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Abstract In this paper, the restricted detour radial graph was introduced. We obtained some
results connecting restricted detour radial graph and graph of certain particular graphs. Also,
the restricted detour radial graph of the sum of two graphs and one-vertex union of graphs are
determined.

1 Introduction

Let G = (V,E), be a finite undirected simple connected graph. For basic graph terminology
and details, we refer to [[5], 7]. Distance is one of the basic concepts of graph theory. For
two vertices u and v in a graph G, the distance (ordinary distance) from u to v is denoted by
dG(u, v) or simply d(u, v) and defined as the length of a shortest u− v path in graph G. Detour
distance D(u, v) between two distinct vertices u and v in a connected graph G is the maximum
lengths of u − v paths in G [3, 4]. In 2012, Ali and MohammedSaleh[1] defined the restricted
detour distance D∗

G (u, v) between two vertices u, v in a graph G as the length of the longest
u − v path P such that < V (P ) >= P . A chord of a path P is an edge of G joining two
non-adjacent vertices of P . Thus, D∗

G (u, v) is the length of the longest u−v path P having no
chords. Such a u−v path is called u−v restricted detour. In [13], the authors called D∗

G(u, v)
detour monophonic distance between vertices u and v. It is clear that D∗

G(u, v) = 0 if and
only if u = v, and D∗

G(u, v) = 1 if and only if uv is an edge in G. A graph G is called
restricted detour if D∗

G(u, v) = d(u, v) for every pair u and v of vertices in G. It is clear
that all trees, complete graphs, and complete bipartite graphs are restricted detour graphs. Some
researchers studied the radial graph and detour radial graphs such as [2, 6, 8, 9, 10, 11, 12, 14].
In [9], Kathiresan and Marimuthu introduced the concept of radial graph R(G) using d(u, v)
and proved characterization for R(G). In [2], Avadayappan and Ganeshwari introduced a detour
radial graph using D(u, v), length of the longest u− v path of G. The restricted detour radial
graph RD∗(G) has vertex set as in G and vertices u and v in RD∗ (G) are adjacent in RD∗(G)
if and only if the restricted detour distance D∗

G(u, v) is equal to the restricted detour radius
rD∗(G) of G. In this paper, we derive formulas for restricted detour radial graphs of some
particular graphs.

2 Some Basic Results

Theorem 2.1 RD∗ (G) = G if and only if △ (G) = p− 1, where p ≥ 2.
Proof. First, assume that △ (G) = p − 1. Let v be a vertex of G of degree p − 1. Then
D∗

G (u, v) = 1 for every vertex u (̸= v) of G. Thus eD∗ (v) = 1 and so rD∗ (G) = 1. For
any pair of adjacent vertex (x, y) , x ̸= y, of G, D∗

G (u, v) = 1 = rD∗ (G). Thus, xy ∈
E(RD∗ (G)). If x′, y′ are nonadjacent in G then D∗

G (x′, y′) ≥ 2 and so D∗
G (x′, y′) > rD∗ (G)

which implies that x′y′ /∈ E(RD∗ (G)). Therefore E (RD∗ (G)) = E(G) and so RD∗ (G) = G.
For the proof of converse, let RD∗ (G) = G, we shall prove that △ (G) = p − 1. Let uv ∈

E (G), then uv ∈ E (RD∗ (G)). Thus, 1 = D∗
G (u, v) = rD∗ (G). Therefore, G contains a

vertex, say w such that eD∗ (w) = rD∗ (G) = 1. Thus, w is adjacent to every other vertex of G,
that is degG w = p− 1. Hence the proof is completed.■
Definition 2.2 A connected graph G is called self-restricted detour radial graph if and only if
RD∗ (G) = G.
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Corollary 2.3 Every complete graph Kp , every wheel graph Wp, p ≥ 5, every star graph K1,p−1
and every fan-graph Fn, n ≥ 2 is self-restricted detour radial graphs.
Remarks 2.4 We deduce from the proof of Theorem 2.1 that:

(i) If rD∗ (G) ≥ 2 then G is not self-restricted detour radial graph, that is RD∗ (G) ̸= G.

(ii) If rD∗ (G) ≥ 2 then E (G) ∩ E (RD∗ (G)) = ∅, that is RD∗ (G) ⊆ G.

We may have RD∗ (G) which is isomorphic to G, as for cycle graphs of odd orders.
Proposition 2.5 Let C2n+1 be a cycle graph of order p = 2n+ 1, n ≥ 2. Then RD∗ (C2n+1 ) ∼=
C2n+1 .
Proof. Let C2n+1 = (u1, u2, . . . , u2n+1, u1) , the D∗ (ui, ui+2) = 2n−1, for i = 1, 2, . . . , 2n+
1, with u2n+2 ≡ u1 and u2n+3 ≡ u2. Therefore eD∗ (u) = 2n − 1 for every u ∈ V (C2n+1), and
so rD∗ (C2n+1) = 2n− 1. Hence, in RD∗ (C2n+1), the pair of vertices ui, ui+2, are adjacent, for
i = 1, 2, . . . , 2n + 1. For any other pairs of vertices in C2n+1, that is ui, uj for |i− j| > 2,
D∗(ui, uj) < 2n − 1 and so uiu

′
j /∈ E(RD∗ (C2n+1)). Thus RD∗ (C2n+1) is the cycle graph

(u1, u3, u5 . . . , u2n+1, u2, u4, u6, . . . , u2n, u1) = C ′
2n+1. It is clear that C ′

2n+1
∼= C2n+1.■

The following examples illustrate Proposition 2.5.
Example 2.6.

Figure 2.1

Now, we consider cycle graphs of even orders. Proposition 2.7 Let C2n be a cycle graph of
order 2n, n ≥ 3, then RD∗ (C2n) = Cn ∪ C ′

n , in which V (Cn) ∩ V (C ′
n) = ∅.

Proof. As in the proof of Proposition 2.5, rD∗ (C2n) = 2n−2, and D∗ (ui, ui+2) = 2n−2, i =
1, 2, . . . , 2n with u2n+1 = u1 and u2n+2 = u2.
It is clear that D∗ (ui, uj) < 2n − 2, for |j − i| > 2; thus uiuj /∈ E (RD∗ (C2n)). Hence
E (RD∗ (C2n)) = {uiui+2 ; ; i = 1, 2, . . . , 2n}.
Therefore RD∗ (C2n) = (u1, u3, u5, . . . , u2n−1, u1)∪ (u2, u4, u6, . . . , u2n, u2) = Cn ∪ C ′

n.■
Example 2.8 Consider C8 = (u1, u2, . . . , u8, u1). Then

Figure 2.2
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Proposition 2.9 Let Km,n be a complete bipartite graph with m,n ≥ 2, then RD∗ (Km,n) =
Km ∪Kn = Km,n, V (Km) ∩ V (Kn) = ∅.
Proof. Let V (Km,n) = V ∪ U, V = {v1, v2, . . . , vm} , U = {u1, u2, . . . , un}, D∗ (x, y) = 2
for x, y ∈ V and x, y ∈ U .
Thus eD∗ (v) = eD∗ (u) = 2, for v ∈ V and u ∈ U . Therefore rD∗ (Km,n) = 2. It is clear that
D∗ (u, v) = 1 and so uv /∈ E(RD∗ (Km,n)). Hence, in RD∗ (Km,n) every two vertices of V , and
also every two vertices of U are adjacent. Therefore, RD∗ (Km,n) consists of two vertex disjoint
complete graphs Km and Kn. RD∗ (Km,n) = Km,n. Hence, the proof is completed.■
Corollary 2.10 For a complete t−partite graph Kn1,n2,...,nt , t ≥ 2, we have RD∗ (Kn1,n2,...,nt) =
Kn1,n2,...,nt

= Kn1 ∪Kn2 ∪ . . .∪Knt
. ■

Proposition 2.11 If RD∗ (G) = Kp, where G is a connected graph of order p ≥ 2, then G = Kp.
Proof. Let u, v be any two distinct vertices of G, then u, v are in Kp, and uv ∈ E(Kp). But,
by definition of restricted detour radial graph, D∗

G (u, v) = rD∗ (G) = 1 if uv ∈ E(G). Since G
consists of at least one edge, say xy, then D∗

G (x, y) = 1 and so rD∗ (G) = 1. Therefore, every
two vertices, u, v of G are adjacent, implies that G = Kp.■
Corollary 2.12 RD∗ (G) = Kp if and only if G = Kp.
Proof. The proof follows from Theorem 2.1 and Proposition 2.11. ■
Proposition 2.13 Let Pp be a path-graph of order p ≥ 4, then

RD∗ (Pp) =

{
P3 ∪ (n− 1)K2, if p = 2n+ 1, n ≥ 2,
nK2, if p = 2n, n ≥ 2.

Proof.
(1) P2n+1 = (u1, u2, . . . , un, un+1, . . . , u2n+1). It is clear that rD∗ (P2n+1) = n, and un+1 is
the center of P2n+1. One may check that D∗ (x, y) = n for every pair (x, y) of vertices in S =
{(ui, ui+n) : i = 1, 2, . . . , n+1}; and D∗ (x, y) ̸= n for (x, y) /∈ S. Thus E (RD∗ (P2n+1)) =
{uiui+n; i = 1, 2, . . . , n + 1}. Since V (RD∗ (P2n+1)) = V (P2n+1) , then RD∗ (P2n+1) =
P3 ∪ (n− 1)K2.
(2) P2n = (v1, v2, . . . , vn, vn+1, . . . , v2n). It is clear that rD∗ (P2n) = n, and un+1 and un are
the only centers of P2n. One may see D∗ (x′, y′) = n for every pair (x′, y′) of vertices in S′ =
{(vi, vi+n) : i = 1, 2, . . . , n}; and D∗ (x′, y′) ̸= n for (x′, y′) /∈ S′. Thus, E (RD∗ (P2n)) =
{vivi+n; ; i = 1, 2, . . . , n} , and so RD∗ (P2n) = nK2.■
Definition 2.14 A graph H is called restricted detour radial (RDR) graph if there exists a
connected graph G such that RD∗ (G) = H .
Let F ∗ be the set of all RDR graphs. From the results above, every graph G of order p and
△ (G) = p−1 belongs to F ∗ and Kp, Kp1 ∪Kp2 , Kt1,t2,..., tm , C2n+1, Cn∩C ′

n, mK2, P3∪nK2,
Sp, Wp, Fn ∈ F ∗.
We shall find other graphs of F ∗.
Problem 2.15. Let T be a tree of order p ≥ 4 and T ̸= K1,p−1, then RD∗ (T ) is not a tree.
Observation 2.16. Let T be any tree of order p ≥ 2, then RD∗ (T ) contains no isolated vertex,
that is δ(RD∗ (T )) ≥ 1.
Proof. Let v be any vertex of T and u be a center of T , and rad (T ) = n. Then, there is one
u− v of length m ≥ 1. Therefore, e (v) = n+m which implies that there is a vertex v′ such that
d (v, v′) = n. Thus, vv′ ∈ E(RD∗ (T )). ■

Let Sm,n be a double-star, m, n ≥ 2, of order p = 2 +m+ n (see the Fig. 2.3)

Figure 2.3

Proposition 2.17. Let Sm,n be a double-star, then RD∗ (Sm,n) = Km+1 ∪ Kn+1, in which
V (Km+1) = {w1, u1, u2, . . . , um} and V (Kn+1) = {w2, v1, v2, . . . , vn}.
Proof. It is clear that e (w1) = e (w2) = 2, and rad (Sm,n) = 2.



The Restricted Detour Radial Graphs 149

∴ d (w1, ui) = d (w2, vj) = d (uk, uh) = d (vr, vs) = 2 for 1 ≤ i ≤ m, 1 ≤ j ≤ n, k ̸= h ∈
{1, 2, . . . , m}, r ̸= s ∈ {1, 2, . . . , n}. Moreover, d (ui, vj) = 3. Thus, in RD∗ (Sm,n) every
two vertices in {w1, u1, u2, . . . , um} are adjacent and every two vertices in {w2, v1, v2, . . . , vn}
are adjacent. But (ui, vj) are nonadjacent, for i = 1, 2, . . . , m; j = 1, 2, . . . , n. Hence
RD∗ (Sm,n) = Km+1 ∪Kn+1. ■
Proposition 2.18. Let S(2)

m be a star of m rays, each ray of two edges, shown in Fig. 2.4:

Figure 2.4

Then RD∗

(
S
(2)
m

)
= Km ∪ K1,m in which (Km) = { v1, v2, . . . , vm} and V (K1,m) =

{ w, u1, u2, . . . , um}.
Proof. The proof follows from the fact: e (w) = 2 = rad

(
S
(2)
m

)
, d (vi, uj) = 2, d (w, uj) =

2, d (ui, uj) = 4, d (ui, vj) = 3, i ̸= j, i, j ∈ {1, 2, . . . , m} .■
Proposition 2.19. Let S(3)

m be a star of m rays, each ray of 3 edges, then RD∗

(
S
(3)
m

)
= (Km,m−

mK2) ∪K1,m.
Proof. The proof is like that of Proposition 2.18.■

3 On the RDR of the Sum of Two Graphs

Let G1 and G2 be the connected graphs of order p1 and p2 respectively, and denote G = G1+G2.
If △ (G1) = p1 − 1 or △ (G2) = p2 − 1, then △ (G) = p1 + p2 − 1; and so RD∗ (G1+G2) =
G1+G2. From now on, we assume△ (Gi) < pi − 1, for i = 1 and 2. Thus, it is assumed that
rD∗ (Gi) ≥ 2, i = 1, 2. One can easily check that:
Theorem 3.1 rD∗ (G1+G2) = min{rD∗ (G1) , rD∗ (G2)}.
Proof. Let P be a restricted detour between vi and vj in G1 +G2. If P contains a vertex u of G2,
then uvi and uvj are chords of P , a contradiction. Thus there is a ui−vj restricted detour in G not
containing vertices of G2. Therefore, D∗

G (ui, vj) = D∗
G1
(ui, vj) and D∗

G (ui, uj) = D∗
G2
(ui, uj).

This implies that:
eD∗ (vi : G) = eD∗(vi : G1) for i = 1, 2, . . . , p1 and eD∗ (uj : G) = eD∗ (uj : G2) for j =
1, 2, . . . , p2.
Thus

rD∗ (G) = min {{eD∗ (vi) : i = 1, 2, . . . , p1} ∪ {eD∗ (uj) : j = 1, 2, . . . , p2}}
= min {rD∗ (G1) , rD∗ (G2)} .■

From our assumption on G1 and G2, and from this theorem we have:
Corollary 3.2 Let △ (Gi) ≤ pi−1, i = 1, 2, and rD∗ (G1) = rD∗ (G2) then RD∗ (G1 +G2) =
RD∗ (G1) ∪RD∗ (G2) .■
Example 3.3. Let Cn and C ′

n be a two-cycle graph of order n ≥ 4, then RD∗ (Cn + C ′
n) =

RD∗ (Cn)∪RD∗ (C ′
n) = C

′′

n ∪ C
′′′

n .
Example 3.4. Consider C4 and C5. Then

rD∗ (C4+C5) = min {2, 3} = 2.
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RD∗ (C4+C5) = RD∗ (C4) ∪ 5K1 = 2K2 ∪ 5K1.

Example 3.5. Consider C5 and C6. Then

rD∗ (C5+C6) = min {3, 4} = 3.

RD∗ (C5+C6) = C ′
4 ∪ 3K2.

Proposition 3.6. Let Cn and Cm be two distinct cycle graphs, such that n < m, then

RD∗ (Cn+Cm) =

{
C ′

n ∪ (n− 2)K2 if m = 2 (n− 2) ,
C ′

n ∪mK1, otherwise.

Proof. Obvious.■
Let Pn and Pm be two distinct path graphs with order n, m ≥ 4. Then, by Theorem 3.1,

rD∗ (Pn+Pm) = min {rD∗ (Pn) , rD∗ (Pm)} = n if n ≤ m.

Proposition 3.7. If n = m ≥ 4 or m− n+ 1 ≥ 5, and m is odd, then

RD∗ (Pn+Pm) = RD∗ (Pn) ∪RD∗ (Pm) .

Proof. It is clear that rad (Pn) = rad(Pm). Thus, the results follow from Corollary 3.2.■
Now, we consider Pn + Pm when rad(Pn) < rad(Pm).
Theorem 3.8. Let m > n+ 1 or m = n+ 1 is even, then

RD∗ (Pn+Pm) = RD∗ (Pn) ∪ rPk+1 ∪ (d− r)Pk,

where k =
⌊
m
d

⌋
, r = m− kd, and d is the radius of Pn.

Proof. It is clear that rad (Pn) < rad(Pm). Thus, by Theorem 3.1,

radD∗ (Pn+Pm) = radD∗ (Pn) = d.

Therefore, two vertices x, y of V (Pn + Pm) are adjacent if and only if x, y ∈ V (Pn) and
d (x, y) = d, or x, y ∈ V (Pn) and d (x, y) = d. Thus, RD(Pn) is a subgraph of RD∗ (Pn+Pm).
Since d ≥ 2, then no vertex of Pn is adjacent to a vertex of Pm in RD∗ (Pn+Pm). Now, let Pn =
v1, v2, . . . , vm−1, vm. In RD∗ (Pn+Pm), denote H , each of the vertices vi, i = 1, 2, . . . , d is
of degree one and adjacent to vi+d. Also, each of the vertices vj , j = m−d+1, m−d+2, . . . , m
is of degree one and adjacent to vj−d, in H . All other vertices vk of Pm are of degree 2 in H; vk
is adjacent to vk+d and vk−d. There are the only edges between vertices of Pm in H . It is clear
that no vertex of Pn is adjacent to a vertex of Pm in H . Thus, the proof is completed.■

The following examples illustrate the proof of the theorem:
Example 3.9. Consider the path graph P8 and P23. It is clear that radD∗ (P8+P 23) = radD∗ (P8) =
4 = d. Then k =

⌊ 23
4

⌋
= 5, r = 23−4 (5) = 3. Thus, the edges of (P 8+P 23) other than those in

RD∗ (P8) are v1v5, v2v6, v3v7, v4v8; v16v20, v17v21, v18v22, v19v23; v5v9, v6v10, v7v11, v8v12, v9v13,
v10v14, v11v15, v12v16, v13v17, v14v18, v15v19. Moreover by Proposition 2.13, RD∗ (P8) = 4K2.
Thus RD∗ (P8+P 23) is given in Fig. 3.1.

Figure 3.1
RD∗ (P8+P 23) = 4K2 ∪ P5 ∪ 3P6.
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4 One-Vertex Union of Graphs

Definition 4.1. Let H1, H2, . . . , Hm be distinctly connected graphs, and let ui be a vertex of Hi,
i = 1, 2, . . . , m. The one-vertex union of H1, H2, . . . , Hm is the graph, denoted G(H1, H2,
. . . , Hm)
Or simply G, obtained by identifying u1, u2, . . . , um to one vertex w. If H1, H2, . . . , Hm are m

copies of a graph H of order p, we denote G(H1, H2, . . . , Hm) = G
(m)
p (H).

It is clear that: for each i = 1, 2, . . . , m, D∗
G (v, v′) = D∗

Hi
(v, v′), for each pair v, v′ of Hi;

and for i ̸= j,
D∗

G (v, u) = D∗
Hi

(v, w)+D∗
Hi
(w, u), for each v ∈ V (Hi), and u ∈ V (Hj) , u, v ̸= 0. Moreover:

eD∗ (w : G) = max {eD∗ (w : Hi) : i = 1, 2, . . . , m} ,

in which eD∗ (w : G) is the restricted detour eccentricity of vertex w in the graph G; Similarly
for eD∗ (w : Hi).
Now, we give the following simple results:
Proposition 4.2. Let ui be a restricted detour center of Hi for i = 1, 2, . . . , m. Then

radD∗ (G) = max {radD∗ (Hi ) : i = 1, 2, . . . , m} .

Proof. By definition of restricted detour center:

radD∗ (Hi ) = eD∗ (ui : Hi ) , i = 1, 2, . . . , m.

Thus,
eD∗ (w : G) = max {eD∗ (ui : Hi) : i = 1, 2, . . . , m}

= max {radD∗ (Hi) : i = 1, 2, . . . , m} .

It is clear that the restricted detour eccentricity of every vertex of G is not more than that of
w in G. Thus, w is a restricted detour center of G, and so radD∗ (G) = eD∗ (w : G ). Hence, the
proof is completed.■
Corollary 4.3. Let u be a restricted detour center of H , and H1, H2, . . . , Hm be m copies of H .
Then

radD∗

(
G(m)

p (H)
)
= radD∗ (H) .■

We notice that it is difficult to find a simple formula for RD∗ (G(H1, H2, . . . , Hm)) and
RD∗

(
G

(m)
p (H)

)
if Hi is any connected graph. Therefore, we try to find restricted detour radial

graphs for such one-vertex union graphs in which H1, H2, . . . , Hm are special graphs.
If Hi = Kpi

, i = 1, 2, . . . , m, then for m ≥ 2 :

RD∗ (G(Kp1 , Kp2 , . . . , Kpm)) = G (Kp1 , Kp2 , . . . , Kpm) ,

because △ (G) = p1 + p2 + · · ·+ pm −m+ 1

= degG (w) = p (G)− 1.

Now, we determine RD∗ (G(H1, H2, . . . , Hm)) in which m = 2 and H1, H2 are cycle
graphs. Usually, G(H1, H2) is denoted by H1 ◦H2 [2].
Let C2n+1 = (v1, v2, . . . , v2n+1, v1) and C ′

2n+1 = (u1, u2, . . . , u2n+1, u1) be two distinct
cycle graphs of orders, n ≥ 1.
Theorem 4.4. For n ≥ 3

RD∗ (C2n+1 ◦ C ′
2n+1) = (C ′′

2n+1 ◦ C ′′′
2n+1)

⋃
C4

⋃
C ′

4,

where,
C ′′

2n+1 = (w, v3, v5, v7, . . . , v2n+1, v2, v4, . . . , v2n−2, v2n, w)

C ′′′
2n+1 = (w, u3, u5, u7, . . . , u2n+1, u2, u4, . . . , u2n−2, u2n, w)

C4 = ( v2, u4, v2n+1, u2n, v2) and C ′
4 = ( u2, v4, u2n+1, v2n, u2).
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Proof. In C2n+1 ◦ C ′
2n+1 we assume that vertex w is obtained by identifying vertices v1 and u1.

By Proposition 4.2,

radD∗ (C2n+1 ◦ C ′
2n+1) = radD∗ (C2n+1) = 2n− 1.

Let x, y ∈ V (C2n+1 ◦ C ′
2n+1), then D∗

G (x, y) = 2n− 1 if and only if :

(i) x, y ∈ V (C2n+1) and x, y ∈ E(RD∗ (C2n+1)),

(ii) x, y ∈ V (C ′
2n+1) and x, y ∈ E(RD∗ (C ′

2n+1)), (see Proposition 2.5)

(iii) x = v2, and y = u4 or u2n−1,

(iv) x = v2n+1, and y = u4 or u2n−1,

(v) x = u2, and y = v4 or v2n−1, or

(vi) x = u2n+1, and y = v4 or v2n−1.

Therefore, RD∗ (C2n+1) ∪ RD∗ (C ′
2n+1) =

(
C ′′

2n+1 ◦ C ′′′
2n+1

)
is a spanning subgraph of

RD∗ (C2n+1 ◦ C ′
2n+1). Moreover, from (iii)-(vi), C4∪C ′

4 is a subgraph of RD∗ (C2n+1 ◦ C ′
2n+1).

Hence, the proof.■
The following example illustrates Theorem 4.4.
Example 4.5. For n = 2, we have radD∗ (C5 ◦ C ′

5) = 3, and RD∗ (C5 ◦ C ′
5) = (C ′′

5 ◦ C ′′′
5 ), as

shown in Fig. 4.1.

Figure 4.1 C ′′
5 ◦ C ′′′

5 .

For n = 3, we have radD∗ (C7 ◦ C ′
7) = 5, and RD∗ (C7 ◦ C ′

7) = (C ′′
7 ◦ C ′′′

7 ) ∪ C4 ∪ C ′
4 =

(C ′′
7 ◦ C ′′′

7 ) ∪ ( v2, u4, v7, u6, v2) ∪ ( u2, v4, u7, v6, u2), as illustrated in Fig. 4.2.

Figure 4.2 RD∗ (C7 ◦ C ′
7) .

Now, we find RD∗ (Cp ◦ C ′
p) for even p, say p = 2n, n ≥ 3. For n = 3, we have

RD∗ (C6 ◦ C ′
6) given in Fig. 4.3.

Figure 4.3 RD∗ (C7 ◦ C ′
7) .

It is clear that RD∗ (C6 ◦ C ′
6) = RD∗ (C6)◦RD∗ (C ′

6)∪P3 ∪P ′
3, in which P3 = (v2, u4, v6)

and P ′
3 = (u2, v4, u6).
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For n ≥ 6, we have the following proposition:
Proposition 4.6. Let n ≥ 4, and C2n = ( v1, v2, . . . , v2n, v1), C ′

2n = ( u1, u2, . . . , u2n, u1).
Then

RD∗ (C2n ◦ C ′
2n) = (C ′′

n ◦ C∗
n) ∪ C ′′′

n ∪ C∗∗
n ∪ C4 ∪ C ′

4,

where
C ′′

n = (w, v3, v5, . . . , v2n−1, w), C
′′′
n = ( v2, v4, v6, . . . , v2n, v2) ,

C∗
n = (w, u3, u5, . . . , u2n−1, w) , C

∗∗
n = ( u2, u4, u6, . . . , u2n, u2) ,

C4 = ( v2, u4, v2n, u2n−2, v2) , C
∗
4 = ( u2, v4, u2n, v2n−2, u2) .

Proof. The proof is similar to that of Theorem 4.4.■
Proposition 4.7. Let Cp = ( v1, v2, . . . , vp) and C ′

p = ( u1, u2, . . . , up−1) be distinct cycle
graphs, p ≥ 7 and w = u1 = v1. Then

RD∗
(
Cp ◦ C ′

p−1
)
= RD∗ (Cp) ∪ C4 ∪ C ′

4 ∪ S, (4.1)

where
C4 = ( v2, u4, vp−1, up−2, v2), C ′

4 = ( v3, u2, vp−2, up, v3), and S = ( v4, v5, . . . , vp−3) is a
set of (p− 6) isolated vertices.
Proof. Using the procedure used in proving Theorem 4.4, we obtain (4.1).■

For p = 4, 5, 6 we have

RD∗ (C4 ◦ C ′
3) = (v2, u2, v3, u4, v2) ∪ (wu3, u2u4) = C ′′

4 ∪ 2K2.

RD∗ (C5 ◦ C ′
4) =(w, u3, u5, u2, w)∪ (u2, v2, u5) = C ′′

4 ∪ 2K2 = RD∗ (C5) ∪ P3, where
P3 = (u2, v2, u5) .

RD∗ (C6 ◦ C ′
5) = RD∗ (C6) ∪ (u2, v3, u6, v4, u2) ∪ (v2, u4, v5) .

Moreover, we illustrate Proposition 4.7 in the next example.
Example 4.8. For p = 7, we give RD∗ (C7 ◦ C ′

6) in Fig.4.4.

Figure 4.4

Example 4.9. For p = 8, we give RD∗ (C8 ◦ C ′
7) in Fig.4.5.

Figure 4.5

Proposition 4.10.
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(1) For p ≥ 7, RD∗ (Cp ◦ C ′
3) = RD∗ (Cp) ∪ (v2, u4, v3, up−2, v2),

(2) For p ≥ 9, RD∗ (Cp ◦ C ′
4) = RD∗ (Cp) ∪ (v2, u4, v4, up−2, v2) ∪ (u5, v3, up−3),

in which Cp = ( u1, u2, . . . , up, u1), C ′
3 = ( v1, v2, v3, v1), C ′

4 = ( v1, v2, v3, v4, v1), and
w = u1 = v1.■
In Case (1), for p = 5, 6, we have:

RD∗ (C5 ◦ C ′
3) = RD∗ (C5) ∪ (v2, v3) ,

RD∗ (C6 ◦ C ′
3) = RD∗ (C6) ∪ (v2, u4, v3) .

In Case (2), for p = 6, 7, 8, we have:

RD∗ (C6 ◦ C ′
4) = RD∗ (C6) ∪ (v2, u4, u4) ,

RD∗ (C7 ◦ C ′
4) = RD∗ (C7) ∪ (v2, u4, v4, u6, v2) ∪ {v3},

RD∗ (C8 ◦ C ′
4) = RD∗ (C8) ∪ (v2, u4, v4, u6, v2) ∪ {u3u5}.

Problem. We think it is possible to find RD∗
(
Cp ◦ C ′

p′

)
, p ≥ p′ for p′ = 5 and 6, or p − 2 and

p− 6.
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