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Abstract In this note, we investigate the properties of the sigma-conjugate map. Also, we
drive various mutual results regarding the sigma-subdifferential and sigma-conjugate. Indeed,
we prove that some well-known properties regarding the Fenchel conjugate and e-conjugate
remain valid for the sigma-conjugate.

1 Introduction and preliminaries

Throughout this note, F is a Banach space and we will denote its topological dual by E*. The
evaluation of a functional z* € E* at a point € E* is written as (-, -).

In what follows, f : E — R U {400} is a map. The domain of f will be defined by dom f =
{r € E: f(x) < 4+oo}. We say that f is proper if dom f # (. Moreover, we call a map f is
convex if for each 2, y € F and for any \ € [0, 1]

FOz+ 1 =Xy) <Af(x)+ (1= f(y).
Let f : E — R U {400} be a map. Its Fenchel subdifferential at « € dom f is defined by
of (x) ={z" e E": (y—z,2") < f(y) - f(x) VyekL} (1.1)

and 9f (z) = 0 if z ¢ dom f.
We recall that from [10], for a mapping f : E — R U {+o0c} its generalized directional
derivative (in the sense of Clarke-Rockafellar) at « in a direction z € F is defined as follows:

fT(z,z) =sup limsup inf w
820 (1 ) Hr A0 u€B(2,9)

where (y, «) 4, 2 means that y— z,a — f(x)and a > f(y). We recall that the subdifferential
of f at x € dom f (in the sense of Clarke-Rockafellar) is defined in the following way:

O“Rf(x)={a* € E*: (2*,2) < fT (z,2) VzeE}.
Asin [7] we say thatamap f : E — RU {400} is e-convex if for all a,b € E, and « €]0, 1]
flaa+ (1 =a)b) <af(a) +(1-a) f(b) +a(l—-a)ella—bl.
We also recall that:

Definition 1.1. [3].Given amap f : E — R U {400} and a function ¢ from E to Ry U {400},
such that dom f C domo. Then f is called o-convex if

FOa+ (1= Ny) A @)+ (1= ) f () + (1= N minfo (@), @}z -yl (12

forevery z,y € F,and X € [0, 1].

It should be noticed that from now on, to simplify the writing, we define & (z, y) := min {o (z),0 (y)}.

Note that o and & are different maps because their domains are different, i.e., doms C X x X
and domo C X.
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In a word,
o-convexity = e-convexity == convexity.

In [8], various properties of e-convex maps are presented. Some links between e-subdifferential
and e-monotonicity were found in [7]. These concepts are generalized to o-convexity and o-
monotonicity in [1, 2, 3, 4, 6]. In this note, we provide additional results regarding the concepts
o-convexity and o-subdifferential.

2 Main results

Here, we study the concept of 5-conjugate which is reduced to the notion of "e-conjugate" [9]
and conjugate if we choose & (z,y) = e and & (x,y) = 0, respectively.

Let f : E — R U {+o0} be a o-convex map and y € E be fixed. Then the function
[y + B = RU{+o0} defined by

f;‘ (g,2") = sg%{(w*,x)—f(ac)—&(x,y)“x—y“}, Va* € B 2.1

is named the G-conjugate of f, where & (z,y) = min {o (), 0 (y)}. In the whole of this section,
we will use this notation regarding .

Note that when & (z,y) = O then f;(,2*) reduces to f* (z*) and if & (z,y) = €,(c €
10, +oc[) then &-conjugacy coincides with e-conjugacy [9].

As for the convex case, the map f;* : £ — R U {+£oo} is defined as follows:

Iy (5,z) = sug {(x*,x>—f; (6,9@*)}, Vee E
[ASY D
and it is called the 5-biconjugate of f.
From (2.1), we obtain a generalized Fenchel inequality as follows:

fy(G.2") + f (@) +5 (2) |l —yl| > (2*,2), Vo€ B Va*eE". (2.2)
The next proposition represents some properties regarding 5-conjugate maps.

Proposition 2.1. Suppose that f,g : E — RU {400} are o-convex maps. Then we have

(i) fy (7,2%) < f*(x*), and therefore if f*(-) is proper, then f; (7,-) is too;

(i) g (7,2%) < f; (5,a") whenever f < g;

(iii) f; (&', 2*) < [y (5,2%) when & < &',

(v) If k (z) := f (z) + M for some real M, then k; (5,2*) = f; (7,2*) — M;

(v) When M is a positive real number and k (x) := M f (x), then by, (5,2*) = M f (%, “’M) ;

(vi) Assume that M is a positive real number and o is positively homogeneous of degree 1. If
k(@) = f (M), then Ky (5,2°) = Fipe, (32m. 0 ) 5

(vii) Assume that dom o = E and o is bounded from above. Then f is Lipschitz with respect
to y with a Lipschitz rank | = sup, . o ()

(viii)The o-conjugation map is convex, that is for each o €]0, 1] we have

(O‘f + (1 - Oz)g)z (67‘T*) < Ozf; (5’,$*) + (1 - o‘) g;; (5'7I*) 5

Proof. We note that the proofs of parts (i), (ii), (iii), and (iv) are easy consequences of the
definition.
For part (v), we have

ky (9,27) = S‘EIIE’{@*’@ —Mf(z) =5 (z,9) |lz —yll}

* 1 - *
—rsup {($0) = 1 @)= g0 e ol f =55 (757 )

To prove the part (vi), by assumptions M > 0, and o is positively homogeneous of degree [, then
& is positively homogeneous of rank [ with respect to (z,y). Now by setting z = Mz, u = y, we
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infer the desired formula. For the proof of part (vii), note that ¢ is bounded above. Thus & has
the same bound. So for y;,y, € F and z* € E*, we get

fo (G,27) = Sgg{@*w) — f(2) = (z, )|z —will}

< Slelg{@*»@ —f (@) = (1) [l — gl + 7 (2, 42) ly2 — v}

< sup {(z", ) = f(2) = 5 (z,92) ||z — 12l]} + sup o (2) [[y2 — w1
zel zeE

= fo (@, 2) + 12 — w1

If in the above inequality we change x to y, the desired statement will be obtained.
To show part (viii), let « € [0, 1], then

(af +(1-a)g), (7,2") = sup {{a%, ) = (af + (1 —a) g) (z) =& (@, y) llw = yll}

< asup {{z*,2) — f(x) — 7 (z,y) ||z — y||}

el
+ (1 =a)sup {{z",z) — g (2) = & (2,p) [l - yll}
€
=afy (@,27) + (1 -a)g, (7,27).
The proof is completed. O

In the next results, we generalize some results from [9].

Proposition 2.2. Let f : E — R U {400} be g-convex. Then for each y* € df (y) we have
07 f (z) C Q, where

Q:={z" e E": (2" —y"y—x) <3z, 9)llz —yl}

Proof. By assumptions z* € 9° f (z) and y* € 9f (y). Therefore by using the related defini-
tions, we obtain

(@5 x—y) = f(z) = f(y) +(y,2) |z -yl
(y—a)=fy) = f(z).
Now if we add the above inequalities, then we infer z* € Q i.e., 97 f (z) C Q. o

Proposition 2.3. Let | = sup, 5 6(2,y) and f : E — R U {+o0} be a Isc and o-convex map.
Then for each y € E, the maps [, and f;* are proper.

Proof. Since f is proper and Isc map, therefore, according to [5] there is x € dom f such that
AfCE (x) # 0. By [2, Proposition 9], 0% f (z) C 87 f (x), thus 9° f (z) # 0. So, we assume
that 2* € 07 f (x). Thus, for every u € E we have:
(@ u—x) < f(u) = f(2) +5(u,z)|lz - ull
< flu) = f (@) +o(wy)lz =yl +6(u,y)llu—yl.

From the above inequalities, we conclude that (z*,u) — f (u) — (u,y)||u — y| < &(u,y)||z —
yll + (z*, z) — f (z). Now get the supremum over v € E. This implies that

fy (o,27) <lllz =yl + (=%, 2) = f ().

Since | = sup, . 7(z,y), consequently [, 1s proper. Thus at least for one z* € E, we have
f4(@,2*) € R. Using the definition of f** we obtain f;*(7,x) > —oo for every z € E.
Applying Proposition 2.1(ix) implies that f;* is proper too. O

Wecall f: E — R U {+oc} strongly coercive, if lim, o (%) = +o0.

Proposition 2.4. Let f : E — R U {+00} be minorized by an affine map and be a o-convex and
strongly coercive map. Then dom f; (5,-) = E* and also f is bounded on every bounded set.

Proof. By using [10, Lemma 3.6.1] we get that f* (z*) < 400 and also, it is bounded on any
bounded set. Thus by Proposition 2.1(i) we obtain f, (7, 2*) < +oc. The proof is completed. O
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