D - index for a Chain of Hexagonal Cycles

Zhian I. Omar, Herish O. Abdullah and Ahmed M. Ali
Communicated by Rostam Kareem Saeed

MSC 2010 Classifications: Primary 97K30, 05C30; Secondary 94C15, 57M15.
Keywords and phrases: D-distance, D-index, average D-distance.

Abstract

Let u and v be any distinct vertices of a connected graph Γ and $l_{P}(u, v)=l(P)$ be the length of $u-v$ path P, the D - distance between u and v of Γ is defined as: $d^{D}(u, v)=$ $\min \left\{l(P)+\sum_{w \in V(P)} d e g w\right\}$ where the minimum is taken over all $u-v$ path P. The D-index of

 Γ is defined by$$
W^{D}(\Gamma)=\frac{1}{2} \sum_{u, v \in V(\Gamma)} d^{D}(u, v)=\sum_{\{u, v\} \subseteq V(\Gamma)} d^{D}(u, v) .
$$

In this paper, we find D-index, for lollipop graph, general barbell graph, general modified barbell graph, straight hexagonal chain and a cycle hexagonal chain. Moreover, the average D-distance of these graphs will be obtained.

1 Introduction

A graph Γ is represented by $\Gamma(V(\Gamma), E(\Gamma))$, where $V(\Gamma)$ is the vertex set and $E(\Gamma)$ is the edge set of Γ. The conception of standard distance $d(u, v)$ for any two distinct vertices of a graph Γ is the minimum number of edges that connects u and v, the Wiener index is the sum going over all $u-v$ paths of Γ. The D-distance and its properties were introduced and studied by Babu and Varma in [4]. D - distance is different from other distances that were defined in graph theory. For u and v the D-distance is depends on the distance between u, v and the degree of vertices that lie on $u-v$ path but the other distances depend only on the distance between them. There are many works about D-distance, in [2] Ali and Azziz found the relation between Wiener index and D-index for r - regular graphs of order n, they proved that

$$
W^{D}(\Gamma)=(r+1) W(\Gamma)+r\binom{n}{2}
$$

The average D-distance between vertices and the average D-distance between edges of a graph was studied in [5] and [6]. The concept of circular D-distance was introduced by [8]. Finally, there are several studies on finding Wiener index, see [1], [3] and [7].

In this article, we found D-index for some specific graphs, such as lollipop graph, general barbell graph, and general modified barbell graph. Also, D-index of straight hexagonal chain and cycle hexagonal chain is obtained. Moreover, the average D-distance of these graphs is obtained.

Definition 1.1. For two distinct vertices u and v of a graph Γ, the D-length of a $u-v$ path s is defined as $l^{D}(s)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\sum \operatorname{deg}(w)$ where the sum runs over all intermediate vertices w of s.

Definition 1.2. The D-distance $d^{D}(u, v)$ between two vertices u, v of a graph Γ is $d^{D}(u, v)=$ $\min \left\{l^{D}(s)\right\}$, where the minimum goes over all $u-v$ paths s in Γ, in other words, $d^{D}(u, v)=$ $\min \left\{d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\sum d e g w\right\}$, where the sum runs over all intermediate vertices w in s and minimum is taken over all $u-v$ paths in Γ.
D-index of $\Gamma, W^{D}(\Gamma)$, is the sum of all d-distances between any two distinct vertices of Γ.

Definition 1.3. For a connected graph Γ of order n, the average D-distance of Γ denoted by $\mu^{D}(\Gamma)$, is defined as

$$
\mu^{D}(\Gamma)=\left(\binom{n}{2}\right)^{-1} \sum_{\{u, v\} \subseteq V(\Gamma)} d^{D}(u, v)
$$

Definition 1.4. The lollipop graph is a graph obtained by joining a complete graph K_{n} of order $n, n \geq 3$, and a path graph P_{m} of order $m, m \geq 2$ with a bridge. It is denoted by $L_{n, m}$.

Definition 1.5. A general barbell graph is a graph obtained by joining two complete graphs K_{n} and K_{m}, by a bridge, denoted by $B_{n, m}, n, m \geq 3$.
As a special case, if $n=m$, then the resulting graph is called barbell graph, denoted by B_{n}.

Definition 1.6. General modified barbell graph is a graph obtained by identifying two complete graphs K_{n}, K_{m} by identifying any two vertices of K_{n} and K_{m}, denoted by $B_{n, m}^{*}, n, m \geq 3$. As a special case, if $n=m$, then the resulting graph is called modified barbell graph, denoted by B_{n}^{*}.

Figure 1. Lollipop Graph $L_{n, m}$

Figure 2. General Barbell Graph $B_{n, m}$

Figure 3. General Modified Barbell Graph $B_{n, m}^{*}$

2 D-index of Some Specific Graphs

In this section, we found D - index and average D -distance between vertices of some specific graphs, such as lollipop graph, general barbell graph and general modified barbell graph.

Theorem 2.1.

(i) The D-index of lollipop graph, for $n, m \geq 3$

$$
W^{D}\left(L_{n, m}\right)=\frac{1}{2}\left[m^{3}+(3 n+2) m^{2}+\left(4 n^{2}+n-5\right) m+\left(2 n^{2}-3 n+1\right) n\right] .
$$

(ii) The average D-distance for a lollipop graph, for $n, m \geq 3$

$$
\mu^{D}\left(L_{n, m}\right)=\frac{2 m(m+3)}{m+n}-\frac{m(m+1)}{m+n-1}+2 n-1 .
$$

Proof.

(i) For any two vertices of lollipop graph see Figure 1, we have three main cases
a. The two vertices are in a complete graph $K_{n}, n \geq 3$
i. $d^{D}\left(x_{1}, x_{i}\right)=2 n$, for $i=2, \ldots, n$.
ii. $d^{D}\left(x_{i}, x_{j}\right)=2 n-1$, for $i=2, \ldots, n-1, j=i+1, \ldots, n$.
b. The two vertices are in a path graph $P_{m}, m \geq 2$
i. $d^{D}\left(y_{m}, y_{i}\right)=3(m-i)+1$, for $i=1, \ldots, m-1$.
ii. $d^{D}\left(y_{i}, y_{j}\right)=3(j-i)+2$, for $i=1, \ldots, m-2, j=i+1, \ldots, m-1$.
c. The two vertices are in different parts
i. $d^{D}\left(x_{1}, y_{m}\right)=n+3 m-1$.
ii. $d^{D}\left(x_{1}, y_{i}\right)=n+3 i$, for $i=1, \ldots, m-1$.
iii. $d^{D}\left(x_{i}, y_{m}\right)=d\left(x_{i}, y_{m}\right)+\operatorname{deg}\left(x_{i}\right)+\operatorname{deg}\left(x_{1}\right)+\sum_{j=1}^{m} \operatorname{deg}\left(y_{j}\right), i=2,3, \ldots, n$.
$=3 m+2 n-1$.
iv. $d^{D}\left(x_{i}, y_{j}\right)=d\left(x_{i}, y_{j}\right)+\operatorname{deg}\left(x_{i}\right)+\operatorname{deg}\left(x_{1}\right)+\sum_{r=1}^{j} \operatorname{deg}\left(y_{r}\right)$
$=3 j+2 n$, for $i=2, \ldots, n, j=1, \ldots, m-1$.

$$
\begin{aligned}
& W^{D}\left(L_{n, m}\right)=\sum_{\{u, v\} \subseteq V\left(L_{n, m}\right)} d^{D}(u, v) \\
& =\sum_{i=2}^{n} d^{D}\left(x_{1}, x_{i}\right)+\sum_{\{u, v\} \subseteq\left(V\left(K_{n}\right)-\left\{x_{1}\right\}\right)} d^{D}(u, v)+\sum_{i=1}^{m-1} d^{D}\left(y_{m}, y_{i}\right) \\
& +\sum_{\{u, v\} \subseteq\left(V\left(P_{m}\right)-\left\{y_{m}\right\}\right)} d^{D}(u, v)+d^{D}\left(x_{1}, y_{m}\right)+\sum_{i=1}^{m-1} d^{D}\left(x_{1}, y_{i}\right) \\
& +\sum_{i=1}^{n-1} d^{D}\left(x_{i}, y_{m}\right)+\sum_{\substack{u \in\left(V\left(K_{n}\right)-\left\{x_{1}\right\}\right) \\
v \in\left(V\left(P_{m}\right)-\left\{y_{m}\right\}\right)}} d^{D}(u, v) \\
& =\sum_{i=2}^{n} 2 n+\sum_{i=2}^{n-1} \sum_{j=i+1}^{n}(2 n-1)+\sum_{i=1}^{m-1}(3(m-i)+1)+\sum_{i=1}^{m-2} \sum_{j=i+1}^{m-1}(3(j-i)+2) \\
& +\sum_{i=1}^{m-1}(n+3 i)+\sum_{i=2}^{n}(3 m+2 n-1)+\sum_{i=2}^{n} \sum_{j=1}^{m-1}(3 j+2 n)+(n+3 m-1) \\
& =2 n(n-1)+\frac{1}{2}(2 n-1)\left(n^{2}-3 n+2\right)+\frac{1}{2}\left(3 m^{2}-m-2\right) \\
& +\frac{1}{2}\left(m^{3}-m^{2}-4 m+4\right)+(n+3 m-1)+\frac{1}{2}(m-1)(3 m+2 n) \\
& +(n-1)(3 m+2 n-1)+\frac{1}{2}(n-1)(m-1)(3 m+4 n) \\
& =\frac{1}{2}\left[m^{3}+(3 n+2) m^{2}+\left(4 n^{2}+n-5\right) m+n\left(2 n^{2}-3 n+1\right)\right] .
\end{aligned}
$$

(ii) We get it directly from definition. \square

Corollary 2.2. For $n \geq 3$, we have
(i) $W^{D}\left(L_{n, n}\right)=n\left(5 n^{2}-2\right)$.
(ii) $\mu^{D}\left(L_{n, n}\right)=\frac{5 n^{2}-2}{2 n-1}$.

Theorem 2.3. The D-index of general barbell graph, for $n, m \geq 3$, then

$$
W^{D}\left(B_{n, m}\right)=\frac{1}{2}\left[2 m^{3}+(4 n-3) m^{2}+\left(4 n^{2}-2 n+3\right) m+n^{2}(2 n-3)+3 n-4\right] .
$$

Proof. We have eight cases between any two vertices of general barbell graph $B_{n, m}$, see (Figure2).
(i) $d^{D}\left(x_{1}, x_{i}\right)=2 n$, for $i=2, \ldots, n$.
(ii) $d^{D}\left(x_{i}, x_{j}\right)=2 n-1$, for $i=2, \ldots, n-1, j=i+1, \ldots, n$.
(iii) $d^{D}\left(x_{1}, y_{1}\right)=n+m+1$.
(iv) $d^{D}\left(x_{1}, y_{i}\right)=n+2 m+1$, for $i=2, \ldots, m$.
(v) $d^{D}\left(x_{i}, y_{1}\right)=2 n+m+1$, for $i=2, \ldots, n$.
(vi) $d^{D}\left(x_{i}, y_{j}\right)=2 n+2 m+1$, for $i=2,3, \ldots, n, j=2,3, \ldots, m$.
(vii) $d^{D}\left(y_{1}, y_{i}\right)=2 m$, for $i=2, \ldots, m$.
(viii) $d^{D}\left(y_{i}, y_{j}\right)=2 m-1$, for $i=2, \ldots, m-1, j=i+1, \ldots, m$.

Hence,

$$
\begin{gathered}
W^{D}\left(B_{n, m}\right)=\sum_{\{u, v\} \subseteq V\left(B_{n, m}\right)} d^{D}(u, v) \\
=\sum_{i=2}^{n} d^{D}\left(x_{1}, x_{i}\right)+\sum_{i=2}^{n-1} \sum_{j=i+1}^{n} d^{D}\left(x_{i}, x_{j}\right)+d^{D}\left(x_{1}, y_{1}\right) \\
+\sum_{i=2}^{m} d^{D}\left(x_{1}, y_{i}\right)+\sum_{i=2}^{n} d^{D}\left(x_{i}, y_{1}\right)+\sum_{i=2}^{n} \sum_{j=2}^{m} d^{D}\left(x_{i}, y_{i}\right) \\
\quad+\sum_{i=2}^{m} d^{D}\left(y_{1}, y_{i}\right)+\sum_{i=2}^{m-1} \sum_{j=i+1}^{m} d^{D}\left(y_{i}, y_{j}\right) \\
=2 n(n-1)+\frac{1}{2}(2 n-1)\left(n^{2}-3 n+2\right)+n+m+1 \\
+(n+2 m+1)(m-1)+(2 n+m+1)(n-1)+(2 n+2 m+1)(n-1)(m-1) \\
\quad+2 m(m-1)+\frac{1}{2}(2 m-1)\left(m^{2}-3 m+2\right) \\
=\frac{1}{2}\left[2 m^{3}+(4 n-3) m^{2}+\left(4 n^{2}-2 n+3\right) m+n^{2}(2 n-3)+3 n-4\right] .
\end{gathered}
$$

Corollary 2.4. For $n=m, n \geq 3$, then

$$
W^{D}\left(B_{n}\right)=6 n^{3}-4 n^{2}+3 n-2
$$

Corollary 2.5. For $n, m \geq 3$
(i) $\mu^{D}\left(B_{n, m}\right)=\frac{4\left(m^{2}+1\right)}{n+m}-\frac{2\left(m^{2}-m+1\right)}{n+m-1}+2 n-1$.
(ii) $\mu^{D}\left(B_{n}\right)=\frac{2\left(n^{2}+1\right)}{n}-\frac{3\left(n^{2}-n+1\right)}{2 n-1}+2 n-1$.

Theorem 2.6. For $n, m \geq 3$,
(i) The D-index of general modified barbell graph is

$$
W^{D}\left(B_{n, m}^{*}\right)=\frac{1}{2}\left[2 m^{3}+(4 n-7) m^{2}+\left(4 n^{2}-8 n+5\right) m+n\left(2 n^{2}-7 n+5\right)\right] .
$$

(ii) The average D-distance of general modified barbell graph is

$$
\mu^{D}\left(B_{n, m}^{*}\right)=\frac{4 m(m-1)}{m+n-1}-\frac{2(m-1)^{2}}{m+n-2}+2 n-1 .
$$

Proof.

(i) We have five cases between any two vertices of general modified barbell graph $B_{n, m}^{*}$ as shown in Figure 3.
Let $u=\left(x_{1} \equiv y_{1}\right)$ be identifying vertex.
a. $d^{D}\left(u, x_{i}\right)=2 n+m-2, i=2,3, \ldots, n$.
b. $d^{D}\left(u, y_{i}\right)=n+2 m-2, i=2,3, \ldots, m$.
c. $d^{D}\left(x_{i}, x_{j}\right)=2 n-1, i=2,3, \ldots, n-1, j=i+1, \ldots, n$.
d. $d^{D}\left(y_{i}, y_{j}\right)=2 m-1, i=2,3, \ldots, m-1, j=i+1, \ldots, m$.
e. $d^{D}\left(x_{i}, y_{i}\right)=2 n+2 m-2, i=2,3, \ldots, n, j=2,3, \ldots, m$.

Hence,

$$
\begin{gathered}
W^{D}\left(B_{n, m}^{*}\right)=\sum_{\{w, v\} \subseteq V\left(B_{n, m}^{*}\right)} d^{D}(w, v) \\
=\sum_{i=2}^{n} d^{D}\left(u, x_{i}\right)+\sum_{i=2}^{m} d\left(u, y_{i}\right)+\sum_{i=2}^{n-1} \sum_{j=i+1}^{n} d^{D}\left(x_{i}, x_{j}\right) \\
+\sum_{i=2}^{m-1} \sum_{j=i+1}^{m} d^{D}\left(y_{i}, y_{j}\right)+\sum_{i=2}^{n} \sum_{j=2}^{m} d^{D}\left(x_{i}, y_{j}\right) \\
=(2 n+m-2)(n-1)+(n+2 m-2)(m-1) \\
+\frac{1}{2}(2 n-1)\left(n^{2}-3 n+2\right)+\frac{1}{2}(2 m-1)\left(m^{2}-3 m+2\right) \\
\quad+(2 n+2 m-2)(n-1)(m-1) \\
=\frac{1}{2}\left[2 m^{3}+(4 n-7) m^{2}+\left(4 n^{2}-8 n+5\right) m+n\left(2 n^{2}-7 n+5\right)\right] .
\end{gathered}
$$

(ii) We get it directly from definition.

Corollary 2.7. For $n \geq 3$, then
(i) $W^{D}\left(B_{n}^{*}\right)=n(6 n-5)(n-1)$.
(ii) $\mu^{D}\left(B_{n}^{*}\right)=\frac{n(6 n-5)}{2 n-1}$.

3 D-Index of Hexagonal Chain

A straight hexagonal chain $H_{p}, p \geq 3$ is a connected graph, consists of ($\frac{p-1}{2}$) hexagons, such that two hexagons are either disjoint or have exactly one edge in common, no three hexagons share a common vertex and each hexagon is adjacent to two other hexagons shown in Figure 4. A cycle hexagonal chain $H_{s}, p \geq 4$, as depicted in Figure 5, is a connected graph, consists of $\left(\frac{p}{2}\right)$ hexagons, such that two hexagons have exactly one edge in common. In this section we derive formulas that calculate the D-index and average D-distance of these graphs.

Figure 4. Straight Hexagonal chain H_{s}

Figure 5. Cycle Hexagonal Chain H_{c}

Proposition 3.1.

(i) For straight hexagonal chain $H_{s}, p \geq 3$

$$
\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=\left\{\begin{array}{ll}
2+i(\bmod) 2 & \text { if } 2 \leq i \leq p-1 \\
2 & \text { if } i=1, p
\end{array} .\right.
$$

(ii) For cycle hexagonal chain $H_{c}, p \geq 4$.

$$
\operatorname{deg}\left(u_{i}\right)=\operatorname{deg}\left(v_{i}\right)=2+i(\bmod 2), 1 \leq i \leq p
$$

Theorem 3.2. For $p \geq 6$
(i) The D-index of a straight Hexagonal chain

$$
W^{D}\left(H_{s}\right)=4 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{3}\left(4 p^{3}+54 p^{2}-121 p+12\right)
$$

(ii) The average D-distance of a straight Hexagonal chain

$$
\mu^{D}\left(H_{s}\right)=\frac{2}{p(p-1)}\left[4 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{3}\left(4 p^{3}+54 p^{2}-121 p+12\right)\right]
$$

Proof.

(i) To find the D-index of H_{s}, see Figure 4, we must find $d^{D}(u, v)$ for each $u, v \in V\left(H_{s}\right)$, let $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}, U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$. There are two main cases
a. If $u, v \in V$ or $u, v \in U$, by using proposition 3.1 (1.)
i. For $i=2, \ldots, p-2, j=i+1, \ldots, p-1$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+3
$$

ii. For $2 \leq i \leq p-1$

$$
d^{D}\left(v_{1}, v_{i}\right)=3(i-1)+\left\lceil\frac{i}{2}\right\rceil+1
$$

iii. For $2 \leq i \leq p-1$

$$
d^{D}\left(v_{i}, v_{p}\right)=3(p-1)+\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+1 .
$$

iv.

$$
d^{D}\left(v_{1}, v_{p}\right)=3(p-1)+\left\lceil\frac{p}{2}\right\rceil
$$

The same proof for u_{i} and u_{j}.

$$
\begin{aligned}
W_{1}^{D}\left(H_{s}\right)= & 2 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left((j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+3\right)+2 \sum_{i=2}^{p-1}\left(3(i-1)+\left\lceil\frac{i}{2}\right\rceil+1\right) \\
& +2 \sum_{i=2}^{p-1}\left(3(p-1)+\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+1\right)+6(p-1)+2\left\lceil\frac{p}{2}\right\rceil . \\
& =2 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{3}\left(p^{3}+33 p^{2}-76 p+42\right) .
\end{aligned}
$$

b. If $v \in V$ and $u \in U$
i. If $i<j$

For $i=2, \ldots, p-2, j=i+1, \ldots, p-1$.

$$
d^{D}\left(v_{i}, u_{j}\right)=3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6 .
$$

ii. If $i>j$, the same as case (a), since the graph is symmetric.
iii. If $i=2, \ldots, p-1$.

$$
\begin{gathered}
d^{D}\left(v_{1}, u_{i}\right)=3(i-1)+\left\lceil\frac{i}{2}\right\rceil+4 . \\
d^{D}\left(v_{p}, u_{i}\right)=3(p-i)+\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+4 .
\end{gathered}
$$

iv. If $i=2, \ldots, p-2$.

$$
d^{D}\left(v_{p-1}, u_{i}\right)=3(p-i-1)+\left\lceil\frac{p-1}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6 .
$$

v. If $i=j$.
A. For $i=3, \ldots, p-2$. If v_{i} and u_{i} are adjacent then

$$
d^{D}\left(v_{i}, u_{i}\right)=7
$$

If v_{i} and u_{i} are not adjacent then

$$
d^{D}\left(v_{i}, u_{i}\right)=13
$$

We have $\frac{p-3}{2}$ pairs of distance 7 and $\frac{p-5}{2}$ pairs of distance 13 .
B. If $i=1$ or p

$$
d^{D}\left(v_{1}, u_{1}\right)=\left(v_{p}, u_{p}\right)=5
$$

C. If $i=2$ or $p-1$

$$
d^{D}\left(v_{2}, u_{2}\right)=\left(v_{p-1}, u_{p-1}\right)=11
$$

$$
W_{2}^{D}\left(H_{s}\right)=2 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left(3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6\right)+\sum_{i=2}^{p-1}\left(3(i-1)+\left\lceil\frac{i}{2}\right\rceil+4\right)
$$

$$
+\sum_{i=2}^{p-1}\left(3(p-i)+\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+4\right)+\sum_{i=2}^{p-2}\left(3(p-i-1)+\left\lceil\frac{p-1}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6\right)
$$

$$
+7\left(\frac{p-3}{2}\right)+13\left(\frac{p-5}{2}\right)+32 .
$$

$$
=2 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+p^{3}+7 p^{2}-15 p-10 .
$$

Hence,

$$
W^{D}\left(H_{s}\right)=4 \sum_{i=2}^{p-2} \sum_{j=i+1}^{p-1}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{3}\left(4 p^{3}+54 p^{2}-121 p+12\right)
$$

(ii) We get it directly from definition.

Theorem 3.3. For $p \geq 4$.
(i) The D-index of a cycle hexagonal chain

$$
\begin{aligned}
W^{D}\left(H_{c}\right) & =4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i}^{p}\left(\left\lceil\frac{p-j+2 i}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right) \\
+ & 4 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}\left(\left\lceil\frac{j}{2}\right\rceil+\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{2}\left(3 p^{3}+13 p^{2}+23 p-16\right) .
\end{aligned}
$$

(ii) The average D-distance of a cycle hexagonal chain

$$
\begin{aligned}
\mu^{D}\left(H_{c}\right)= & \frac{2}{p(p-1)}\left[4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i}^{p}\left(\left\lceil\frac{p-j+2 i}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)\right. \\
& \left.+4 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}\left(\left\lceil\frac{j}{2}\right\rceil+\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{2}\left(3 p^{3}+13 p^{2}+23 p-16\right)\right] .
\end{aligned}
$$

Proof.

(i) To find the D-index of H_{c}, see Figure 5, we must find $d^{D}(u, v)$ for each $u, v \in V\left(H_{c}\right)$, by using proposition 3.1 (2.).
There are two main cases
a. For $i=1, \ldots, p-1, j=i+1, \ldots, p$. If $u=v_{i}$ and $v=v_{j}$, or $u=u_{i}$ and $v=u_{j}$, we have three sub-cases
i. For $i=1, \ldots, \frac{p}{2}-1, j=i+1, \ldots, \frac{p}{2}+i$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+2
$$

ii. For $i=1, \ldots, \frac{p}{2}-1, j=i+1, \ldots, p$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(p-j+i)+\left\lceil\frac{p-j+2 i}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+2 .
$$

iii. For $i=\frac{p}{2}, \ldots, p-1, j=i+1, \ldots, p$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+2
$$

All cases are repeated for u_{i} and u_{j}.
b. If $u=u_{i}$ and $v=v_{j}$.

For $i=1, \ldots, p, j=1, \ldots, p$.
i. If $i<j$.
A. For $i=1, \ldots, \frac{p}{2}-1, j=i+1, \ldots, \frac{p}{2}+i$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6
$$

B. For $i=1, \ldots, \frac{p}{2}-1, j=\frac{p}{2}+i+1, \ldots, p$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(p-j+i)+\left\lceil\frac{p-j+2 i}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6
$$

C. For $i=\frac{p}{2}, \ldots, p-1, j=i+1, \ldots, p$.

$$
d^{D}\left(v_{i}, v_{j}\right)=3(j-i)+\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor+6 .
$$

ii. If $i=j$, for $i=1, \ldots, p$.

If the two vertices are adjacent, then

$$
d^{D}\left(u_{i}, v_{i}\right)=7
$$

If u_{i}, v_{i} are not adjacent, then

$$
d^{D}\left(u_{i}, v_{i}\right)=13
$$

We have $\frac{p}{2}$ pairs of distance 7 , and $\frac{p}{2}$ pairs of distance 13 .
iii. If $i>j$

Since the graph is symmetric all cases of $i>j$ are the same as of $i<j$.

$$
\begin{aligned}
& W^{D}\left(H_{c}\right)=12 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}(j-i)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}\left\lceil\frac{j}{2}\right\rceil-4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}\left\lfloor\frac{i}{2}\right\rfloor+\sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i} 16 \\
& +12 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i+1}^{p}(p-j+i)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i+1}^{p}\left\lceil\frac{p-j+2 i}{2}\right\rceil-4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i+1}^{p}\left\lfloor\frac{i}{2}\right\rfloor \\
& +\sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i+1}^{p} 16+12 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}(j-i)+4 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}\left\lceil\frac{j}{2}\right\rceil+4 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}\left\lfloor\frac{i}{2}\right\rfloor \\
& +\sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p} 16+10 p . \\
& =\frac{3}{4}\left(p^{3}-4 p\right)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+4 p^{2}-8 \\
& +\frac{1}{2}\left(p^{3}-3 p^{2}+2 p\right)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i}^{p}\left(\left\lceil\frac{p-j+2 i}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right) \\
& +2 p^{2}-4 p+\frac{1}{4}\left(p^{3}+6 p^{2}+8 p\right)+4 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}\left(\left\lceil\frac{j}{2}\right\rceil+\left\lfloor\frac{i}{2}\right\rfloor\right) \\
& +2 p^{2}+4 p+10 p \\
& =4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=i+1}^{\frac{p}{2}+i}\left(\left\lceil\frac{j}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right)+4 \sum_{i=1}^{\frac{p}{2}-1} \sum_{j=\frac{p}{2}+i}^{p}\left(\left\lceil\frac{p-j+2 i}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor\right) \\
& +4 \sum_{i=\frac{p}{2}}^{p-1} \sum_{j=i+1}^{p}\left(\left\lceil\frac{j}{2}\right\rceil+\left\lfloor\frac{i}{2}\right\rfloor\right)+\frac{1}{2}\left(3 p^{3}+13 p^{2}+23 p-16\right) .
\end{aligned}
$$

(ii) We get it directly from definition.

References

[1] Ali, Ahmed Mohammed, Some results on Wiener indices for a connected graph G, Italian Journal of Pure and Applied Mathematics 46, 391-399 (2021).
[2] Ali, Ahmed Mohammed and Aziz, Asmaa Salah, A relation between D-index and Wiener index for rregular graphs, International Journal of Mathematics and Mathematical Sciences 2020, (2020).
[3] Alochukwu, Alex and Dankelmann, Peter, Wiener index in graphs with given minimum degree and maximum degree, Discrete Mathematics and Theoretical Computer Science 23, 1-17 (2021).
[4] Babu, D Reddy and L.N. Varma, P, D-distance in graphs, Golden Research Thought 2, 1-6 (2013).
[5] Babu, D Reddy and L.N. Varma, Average D-distance between vertices of a graph, Italian Journal of pure and applied mathematics 33, 293-298 (2014).
[6] Babu, D. Reddy, and P. L. N. Varma, Average D-distance Between edges of a graph, Indian journal of science and Technology 8(2), 152-156 (2015).
[7] Spiro, Sam, Peter, The Wiener index of signed graphs, Applied Mathematics and Computation 416, 1-7 (2022).
[8] Veeranjaneyulu, J and Varma, PLN, Circular D-distance and path graphs, International Journal of Recent Technology and Engineering 7, 219-223 (2019).

Author information

Zhian I. Omar, Department of Administrative Information System, Institute of Erbil Administrative Technic, University of Erbil Polytechnic, Kurdistan Region- Iraq, 44002.
E-mail: zhian.omer@epu.edu.iq
Herish O. Abdullah, Department of Mathematics, College of Science, University of Salahaddin, Kurdistan Region- Iraq, 44002.
E-mail: herish.abdullah@su.edu.krd
Ahmed M. Ali, Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq.
E-mail: ahmedgraph@uomosul.edu.iq

