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Abstract Let u and v be any distinct vertices of a connected graph Γ and lP (u, v) = l(P )
be the length of u − v path P , the D- distance between u and v of Γ is defined as: dD(u, v) =
min{l(P ) +

∑
w∈V (P )

degw} where the minimum is taken over all u− v path P . The D-index of

Γ is defined by

WD(Γ) =
1
2

∑
u,v∈V (Γ)

dD(u, v) =
∑

{u,v}⊆V (Γ)

dD(u, v).

In this paper, we find D-index, for lollipop graph, general barbell graph, general modified barbell
graph, straight hexagonal chain and a cycle hexagonal chain. Moreover, the average D-distance
of these graphs will be obtained.

1 Introduction

A graph Γ is represented by Γ(V (Γ), E(Γ)), where V (Γ) is the vertex set and E(Γ) is the edge
set of Γ. The conception of standard distance d(u, v) for any two distinct vertices of a graph Γ is
the minimum number of edges that connects u and v, the Wiener index is the sum going over all
u − v paths of Γ. The D-distance and its properties were introduced and studied by Babu

¯
and

Varma
¯

in [4]. D- distance is different from other distances that were defined in graph theory. For
u and v the D- distance is depends on the distance between u, v and the degree of vertices that
lie on u − v path but the other distances depend only on the distance between them. There are
many works about D-distance, in [2] Ali

¯
and Aziz

¯
found the relation between Wiener index and

D-index for r- regular graphs of order n, they proved that

WD(Γ) = (r + 1)W (Γ) + r

(
n

2

)
.

The average D-distance between vertices and the average D-distance between edges of a graph
was studied in [5] and [6]. The concept of circular D-distance was introduced by [8]. Finally,
there are several studies on finding Wiener index, see [1], [3] and [7].

In this article, we foundD-index for some specific graphs, such as lollipop graph, general barbell
graph, and general modified barbell graph. Also, D-index of straight hexagonal chain and cycle
hexagonal chain is obtained. Moreover, the average D-distance of these graphs is obtained.

Definition 1.1. For two distinct vertices u and v of a graph Γ, the D-length of a u − v path
s is defined as lD(s) = d(u, v) + deg(u) + deg(v) +

∑
deg(w) where the sum runs over all

intermediate vertices w of s.

Definition 1.2. The D-distance dD(u, v) between two vertices u, v of a graph Γ is dD(u, v) =
min{lD(s)}, where the minimum goes over all u − v paths s in Γ, in other words, dD(u, v) =
min{d(u, v) + deg(u) + deg(v) +

∑
degw}, where the sum runs over all intermediate vertices

w in s and minimum is taken over all u− v paths in Γ.
D-index of Γ, WD(Γ), is the sum of all d-distances between any two distinct vertices of Γ.
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Definition 1.3. For a connected graph Γ of order n, the average D-distance of Γ denoted by
µD(Γ), is defined as

µD(Γ) = (

(
n

2

)
)−1

∑
{u,v}⊆V (Γ)

dD(u, v).

Definition 1.4. The lollipop graph is a graph obtained by joining a complete graph Kn of order
n, n ≥ 3, and a path graph Pm of order m, m ≥ 2 with a bridge. It is denoted by Ln,m.

Definition 1.5. A general barbell graph is a graph obtained by joining two complete graphs Kn

and Km, by a bridge, denoted by Bn,m, n,m ≥ 3.
As a special case, if n = m, then the resulting graph is called barbell graph, denoted by Bn.

Definition 1.6. General modified barbell graph is a graph obtained by identifying two complete
graphs Kn, Km by identifying any two vertices of Kn and Km, denoted by B∗n,m, n,m ≥ 3. As
a special case, if n = m, then the resulting graph is called modified barbell graph, denoted by
B∗n.

Figure 1. Lollipop Graph Ln,m

Figure 2. General Barbell Graph Bn,m
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Figure 3. General Modified Barbell Graph B∗n,m

2 D-index of Some Specific Graphs

In this section, we found D- index and average D-distance between vertices of some specific
graphs, such as lollipop graph, general barbell graph and general modified barbell graph.

Theorem 2.1.

(i) The D-index of lollipop graph, for n,m ≥ 3

WD(Ln,m) =
1
2
[m3 + (3n+ 2)m2 + (4n2 + n− 5)m+ (2n2 − 3n+ 1)n].

(ii) The average D-distance for a lollipop graph, for n,m ≥ 3

µD(Ln,m) =
2m(m+ 3)
m+ n

− m(m+ 1)
m+ n− 1

+ 2n− 1.

Proof.

(i) For any two vertices of lollipop graph see Figure 1, we have three main cases

a. The two vertices are in a complete graph Kn, n ≥ 3

i. dD(x1, xi) = 2n, for i = 2, . . . , n.
ii. dD(xi, xj) = 2n− 1, for i = 2, . . . , n− 1, j = i+ 1, . . . , n.

b. The two vertices are in a path graph Pm, m ≥ 2

i. dD(ym, yi) = 3(m− i) + 1, for i = 1, . . . ,m− 1.
ii. dD(yi, yj) = 3(j − i) + 2, for i = 1, . . . ,m− 2, j = i+ 1, . . . ,m− 1.

c. The two vertices are in different parts

i. dD(x1, ym) = n+ 3m− 1.
ii. dD(x1, yi) = n+ 3i, for i = 1, . . . ,m− 1.

iii. dD(xi, ym) = d(xi, ym) + deg(xi) + deg(x1) +
m∑
j=1

deg(yj), i = 2, 3, . . . , n.

= 3m+ 2n− 1.

iv. dD(xi, yj) = d(xi, yj) + deg(xi) + deg(x1) +
j∑

r=1

deg(yr)

= 3j + 2n, for i = 2, . . . , n, j = 1, . . . ,m− 1.
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WD(Ln,m) =
∑

{u,v}⊆V (Ln,m)

dD(u, v)

=
n∑

i=2

dD(x1, xi) +
∑

{u,v}⊆(V (Kn)−{x1})

dD(u, v) +
m−1∑
i=1

dD(ym, yi)

+
∑

{u,v}⊆(V (Pm)−{ym})

dD(u, v) + dD(x1, ym) +
m−1∑
i=1

dD(x1, yi)

+
n−1∑
i=1

dD(xi, ym) +
∑

u∈(V (Kn)−{x1})
v∈(V (Pm)−{ym})

dD(u, v)

=
n∑

i=2

2n+
n−1∑
i=2

n∑
j=i+1

(2n− 1) +
m−1∑
i=1

(3(m− i) + 1) +
m−2∑
i=1

m−1∑
j=i+1

(3(j − i) + 2)

+
m−1∑
i=1

(n+ 3i) +
n∑

i=2

(3m+ 2n− 1) +
n∑

i=2

m−1∑
j=1

(3j + 2n) + (n+ 3m− 1)

= 2n(n− 1) +
1
2
(2n− 1)(n2 − 3n+ 2) +

1
2
(3m2 −m− 2)

+
1
2
(m3 −m2 − 4m+ 4) + (n+ 3m− 1) +

1
2
(m− 1)(3m+ 2n)

+(n− 1)(3m+ 2n− 1) +
1
2
(n− 1)(m− 1)(3m+ 4n)

=
1
2
[m3 + (3n+ 2)m2 + (4n2 + n− 5)m+ n(2n2 − 3n+ 1)].

(ii) We get it directly from definition.2

Corollary 2.2. For n ≥ 3, we have

(i) WD(Ln,n) = n(5n2 − 2).

(ii) µD(Ln,n) =
5n2−2
2n−1 .

Theorem 2.3. The D-index of general barbell graph, for n,m ≥ 3, then

WD(Bn,m) =
1
2
[2m3 + (4n− 3)m2 + (4n2 − 2n+ 3)m+ n2(2n− 3) + 3n− 4].

Proof. We have eight cases between any two vertices of general barbell graph Bn,m, see (Fig-
ure2).

(i) dD(x1, xi) = 2n, for i = 2, . . . , n.

(ii) dD(xi, xj) = 2n− 1, for i = 2, . . . , n− 1, j = i+ 1, . . . , n.

(iii) dD(x1, y1) = n+m+ 1.

(iv) dD(x1, yi) = n+ 2m+ 1, for i = 2, . . . ,m.

(v) dD(xi, y1) = 2n+m+ 1, for i = 2, . . . , n.

(vi) dD(xi, yj) = 2n+ 2m+ 1, for i = 2, 3, . . . , n, j = 2, 3, . . . ,m.

(vii) dD(y1, yi) = 2m, for i = 2, . . . ,m.

(viii) dD(yi, yj) = 2m− 1, for i = 2, . . . ,m− 1, j = i+ 1, . . . ,m.
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Hence,
WD(Bn,m) =

∑
{u,v}⊆V (Bn,m)

dD(u, v)

=
n∑

i=2

dD(x1, xi) +
n−1∑
i=2

n∑
j=i+1

dD(xi, xj) + dD(x1, y1)

+
m∑
i=2

dD(x1, yi) +
n∑

i=2

dD(xi, y1) +
n∑

i=2

m∑
j=2

dD(xi, yi)

+
m∑
i=2

dD(y1, yi) +
m−1∑
i=2

m∑
j=i+1

dD(yi, yj)

= 2n(n− 1) +
1
2
(2n− 1)(n2 − 3n+ 2) + n+m+ 1

+(n+ 2m+ 1)(m− 1) + (2n+m+ 1)(n− 1) + (2n+ 2m+ 1)(n− 1)(m− 1)

+2m(m− 1) +
1
2
(2m− 1)(m2 − 3m+ 2)

.

=
1
2
[2m3 + (4n− 3)m2 + (4n2 − 2n+ 3)m+ n2(2n− 3) + 3n− 4].

2

Corollary 2.4. For n = m, n ≥ 3, then

WD(Bn) = 6n3 − 4n2 + 3n− 2.

Corollary 2.5. For n,m ≥ 3

(i) µD(Bn,m) = 4(m2+1)
n+m − 2(m2−m+1)

n+m−1 + 2n− 1.

(ii) µD(Bn) =
2(n2+1)

n − 3(n2−n+1)
2n−1 + 2n− 1.

Theorem 2.6. For n,m ≥ 3,

(i) The D-index of general modified barbell graph is

WD(B∗n,m) =
1
2
[2m3 + (4n− 7)m2 + (4n2 − 8n+ 5)m+ n(2n2 − 7n+ 5)].

(ii) The average D-distance of general modified barbell graph is

µD(B∗n,m) =
4m(m− 1)
m+ n− 1

− 2(m− 1)2

m+ n− 2
+ 2n− 1.

Proof.

(i) We have five cases between any two vertices of general modified barbell graph B∗n,m as
shown in Figure 3.
Let u = (x1 ≡ y1) be identifying vertex.

a. dD(u, xi) = 2n+m− 2, i = 2, 3, . . . , n.

b. dD(u, yi) = n+ 2m− 2, i = 2, 3, . . . ,m.

c. dD(xi, xj) = 2n− 1, i = 2, 3, . . . , n− 1, j = i+ 1, . . . , n.

d. dD(yi, yj) = 2m− 1, i = 2, 3, . . . ,m− 1, j = i+ 1, . . . ,m.
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e. dD(xi, yi) = 2n+ 2m− 2, i = 2, 3, . . . , n, j = 2, 3, . . . ,m.
Hence,

WD(B∗n,m) =
∑

{w,v}⊆V (B∗
n,m)

dD(w, v)

=
n∑

i=2

dD(u, xi) +
m∑
i=2

d(u, yi) +
n−1∑
i=2

n∑
j=i+1

dD(xi, xj)

+
m−1∑
i=2

m∑
j=i+1

dD(yi, yj) +
n∑

i=2

m∑
j=2

dD(xi, yj)

= (2n+m− 2)(n− 1) + (n+ 2m− 2)(m− 1)

+
1
2
(2n− 1)(n2 − 3n+ 2) +

1
2
(2m− 1)(m2 − 3m+ 2)

+(2n+ 2m− 2)(n− 1)(m− 1)

=
1
2
[2m3 + (4n− 7)m2 + (4n2 − 8n+ 5)m+ n(2n2 − 7n+ 5)].

(ii) We get it directly from definition.2

Corollary 2.7. For n ≥ 3, then

(i) WD(B∗n) = n(6n− 5)(n− 1).

(ii) µD(B∗n) =
n(6n−5)

2n−1 .

3 D-Index of Hexagonal Chain

A straight hexagonal chain Hp, p ≥ 3 is a connected graph, consists of (p−1
2 ) hexagons, such

that two hexagons are either disjoint or have exactly one edge in common, no three hexagons
share a common vertex and each hexagon is adjacent to two other hexagons shown in Figure 4.
A cycle hexagonal chain Hs, p ≥ 4, as depicted in Figure 5, is a connected graph, consists of (p2 )
hexagons, such that two hexagons have exactly one edge in common. In this section we derive
formulas that calculate the D-index and average D-distance of these graphs.

Figure 4. Straight Hexagonal chain Hs
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Figure 5. Cycle Hexagonal Chain Hc

Proposition 3.1.

(i) For straight hexagonal chain Hs, p ≥ 3

deg(ui) = deg(vi) =

{
2 + i(mod)2 if 2 ≤ i ≤ p− 1
2 if i = 1, p

.

(ii) For cycle hexagonal chain Hc, p ≥ 4.

deg(ui) = deg(vi) = 2 + i(mod2), 1 ≤ i ≤ p.

Theorem 3.2. For p ≥ 6

(i) The D-index of a straight Hexagonal chain

WD(Hs) = 4
p−2∑
i=2

p−1∑
j=i+1

(d j
2
e − b i

2
c) + 1

3
(4p3 + 54p2 − 121p+ 12).

(ii) The average D-distance of a straight Hexagonal chain

µD(Hs) =
2

p(p− 1)
[4

p−2∑
i=2

p−1∑
j=i+1

(d j
2
e − b i

2
c) + 1

3
(4p3 + 54p2 − 121p+ 12)].

Proof.

(i) To find the D-index of Hs, see Figure 4, we must find dD(u, v) for each u, v ∈ V (Hs),

let V = {v1, v2, . . . , vp}, U = {u1, u2, . . . , up}. There are two main cases

a. If u, v ∈ V or u, v ∈ U , by using proposition 3.1 (1.)

i. For i = 2, . . . , p− 2, j = i+ 1, . . . , p− 1.

dD(vi, vj) = 3(j − i) + d j
2
e − b i

2
c+ 3.

ii. For 2 ≤ i ≤ p− 1

dD(v1, vi) = 3(i− 1) + d i
2
e+ 1.

iii. For 2 ≤ i ≤ p− 1

dD(vi, vp) = 3(p− 1) + dp
2
e − b i

2
c+ 1.
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iv.
dD(v1, vp) = 3(p− 1) + dp

2
e.

The same proof for ui and uj .

WD
1 (Hs) = 2

p−2∑
i=2

p−1∑
j=i+1

((j − i) + d j
2
e − b i

2
c+ 3) + 2

p−1∑
i=2

(3(i− 1) + d i
2
e+ 1)

+2
p−1∑
i=2

(3(p− 1) + dp
2
e − b i

2
c+ 1) + 6(p− 1) + 2dp

2
e.

= 2
p−2∑
i=2

p−1∑
j=i+1

(d j
2
e − b i

2
c) + 1

3
(p3 + 33p2 − 76p+ 42).

b. If v ∈ V and u ∈ U
i. If i < j

For i = 2, . . . , p− 2, j = i+ 1, . . . , p− 1.

dD(vi, uj) = 3(j − i) + d j
2
e − b i

2
c+ 6.

ii. If i > j, the same as case (a), since the graph is symmetric.
iii. If i = 2, . . . , p− 1.

dD(v1, ui) = 3(i− 1) + d i
2
e+ 4.

dD(vp, ui) = 3(p− i) + dp
2
e − b i

2
c+ 4.

iv. If i = 2, . . . , p− 2.

dD(vp−1, ui) = 3(p− i− 1) + dp− 1
2
e − b i

2
c+ 6.

v. If i = j.
A. For i = 3, . . . , p− 2. If vi and ui are adjacent then

dD(vi, ui) = 7.

If vi and ui are not adjacent then

dD(vi, ui) = 13.

We have p−3
2 pairs of distance 7 and p−5

2 pairs of distance 13.
B. If i = 1 or p

dD(v1, u1) = (vp, up) = 5.

C. If i = 2 or p− 1
dD(v2, u2) = (vp−1, up−1) = 11.

WD
2 (Hs) = 2

p−2∑
i=2

p−1∑
j=i+1

(3(j − i) + d j
2
e − b i

2
c+ 6) +

p−1∑
i=2

(3(i− 1) + d i
2
e+ 4)

+
p−1∑
i=2

(3(p− i) + dp
2
e − b i

2
c+ 4) +

p−2∑
i=2

(3(p− i− 1) + dp− 1
2
e − b i

2
c+ 6)

+7(
p− 3

2
) + 13(

p− 5
2

) + 32.

= 2
p−2∑
i=2

p−1∑
j=i+1

(d j
2
e − b i

2
c) + p3 + 7p2 − 15p− 10.
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Hence,

WD(Hs) = 4
p−2∑
i=2

p−1∑
j=i+1

(d j
2
e − b i

2
c) + 1

3
(4p3 + 54p2 − 121p+ 12).

(ii) We get it directly from definition. 2

Theorem 3.3. For p ≥ 4.

(i) The D-index of a cycle hexagonal chain

WD(Hc) = 4

p
2−1∑
i=1

p
2 +i∑

j=i+1

(d j
2
e − b i

2
c) + 4

p
2−1∑
i=1

p∑
j= p

2 +i

(dp− j + 2i
2

e − b i
2
c)

+4
p−1∑
i= p

2

p∑
j=i+1

(d j
2
e+ b i

2
c) + 1

2
(3p3 + 13p2 + 23p− 16).

(ii) The average D-distance of a cycle hexagonal chain

µD(Hc) =
2

p(p− 1)
[4

p
2−1∑
i=1

p
2 +i∑

j=i+1

(d j
2
e − b i

2
c) + 4

p
2−1∑
i=1

p∑
j= p

2 +i

(dp− j + 2i
2

e − b i
2
c)

+4
p−1∑
i= p

2

p∑
j=i+1

(d j
2
e+ b i

2
c) + 1

2
(3p3 + 13p2 + 23p− 16)].

Proof.

(i) To find the D-index of Hc, see Figure 5, we must find dD(u, v) for each u, v ∈ V (Hc),
by using proposition 3.1 (2.).
There are two main cases

a. For i = 1, . . . , p− 1, j = i+ 1, . . . , p. If u = vi and v = vj , or u = ui and v = uj , we
have three sub-cases

i. For i = 1, . . . , p2 − 1, j = i+ 1, . . . , p2 + i.

dD(vi, vj) = 3(j − i) + d j
2
e − b i

2
c+ 2.

ii. For i = 1, . . . , p2 − 1, j = i+ 1, . . . , p.

dD(vi, vj) = 3(p− j + i) + dp− j + 2i
2

e − b i
2
c+ 2.

iii. For i = p
2 , . . . , p− 1, j = i+ 1, . . . , p.

dD(vi, vj) = 3(j − i) + d j
2
e − b i

2
c+ 2.

All cases are repeated for ui and uj .

b. If u = ui and v = vj .
For i = 1, . . . , p, j = 1, . . . , p.

i. If i < j.
A. For i = 1, . . . , p2 − 1, j = i+ 1, . . . , p2 + i.

dD(vi, vj) = 3(j − i) + d j
2
e − b i

2
c+ 6.
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B. For i = 1, . . . , p2 − 1, j = p
2 + i+ 1, . . . , p.

dD(vi, vj) = 3(p− j + i) + dp− j + 2i
2

e − b i
2
c+ 6.

C. For i = p
2 , . . . , p− 1, j = i+ 1, . . . , p.

dD(vi, vj) = 3(j − i) + d j
2
e − b i

2
c+ 6.

ii. If i = j, for i = 1, . . . , p.
If the two vertices are adjacent, then

dD(ui, vi) = 7.

If ui, vi are not adjacent, then

dD(ui, vi) = 13.

We have p
2 pairs of distance 7, and p

2 pairs of distance 13.
iii. If i > j

Since the graph is symmetric all cases of i > j are the same as of i < j.

WD(Hc) = 12

p
2−1∑
i=1

p
2 +i∑

j=i+1

(j− i)+4

p
2−1∑
i=1

p
2 +i∑

j=i+1

d j
2
e−4

p
2−1∑
i=1

p
2 +i∑

j=i+1

b i
2
c+

p
2−1∑
i=1

p
2 +i∑

j=i+1

16

+12

p
2−1∑
i=1

p∑
j= p

2 +i+1

(p− j + i) + 4

p
2−1∑
i=1

p∑
j= p

2 +i+1

dp− j + 2i
2

e − 4

p
2−1∑
i=1

p∑
j= p

2 +i+1

b i
2
c

+

p
2−1∑
i=1

p∑
j= p

2 +i+1

16 + 12
p−1∑
i= p

2

p∑
j=i+1

(j − i) + 4
p−1∑
i= p

2

p∑
j=i+1

d j
2
e+ 4

p−1∑
i= p

2

p∑
j=i+1

b i
2
c

+
p−1∑
i= p

2

p∑
j=i+1

16 + 10p.

=
3
4
(p3 − 4p) + 4

p
2−1∑
i=1

p
2 +i∑

j=i+1

(d j
2
e − b i

2
c) + 4p2 − 8

+
1
2
(p3 − 3p2 + 2p) + 4

p
2−1∑
i=1

p∑
j= p

2 +i

(dp− j + 2i
2

e − b i
2
c)

+2p2 − 4p+
1
4
(p3 + 6p2 + 8p) + 4

p−1∑
i= p

2

p∑
j=i+1

(d j
2
e+ b i

2
c)

+2p2 + 4p+ 10p

= 4

p
2−1∑
i=1

p
2 +i∑

j=i+1

(d j
2
e − b i

2
c) + 4

p
2−1∑
i=1

p∑
j= p

2 +i

(dp− j + 2i
2

e − b i
2
c)

+4
p−1∑
i= p

2

p∑
j=i+1

(d j
2
e+ b i

2
c) + 1

2
(3p3 + 13p2 + 23p− 16).

(ii) We get it directly from definition. 2
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