	143	151	154
		1	12	13	14	15	16	37	38	39	40	41
77	(0,4,1,1)		67	68	69	70	71	97	98	99	100	101
			127	128	129	130	131	132	133	134	135	136
		3	11	12	18	24	30	36	37	43	49	55
78	(1411)		60	66	67	73	79	84	90		96	97
	(1,4,1,1)		103	108	114	120	126	127	132	138	144	150
			156									
		5	9	12	20	23	31	34	37	45	48	56
79	(2,4,1,1)		61	64	67	75	78	83	91	94	97	105
			110	113	121	124	127	132	140	143	151	154
		4	10	12	19	26	28	35	37	44	51	53
80	(3,4,1,1)		58	65	67	74	81	86	88	95	97	104
			109	116	118	125	127	132	139	146	148	155
		6	8	12	21	25	29	33	37	46	50	54
81	(4,4,1,1)		59	63	67	76	80	85	89	93	97	106
			111	115	119	123	127	132	141	145	149	153
		1	2	3	4	5	6	82	83	84	85	86
82	(0,0,2,1)		87	88	89	90	91	92	93	94	95	96
			97	98	99	100	101	102	103	104	105	106
		2	10	15	20	25	30	36	41	46	51	56
83	(1,0,2,1)		59	64	69	74	79	82	87	92	97	102
			110	115	120	125	130	133	138	143	148	153
		2	11	16	21	26	31	34	39	44	49	54
84	(2,0,2,1)		58	63	68	73	78	82	87	92	97	102
			111	116	121	126	131	135	140	145	150	155
		2	8	13	18	23	28	35	40	45	50	55
85	(3,0,2,1)		61	66	71	76	81	82	87	92	97	102
			108	113	118	123	128	134	139	144	149	154
		2	9	14	19	24	29	33	38	43	48	53
86	(4,0,2,1)		60	65	70	75	80	82	87	92	97	102
			109	114	119	124	129	136	141	146	151	156
		1	22	23	24	25	26	52	53	54	55	56
87	(0,1,2,1)		67	68	69	70	71	82	83	84	85	86
			122	123	124	125	126	137	138	139	140	141
88	(1,1,2,1)	6	10	14	18	22	31	36	40	44	48	52

i	P _i						πί					
			59	63	67	76	80	82	91	95	99	103
			110	114	118	122	131	133	137	146	150	154
89		4	11	13	20	22	29	34	41	43	50	52
	(2,1,2,1)		58	65	67	74	81	82	89	96	98	105
			111	113	120	122	129	135	137	144	151	153
		5	8	16	19	22	30	35	38	46	49	52
90	(3,1,2,1)		61	64	67	75	78	82	90	93	101	104
			108	116	119	122	130	134	137	145	148	156
		3	9	15	21	22	28	33	39	45	51	52
91	(4,1,2,1)		60	66	67	73	79	82	88	94	100	106
			109	115	121	122	128	136	137	143	149	155
		1	27	28	29	30	31	42	43	44	45	46
92	(0,2,2,1)		62	63	64	65	66	82	83	84	85	86
	20.00 da for are found		127	128	129	130	131	147	148	149	150	151
		5	10	13	21	24	27	36	39	42	50	53
93	(1,2,2,1)		59	62	70	73	81	82	90	93	101	104
			110	113	121	124	127	133	141	144	147	155
		6	11	15	19	23	27	34	38	42	51	55
94	(2,2,2,1)		58	62	71	75	79	82	91	95	99	103
			111	115	119	123	127	135	139	143	147	156
		3	8	14	20	26	27	35	41	42	48	54
95	(3,2,2,1)		61	62	68	74	80	82	88	94	100	106
			108	114	120	126	127	134	140	146	147	153
		4	9	16	18	25	27	33	40	42	49	56
96	(4,2,2,1)		60	62	69	76	78	82	89	96	98	105
			109	116	118	125	127	136	138	145	147	154
		1	12	13	14	15	16	47	48	49	50	51
97	(0,3,2,1)		77	78	79	80	81	82	83	84	85	86
			112	113	114	115	116	142	143	144	145	146
		4	10	12	19	26	28	36	38	45	47	54
98	(1,3,2,1)		59	66	68	75	77	82	89	96	98	105
			110	112	119	126	128	133	140	142	149	156
		3	11	12	18	24	30	34	40	46	47	53
99	(2,3,2,1)		58	64	70	76	77	82	88	94	100	106
			111	112	118	124	130	135	141	142	148	154
		6	8	12	21	25	29	35	39	43	47	56
100	(3,3,2,1)		61	65	69	73	77	82	91	95	99	103
			108	112	121	125	129	134	138	142	151	155
		5	9	12	20	23	31	33	41	44	47	55
101	(4,3,2,1)		60	63	71	74	77	82	90	93	101	104
			109	112	120	123	131	136	139	142	150	153
		1	17	18	19	20	21	37	38	39	40	41
102	(0,4,2,1)		72	73	74	75	76	82	83	84	85	86
			117	118	119	120	121	152	153	154	155	156

i	P_i						πί					
		3	10	16	17	23	29	36	37	43	49	55
103	(1,4,2,1)		59	65	71	72	78	82	88	94	100	106
			110	116	117	123	129	133	139	145	151	152
		5	11	14	17	25	28	34	37	45	48	56
104	(2,4,2,1)		58	66	69	72	80	82	90	93	101	104
			111	114	117	125	128	135	138	146	149	152
		4	8	15	17	24	31	35	37	44	51	53
105	(3,4,2,1)		61	63	70	72	79	82	89	96	98	105
			108	115	117	124	131	134	141	143	150	152
		6	9	13	17	26	30	33	37	46	50	54
106	(4,4,2,1)		60	64	68	72	81	82	91	95	99	103
			109	113	117	126	130	136	140	144	148	152
		3	8	14	20	26	27	34	40	46	47	53
124	(2,3,3,1)		60	66	67	73	79	86	87	93	99	105
			107	113	119	125	131	133	139	145	151	152
		6	11	15	19	23	27	35	39	43	47	56
125	(3,3,3,1)		59	63	67	76	80	83	87	96	100	104
			107	116	120	124	128	136	140	144	148	152
		5	10	13	21	24	27	33	41	44	47	55
126	(4,3,3,1)		61	64	67	75	78	84	87	95	98	106
			107	115	118	126	129	135	138	146	149	152
	(0,4,3,1)	1	22	23	24	25	26	37	38	39	40	41
127			77	78	79	80	81	92	93	94	95	96
			107	108	109	110	111	147	148	149	150	151
	(1,4,3,1)	3	9	15	21	22	28	36	37	43	49	55
128			58	64	70	76	77	85	91	92	98	104
			107	113	119	125	131	134	140	146	147	153
		5	8	16	19	22	30	34	37	45	48	56
129	(2,4,3,1)		60	63	71	74	77	86	89	92	100	103
			107	115	118	126	129	133	141	144	147	155
		4	11	13	20	22	29	35	37	44	51	53
130	(3,4,3,1)		59	66	68	75	77	83	90	92	99	106
			107	114	121	123	130	136	138	145	147	154
		6	10	14	18	22	31	33	37	46	50	54
131	(4,4,3,1)		61	65	69	73	77	84	88	92	101	105
			107	116	120	124	128	135	139	143	147	156
		1	2	3	4	5	6	57	58	59	60	61
132	(0,0,4,1)		62	63	64	65	66	67	68	69	70	71
			72	73	74	75	76	77	78	79	80	81
		2	8	13	18	23	28	36	41	46	51	56
133	(1,0,4,1)		57	62	67	72	77	83	88	93	98	103
			109	114	119	124	129	135	140	145	150	155
121	(2041)	2	10	15	20	25	30	34	39	44	49	54
1.54	(2,0,4,1)		57	62	67	72	77	85	90	95	100	105

i	P_i						πί					
			108	113	118	123	128	136	141	146	151	156
		2	9	14	19	24	29	35	40	45	50	55
135	(3,0,4,1)		57	62	67	72	77	84	89	94	99	104
			111	116	121	126	131	133	138	143	148	153
		2	11	16	21	26	31	33	38	43	48	53
136	(4,0,4,1)		57	62	67	72	77	86	91	96	101	106
			110	115	120	125	130	134	139	144	149	154
		1	12	13	14	15	16	52	53	54	55	56
137	(0,1,4,1)		57	58	59	60	61	87	88	89	90	91
			117	118	119	120	121	147	148	149	150	151
		6	8	12	21	25	29	36	40	44	48	52
138	(1,1,4,1)		57	66	70	74	78	83	87	96	100	104
			109	113	117	126	130	135	139	143	147	156
		4	10	12	19	26	28	34	41	43	50	52
139	(2, 1, 4, 1)		57	64	71	73	80	85	87	94	101	103
			108	115	117	124	131	136	138	145	147	154
		5	9	12	20	23	31	35	38	46	49	52
140	(3,1,4,1)		57	65	68	76	79	84	87	95	98	106
			111	114	117	125	128	133	141	144	147	155
		3	11	12	18	24	30	33	39	45	51	52
141	(4, 1, 4, 1)		57	63	69	75	81	86	87	93	99	105
			110	116	117	123	129	134	140	146	147	153
		1	22	23	24	25	26	42	43	44	45	46
142	(0,2,4,1)		57	58	59	60	61	97	98	99	100	101
			112	113	114	115	116	152	153			
		154	155	156								
		5	8	16	19	22	30	36	39	42	50	53
143	(1,2,4,1)		57	65	68	76	79	83	91	94	97	105
			109	112	120	123	131	135	138	146	149	152
		6	10	14	18	22	31	34	38	42	51	55
144	(2,2,4,1)		57	66	70	74	78	85	89	93	97	106
			108	112	121	125	129	136	140	144	148	152
		3	9	15	21	22	28	35	41	42	48	54
145	(3,2,4,1)		57	63	69	75	81	84	90	96	97	103
			111	112	118	124	130	133	139	145	151	152
		4	11	13	20	22	29	33	40	42	49	56
146	(4,2,4,1)		57	64	71	73	80	86	88	95	97	104
			110	112	119	126	128	134	141	143	150	152
		1	17	18	19	20	21	47	48	49	50	51
147	(0,3,4,1)		57	58	59	60	61	92	93	94	95	96
			127	128	129	130	131	137	138	139	140	141
		4	8	15	17	24	31	36	38	45	47	54
148	(1,3,4,1)		57	64	71	73	80	83	90	92	99	106
			109	116	118	125	127	135	137	144	151	153

i	P_i						πί					
		3	10	16	17	23	29	34	40	46	47	53
149	(2,3,4,1)		57	63	69	75	81	85	91	92	98	104
			108	114	120	126	127	136	137	143	149	155
		6	9	13	17	26	30	35	39	43	47	56
150	(3,3,4,1)		57	66	70	74	78	84	88	92	101	105
			111	115	119	123	127	133	137	146	150	154
		5	11	14	17	25	28	33	41	44	47	55
151	(4,3,4,1)		57	65	68	76	79	86	89	92	100	103
			110	113	121	124	127	134	137	145	148	156
		1	27	28	29	30	31	37	38	39	40	41
152	(0,4,4,1)		57	58	59	60	61	102	103	104	105	106
			122	123	124	125	126	142	143	144	145	146
		3	8	14	20	26	27	36	37	43	49	55
153	(1,4,4,1)		57	63	69	75	81	83	89	95	101	102
			109	115	121	122	128	135	141	142	148	154
		5	10	13	21	24	27	34	37	45	48	56
154	(2,4,4,1)		57	65	68	76	79	85	88	96	99	102
			108	116	119	122	130	136	139	142	150	153
		4	9	16	18	25	27	35	37	44	51	53
155	(3,4,4,1)		57	64	71	73	80	84	91	93	100	102
			111	113	120	122	129	133	140	142	149	156
		6	11	15	19	23	27	33	37	46	50	54
156	(4,4,4,1)		57	66	70	74	78	86	90	94	98	102
			110	114	118	122	131	134	138	142	151	155

 $\dot{D}_9 = \{1, 2, 7, 32, 37, 63, 100, 101\},\$ $\dot{D}_{11} = \{1, 2, 7, 32, 40, 63, 100, 101\},\$ $\dot{D}_{13} = \{1, 2, 7, 32, 42, 63, 100, 101\},\$ $\dot{D}_{15} = \{1, 2, 7, 32, 45, 63, 100, 101\},\$ $\dot{D}_{17} = \{1, 2, 7, 32, 58, 63, 100, 101\},\$ $\dot{D}_{19} = \{1, 2, 7, 32, 60, 63, 100, 101\},\$ $\dot{D}_{21} = \{1, 2, 7, 32, 63, 67, 100, 101\},\$ $\dot{D}_{23} = \{1, 2, 7, 32, 63, 70, 100, 101\},\$ $\dot{D}_{25} = \{1, 2, 7, 32, 63, 100, 101, 112\},\$ $\dot{D}_{27} = \{1, 2, 7, 32, 63, 100, 101, 115\},\$ $\dot{D}_{29} = \{1, 2, 7, 32, 63, 100, 101, 127\},\$ $\dot{D}_{31} = \{1, 2, 7, 32, 63, 100, 101, 129\},\$ $\dot{D}_{33} = \{1, 2, 7, 32, 63, 100, 101, 133\},\$ $\dot{D}_{35} = \{1, 2, 7, 32, 63, 100, 101, 135\},\$ $\dot{D}_{37} = \{1, 2, 7, 32, 63, 100, 101, 152\},\$ $\dot{D}_{39} = \{1, 2, 7, 32, 63, 100, 101, 154\},\$

 $\dot{D}_{10} = \{1, 2, 7, 32, 39, 63, 100, 101\},\$ $\dot{D}_{12} = \{1, 2, 7, 32, 41, 63, 100, 101\},\$ $\dot{D}_{14} = \{1, 2, 7, 32, 43, 63, 100, 101\},\$ $\dot{D}_{16} = \{1, 2, 7, 32, 46, 63, 100, 101\},\$ $\dot{D}_{18} = \{1, 2, 7, 32, 59, 63, 100, 101\},\$ $\dot{D}_{20} = \{1, 2, 7, 32, 61, 63, 100, 101\},\$ $\dot{D}_{22} = \{1, 2, 7, 32, 63, 68, 100, 101\},\$ $\dot{D}_{24} = \{1, 2, 7, 32, 63, 71, 100, 101\},\$ $\dot{D}_{26} = \{1, 2, 7, 32, 63, 100, 101, 114\},\$ $\dot{D}_{28} = \{1, 2, 7, 32, 63, 100, 101, 116\},\$ $\dot{D}_{30} = \{1, 2, 7, 32, 63, 100, 101, 128\},\$ $\dot{D}_{32} = \{1, 2, 7, 32, 63, 100, 101, 130\},\$ $\dot{D}_{34} = \{1, 2, 7, 32, 63, 100, 101, 134\},\$ $\dot{D}_{36} = \{1, 2, 7, 32, 63, 100, 101, 136\},\$ $\dot{D}_{38} = \{1, 2, 7, 32, 63, 100, 101, 153\},\$ $\dot{D}_{40} = \{1, 2, 7, 32, 63, 100, 101, 155\}.$

4 The Construction (K+2, n)-arcs from (K, n)-arc in PG(3, q)

There are two methods to construction (k + 2; n)-arcs, which are explained below:

4.1 The First Method

construction of (k + 2; n)-arcs directly from incomplete (k; n)-arc as following:

- (i) we denote the set of arc points in the table of points and planes for PG(3,q). 2- we delete all points which lie in n-secant from the projective space PG(3,q).
- (ii) we add two points from the remaining points to (k; n)-arc to obtain (k+2; n)- arcs provided that the two points do not lie on a plane that contain (n 1)-secant.

A Construction of (9;5)-arcs from (7;5)-arc in PG(3,2)

Let $\hat{A} = \{1, 2, 3, 4, 5, 6, 13\}$ is a (7;5)-arc in PG(3, 2), we can construct (9;5)-arcs as follow:

- (i) we designate the arc points \hat{A} in table 3.
- (ii) we delete the points that lie on 5-secant, the remaining points are: 7, 8, 10, 12, 14, 15.
- (iii) we add two from the remaining points to the arc \hat{A} (provided that the two points do not lie on a plane of type 4-secant), we obtain (9;5)-arcs

$$\hat{A}_1 = \{1, 2, 3, 4, 5, 6, 7, 13, 15\}, \hat{A}_2 = \{1, 2, 3, 4, 5, 6, 8, 12, 13\}, \hat{A}_3 = \{1, 2, 3, 4, 5, 6, 10, 13, 14\}$$

A Construction of (8;4)-arcs from (6;4)-arc in PG(3,4)

Let $\hat{A} = \{1, 2, 3, 6, 22, 43\}$ is a (6;4)-arc in PG(3, 4), to construction (8;4)-arc \hat{A}_i we follow the following steps:

- (i) determine the points of arc on the table 3.
- (ii) eliminate the points that lie on 4-secant.
- (iii) adding two of the remaining space points to the arc Â, provided that one of the points does not lie on 3-secant. we get the following (8;4)-arcs:

 $1 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 50\}$ $3 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 53\}$ $5 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 69\}$ $7 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 84\}$ $9 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 52\}$ $11 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 67\}$ $13 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 83\}$ $15 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 50\}$ $17 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 53\}$ $19 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 67\}$ $21 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 82\}$ $23 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 84\}$ $25 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 48\}$ $27 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 62\}$ $29 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 78\}$ $31 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 46\}$ $33 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 49\}$ $35 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 63\}$ $37 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 78\}$ $39 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 80\}$ $41 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 46\}$ $43 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 62\}$ $45 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 65\}$ $47 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 79\}$ $49 - \hat{A} = \{1, 2, 3, 6, 22, 46, 43, 69\}$ $51 - \hat{A} = \{1, 2, 3, 6, 22, 46, 43, 84\}$ $53 - \hat{A} = \{1, 2, 3, 6, 22, 48, 43, 67\}$ $55 - \hat{A} = \{1, 2, 3, 6, 22, 48, 43, 83\}$

$2 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 52\}$
$4 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 66\}$
$6 - \hat{A} = \{1, 2, 3, 6, 22, 31, 43, 82\}$
$8 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 50\}$
$10 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 66\}$
$12 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 82\}$
$14 - \hat{A} = \{1, 2, 3, 6, 22, 32, 43, 84\}$
$16 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 52\}$
$18 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 66\}$
$20 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 69\}$
$22 - \hat{A} = \{1, 2, 3, 6, 22, 33, 43, 83\}$
$24 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 46\}$
$26 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 49\}$
$28 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 65\}$
$30 - \hat{A} = \{1, 2, 3, 6, 22, 35, 43, 80\}$
$32 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 48\}$
$34 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 62\}$
$36 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 65\}$
$38 - \hat{A} = \{1, 2, 3, 6, 22, 36, 43, 79\}$
$40 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 81\}$
$42 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 49\}$
$44 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 63\}$
$46 - \hat{A} = \{1, 2, 3, 6, 22, 37, 43, 78\}$
$48 - \hat{A} = \{1, 2, 3, 6, 22, 46, 43, 67\}$
$50 - \hat{A} = \{1, 2, 3, 6, 22, 46, 43, 83\}$
$52 - \hat{A} = \{1, 2, 3, 6, 22, 48, 43, 66\}$
$54 - \hat{A} = \{1, 2, 3, 6, 22, 48, 43, 82\}$
$56 - \hat{A} = \{1, 2, 3, 6, 22, 48, 43, 84\}$

 $57 - \hat{A} = \{1, 2, 3, 6, 22, 49, 43, 66\}$ $59 - \hat{A} = \{1, 2, 3, 6, 22, 49, 43, 69\}$ $61 - \hat{A} = \{1, 2, 3, 6, 22, 49, 43, 84\}$ $63 - \hat{A} = \{1, 2, 3, 6, 22, 50, 43, 65\}$ $65 - \hat{A} = \{1, 2, 3, 6, 22, 50, 43, 80\}$ $67 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 63\}$ $68 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 65\}$ $70 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 79\}$ $72 - \hat{A} = \{1, 2, 3, 6, 22, 53, 43, 62\}$ $74 - \hat{A} = \{1, 2, 3, 6, 22, 53, 43, 65\}$ $76 - \hat{A} = \{1, 2, 3, 6, 22, 53, 43, 79\}$ $78 - \hat{A} = \{1, 2, 3, 6, 22, 63, 43, 66\}$ $80 - \hat{A} = \{1, 2, 3, 6, 22, 65, 43, 66\}$ $82 - \hat{A} = \{1, 2, 3, 6, 22, 65, 43, 69\}$ $84 - \hat{A} = \{1, 2, 3, 6, 22, 66, 43, 80\}$ $86 - \hat{A} = \{1, 2, 3, 6, 22, 67, 43, 80\}$ $88 - \hat{A} = \{1, 2, 3, 6, 22, 69, 43, 79\}$ $89 - \hat{A} = \{1, 2, 3, 6, 22, 78, 43, 83\}$ $91 - \hat{A} = \{1, 2, 3, 6, 22, 79, 43, 82\}$ $93 - \hat{A} = \{1, 2, 3, 6, 22, 80, 43, 82\}$ $95 - \hat{A} = \{1, 2, 3, 6, 22, 80, 43, 84\}.$ $58 - \hat{A} = \{1, 2, 3, 6, 22, 49, 43, 67\}$ $60 - \hat{A} = \{1, 2, 3, 6, 22, 49, 43, 82\}$ $62 - \hat{A} = \{1, 2, 3, 6, 22, 50, 43, 63\}$ $64 - \hat{A} = \{1, 2, 3, 6, 22, 50, 43, 79\}$ $66 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 62\}$ $71 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 80\}$ $69 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 78\}$ $71 - \hat{A} = \{1, 2, 3, 6, 22, 52, 43, 80\}$ $73 - \hat{A} = \{1, 2, 3, 6, 22, 53, 43, 63\}$ $75 - \hat{A} = \{1, 2, 3, 6, 22, 53, 43, 78\}$ $77 - \hat{A} = \{1, 2, 3, 6, 22, 62, 43, 67\}$ $79 - \hat{A} = \{1, 2, 3, 6, 22, 63, 43, 69\}$ $81 - \hat{A} = \{1, 2, 3, 6, 22, 65, 43, 67\}$ $83 - \hat{A} = \{1, 2, 3, 6, 22, 66, 43, 79\}$ $85 - \hat{A} = \{1, 2, 3, 6, 22, 67, 43, 78\}$ $87 - \hat{A} = \{1, 2, 3, 6, 22, 69, 43, 78\}$ $82 - \hat{A} = \{1, 2, 3, 6, 22, 65, 43, 69\}$ $90 - \hat{A} = \{1, 2, 3, 6, 22, 78, 43, 84\}$ $92 - \hat{A} = \{1, 2, 3, 6, 22, 79, 43, 84\}$ $94 - \hat{A} = \{1, 2, 3, 6, 22, 80, 43, 83\}$

4.2 The Second Method

The second method of construction (k + 2; n)-arcs involves two steps:

- (i) construct (k + 1; n)-arcs from (k; n)-arc as in 4.1.
- (ii) construct (k + 2; n)-arcs from incomplete (k + 1; n)-arcs, the following example illustrates the construction method.

Construction (10;5)-arcs from (8;5)-arc in PG(3,3)

Let $\dot{B} = \{1, 2, 3, 6, 9, 19, 27, 33\}$. The first step we find (9;5)-arc as in 3.2, we get 17 different arcs of type (9,5)-arc, we take (9;5)-arc \dot{B}_1 and try to determine the points of \dot{B}_1 in table 2 and delete whole points lie on 5- secant from points of PG(3, 3), the last step involves adding 1 point each time from the remaining points to the arc \dot{B}_1 , we get 4 different (9;5)-arcs \dot{B}_i which are:

 $\dot{B}_1 = \dot{B}_1 \cup \{26\} = \{1, 2, 3, 6, 9, 14, 19, 26, 27, 33\}.$

 $\dot{B}_2 = \dot{B}_2 \cup \{30\} = \{1, 2, 3, 6, 9, 14, 19, 27, 30, 33\}.$

 $\dot{B}_3 = \dot{B}_3 \cup \{34\} = \{1, 2, 3, 6, 9, 14, 19, 27, 33, 34\}.$

 $\dot{B}_4 = \dot{B}_4 \cup \{39\} = \{1, 2, 3, 6, 9, 14, 19, 27, 33, 39\}.$

In the same way we find the (10;5)-arc from the remainder (9;5)-arcs \dot{B}_i as follows: From the arc $\dot{B}_2 = \{1, 2, 3, 6, 9, 16, 19, 27, 33\}$ we get the following arcs:

 $1 - \dot{B}_1 = \{1, 2, 3, 6, 9, 16, 19, 25, 27, 33\}.$ $3 - \dot{B}_3 = \{1, 2, 3, 6, 9, 16, 19, 27, 31, 33\}.$ $5 - \dot{B}_5 = \{1, 2, 3, 6, 9, 16, 19, 27, 33, 34\}.$ $7 - \dot{B}_7 = \{1, 2, 3, 6, 9, 16, 19, 27, 33, 40\}.$ from the arc $\dot{B}_3 = \{1, 2, 3, 6, 9, 17, 19, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 17, 19, 23, 27, 33\}.$ $\dot{B}_3 = \{1, 2, 3, 6, 9, 17, 19, 27, 33, 39\}.$ from the arc $\dot{B}_4 = \{1, 2, 3, 6, 9, 18, 19, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 18, 19, 25, 27, 33\}.$ from the arc $\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 21, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 19, 21, 23, 27, 33\}$ $\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 21, 27, 31, 33\}$ $\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 21, 27, 33, 34\}.$ from the arc $\dot{B}_6 = \{1, 2, 3, 6, 9, 19, 22, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 19, 22, 25, 27, 33\}$ $\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 22, 27, 33, 34\}$ from the arc $\dot{B}_7 = \{1, 2, 3, 6, 9, 19, 23, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 17, 19, 23, 27, 33\}$ $\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 23, 27, 33, 34\}$ from the arc $\dot{B}_8 = \{1, 2, 3, 6, 9, 19, 25, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 16, 19, 25, 27, 33\}$ $\dot{B}_3 = \{1, 2, 3, 6, 9, 18, 19, 25, 27, 33\}$ $\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 25, 27, 32, 33\}$ $\dot{B}_7 = \{1, 2, 3, 6, 9, 19, 25, 27, 33, 36\}$ from the arc $\dot{B}_9 = \{1, 2, 3, 6, 9, 19, 26, 27, 33\}$ we obtain $\dot{B}_1 = \{1, 2, 3, 6, 9, 14, 19, 26, 27, 33\}$ $\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 26, 27, 32, 33\}$ $\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 26, 27, 33, 40\}$ from the arc $\dot{B}_{10} = \{1, 2, 3, 6, 9, 19, 27, 30, 33\}$ we obtain

 $2 - \dot{B}_2 = \{1, 2, 3, 6, 9, 16, 19, 27, 30, 33\}.$ $4 - \dot{B}_4 = \{1, 2, 3, 6, 9, 16, 19, 27, 32, 33\}.$ $6 - \dot{B}_6 = \{1, 2, 3, 6, 9, 16, 19, 27, 33, 35\}.$

$$\dot{B}_2 = \{1, 2, 3, 6, 9, 17, 19, 25, 27, 33\}.$$

 $\dot{B}_4 = \{1, 2, 3, 6, 9, 17, 19, 27, 33, 40\}$

 $\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 21, 26, 27, 33\}$ $\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 21, 27, 32, 33\}$

$$\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 22, 27, 30, 33\}$$

 $\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 22, 27, 33, 35\}.$

$$\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 21, 23, 27, 33\}$$

 $\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 23, 27, 33, 35\}$

$$\begin{split} \dot{B}_2 &= \{1, 2, 3, 6, 9, 17, 19, 25, 27, 33\}\\ \dot{B}_4 &= \{1, 2, 3, 6, 9, 19, 22, 25, 27, 33\}\\ \dot{B}_6 &= \{1, 2, 3, 6, 9, 19, 25, 27, 33, 34\}\\ \dot{B}_8 &= \{1, 2, 3, 6, 9, 19, 25, 27, 33, 39\}. \end{split}$$

 $\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 21, 26, 27, 33\}$ $\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 26, 27, 33, 34\}$

$\dot{B}_1 = \{1, 2, 3, 6, 9, 14, 19, 27, 30, 33\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 16, 19, 27, 30, 33\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 22, 27, 30, 33\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 27, 30, 33, 35\}$
$\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 27, 30, 33, 40\}$	
$from\dot{B}_{11} = \{1, 2, 3, 6, 9, 19, 27, 31, 33\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 16, 19, 27, 31, 33\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 21, 27, 31, 33\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 27, 31, 33, 35\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 27, 31, 33, 39\}$
$\mathit{from}\dot{\mathit{B}}_{12} = \{1, 2, 3, 6, 9, 19, 27, 32, 33\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 16, 19, 27, 32, 33\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 21, 27, 32, 33\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 25, 27, 32, 33\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 26, 27, 32, 33\}$
$\mathit{from}\dot{B}_{13} = \{1, 2, 3, 6, 9, 19, 27, 33, 34\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 14, 19, 27, 33, 34\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 16, 19, 27, 33, 34\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 21, 27, 33, 34\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 22, 27, 33, 34\}$
$\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 23, 27, 33, 34\}$	$\dot{B}_6 = \{1, 2, 3, 6, 9, 19, 25, 27, 33, 34\}$
$\dot{B}_7 = \{1, 2, 3, 6, 9, 19, 26, 27, 33, 34\}$	
$from \dot{B}_{14} = \{1, 2, 3, 6, 9, 19, 27, 33, 35\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 16, 19, 27, 33, 35\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 19, 22, 27, 33, 35\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 23, 27, 33, 35\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 27, 30, 33, 35\}$
$\dot{B}_5 = \{1, 2, 3, 6, 9, 19, 27, 31, 33, 35\}$	
$\mathit{from}\dot{B}_{15} = \{1, 2, 3, 6, 9, 19, 27, 33, 36\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 19, 25, 27, 33, 36\}$	
$from \dot{B}_{16} = \{1, 2, 3, 6, 9, 19, 27, 33, 39\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 14, 19, 27, 33, 39\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 17, 19, 27, 33, 39\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 25, 27, 33, 39\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 27, 31, 33, 39\}$
$from \dot{B}_{17} = \{1, 2, 3, 6, 9, 19, 27, 33, 40\}$	
we obtain	
$\dot{B}_1 = \{1, 2, 3, 6, 9, 16, 19, 27, 33, 40\}$	$\dot{B}_2 = \{1, 2, 3, 6, 9, 17, 19, 27, 33, 40\}$
$\dot{B}_3 = \{1, 2, 3, 6, 9, 19, 26, 27, 33, 40\}$	$\dot{B}_4 = \{1, 2, 3, 6, 9, 19, 27, 30, 33, 40\}$

There are 38 repeated arcs, so the number of (10;5)-arcs equals 38 arcs.

5 Conclusions

- (i) (k + 1; n)-arcs can only be constructed from incomplete (k; n)-arc.
- (ii) (k+1; n)-arcs can be complete or incomplete.
- (iii) number of (k + 1; n)-arcs that can be constructed from (k; n)-arc is equal $q^3 + q^2 + q + 1 (|k| + L)$. Where |k| = number of points k, L= number of points that lie on n-secant.
- (iv) in the second method of construction (k + 2; n)-arcs from (k + 1; n)-arc, (k; n)-arc and (k + 1; n)-arc must be incomplete.

Acknowledgment

The authors would like to thanks the University of Mosul, Department of Mathematics in the College of Education for Pure Science for their motivation, support and for providing us with an appropriate research atmosphere.

References

- Abdulla, A. A. A., & Yahya, N. Y. K. (2021, May). A Geometric Construction of Surface Complete (k, r)-cap in PG (3,7). In Journal of Physics: Conference Series (Vol. 1879, No. 2, p. 022112). IOP Publishing.
- [2] Abdullah, F.N. & Yahya, N.Y.K. (2021), Bounds on Minimum Distance for Linear Codes Over GF(q), Italian Journal of Pure and Applied Mathematics, in Italian Journal of Pure and Applied Mathematics, n.45.
- [3] Al-Mukhtar, A Sh. (2008). Complete Arcs and Surfaces in Three Dimensional Projective Space Over Galois Field. Ph. D. Thesis, University of Technology, Iraq.
- [4] Bartoli, D., Faina, G., Marcugini, S., & Davydov, A., (2013). New Upper Bounds on The Smallest Size of a Complete Arc in a Finite Desarguesian Projective Plane. Journal of Geometry, 104(1).
- [5] Dubrovin , B.A.,& Fomenko, A.T.and Novikov,S.P. (1985), "Modren Geometry Methods and Application" Springer Verlage, New york ,Inc. Kareem,F.F.,(2013) "The Construction of Complete (k,n)-Arcs in 3-Dimensional Projective Space Over Galois Field GF(4), Journal of College of Education 183-196.
- [6] Hirschfeld, J.W.P., & Storme, L. (2001). The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces, Journal of Statistics, 72(1).
- [7] Hirschfeld, J.W.P., (1985). "Finite Projective Spaces of Three Dimensions". Oxford University Press. Hirschfeld, J.W.P, & Thas, J. A. (1991). "General Galois Geometries" (Vol. 1378). Springer.
- [8] Hirshfeld, J.W.P.(1998). "Projective Geometries Over Finite Fields". Oxford Math. Monographs, Clarendon Press Oxford; 1998.
- [9] Kirdar ,M.S.& AL-Mukhtar, A.Sh, (2009), "On Projective 3-Space" Engineering and Technology Journal, Vol.27(8).
- [10] Kasm Yahya, N.Y.(2021)."Applications Geometry of Space in PG(3, p) "Journal of Interdisciplinary Mathematics, Doi: httpl//doi.org/10.1080/09720502.2021.1885818.
- [11] Kasm Yahya, N. Y, Emad Bakr Al-Zangana (2021) The Non-existence of [1864, 3, 1828]53 Linear Code by Combinatorial Technique in International Journal of Mathematics and Computer Science, 16(2021), no. 4, 1575-1581.
- [12] Li, H., Huang, L., Shao, C., & Dong, L. (2015). "Three-Dimensional Projective Geometry With Geometric Algebra". ArXiv:1507.06634.
- [13] Sulaimaan A. E. M and Kasm Yahya .N .Y 2020 "The Reverse Construction of Complete (k,n)-Arcs in Three Dimensional Projective Space PG(3,4)" Journal of Physics: Conference Series 1591. doi:10.1088/1742-6596/1591/1/012078.
- [14] Al-Zangana, E. B., & Yahya, N. Y. K. (2022). Subgroups and Orbits by Companion Matrix in Three Dimensional Projective Space. Baghdad Science Journal. Doi:https://doi.org/10.21123/bsj.2022.19.4.0805.

Author information

Amal Abdulaziz Younis and Nada Yassen Kasm Yahya, Department of Mathematics, College of Education for Pure Science, University of Mosul, IRAQ.

E-mail: drnadaqasim3@uomosul.edu.iq