On the sigma-conjugate maps

Mohammad Hossein Alizadeh
Communicated by Rostam Kareem Saeed

MSC 2010 Classifications: 47H05, 39B22.
Keywords and phrases: Generalized convexity, Generalized Conjugat, sigma-subdifferential.

Abstract

In this note, we investigate the properties of the sigma-conjugate map. Also, we drive various mutual results regarding the sigma-subdifferential and sigma-conjugate. Indeed, we prove that some well-known properties regarding the Fenchel conjugate and ϵ-conjugate remain valid for the sigma-conjugate.

1 Introduction and preliminaries

Throughout this note, E is a Banach space and we will denote its topological dual by E^{*}. The evaluation of a functional $x^{*} \in E^{*}$ at a point $x \in E^{*}$ is written as $\langle\cdot, \cdot\rangle$.

In what follows, $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ is a map. The domain of f will be defined by $\operatorname{dom} f=$ $\{x \in E: f(x)<+\infty\}$. We say that f is proper if $\operatorname{dom} f \neq \emptyset$. Moreover, we call a map f is convex if for each $x, y \in E$ and for any $\lambda \in[0,1]$

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Let $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be a map. Its Fenchel subdifferential at $x \in \operatorname{dom} f$ is defined by

$$
\begin{equation*}
\partial f(x)=\left\{x^{*} \in E^{*}:\left\langle y-x, x^{*}\right\rangle \leq f(y)-f(x) \quad \forall y \in E\right\} \tag{1.1}
\end{equation*}
$$

and $\partial f(x)=\emptyset$ if $x \notin \operatorname{dom} f$.
We recall that from [10], for a mapping $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ its generalized directional derivative (in the sense of Clarke-Rockafellar) at x in a direction $z \in E$ is defined as follows:

$$
f^{\uparrow}(x, z)=\sup _{\delta>0} \limsup _{(y, \alpha) \xrightarrow{f} x, \lambda \searrow 0} \inf _{u \in B(z, \delta)} \frac{f(y+\lambda u)-\alpha}{\lambda}
$$

where $(y, \alpha) \xrightarrow{f} x$ means that $y \rightarrow x, \alpha \rightarrow f(x)$ and $\alpha \geq f(y)$. We recall that the subdifferential of f at $x \in \operatorname{dom} f$ (in the sense of Clarke-Rockafellar) is defined in the following way:

$$
\partial^{C R} f(x)=\left\{x^{*} \in E^{*}:\left\langle x^{*}, z\right\rangle \leq f^{\uparrow}(x, z) \quad \forall z \in E\right\} .
$$

As in [7] we say that a map $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ is ε-convex if for all $a, b \in E$, and $\alpha \in] 0,1[$

$$
f(\alpha a+(1-\alpha) b) \leq \alpha f(a)+(1-\alpha) f(b)+\alpha(1-\alpha) \varepsilon\|a-b\|
$$

We also recall that:
Definition 1.1. [3]. Given a map $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ and a function σ from E to $\mathbb{R}_{+} \cup\{+\infty\}$, such that $\operatorname{dom} f \subseteq \operatorname{dom} \sigma$. Then f is called σ-convex if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)+\lambda(1-\lambda) \min \{\sigma(x), \sigma(y)\}\|x-y\| \tag{1.2}
\end{equation*}
$$

for every $x, y \in E$, and $\lambda \in[0,1]$.
It should be noticed that from now on, to simplify the writing, we define $\bar{\sigma}(x, y):=\min \{\sigma(x), \sigma(y)\}$. Note that σ and $\bar{\sigma}$ are different maps because their domains are different, i.e., dom $\bar{\sigma} \subset X \times X$ and $\operatorname{dom} \sigma \subset X$.

In a word,

$$
\sigma \text {-convexity } \Longrightarrow \epsilon \text {-convexity } \Longrightarrow \text { convexity. }
$$

In [8], various properties of ε-convex maps are presented. Some links between ϵ-subdifferential and ϵ-monotonicity were found in [7]. These concepts are generalized to σ-convexity and σ monotonicity in $[1,2,3,4,6]$. In this note, we provide additional results regarding the concepts σ-convexity and σ-subdifferential.

2 Main results

Here, we study the concept of $\bar{\sigma}$-conjugate which is reduced to the notion of " ϵ-conjugate" [9] and conjugate if we choose $\bar{\sigma}(x, y)=\epsilon$ and $\bar{\sigma}(x, y)=0$, respectively.

Let $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be a σ-convex map and $y \in E$ be fixed. Then the function $f_{y}^{*}: E^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\begin{equation*}
f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)=\sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\bar{\sigma}(x, y)\|x-y\|\right\}, \quad \forall x^{*} \in E^{*} \tag{2.1}
\end{equation*}
$$

is named the $\bar{\sigma}$-conjugate of f, where $\bar{\sigma}(x, y)=\min \{\sigma(x), \sigma(y)\}$. In the whole of this section, we will use this notation regarding $\bar{\sigma}$.

Note that when $\bar{\sigma}(x, y) \equiv 0$ then $f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)$ reduces to $f^{*}\left(x^{*}\right)$ and if $\bar{\sigma}(x, y)=\epsilon,(\epsilon \in$ $] 0,+\infty[$) then $\bar{\sigma}$-conjugacy coincides with ϵ-conjugacy [9].

As for the convex case, the map $f_{y}^{* *}: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is defined as follows:

$$
f_{y}^{* *}(\bar{\sigma}, x)=\sup _{x^{*} \in E^{*}}\left\{\left\langle x^{*}, x\right\rangle-f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)\right\}, \quad \forall x \in E
$$

and it is called the $\bar{\sigma}$-biconjugate of f.
From (2.1), we obtain a generalized Fenchel inequality as follows:

$$
\begin{equation*}
f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)+f(x)+\bar{\sigma}(x)\|x-y\| \geq\left\langle x^{*}, x\right\rangle, \quad \forall x \in E, \forall x^{*} \in E^{*} \tag{2.2}
\end{equation*}
$$

The next proposition represents some properties regarding $\bar{\sigma}$-conjugate maps.
Proposition 2.1. Suppose that $f, g: E \rightarrow \mathbb{R} \cup\{+\infty\}$ are σ-convex maps. Then we have
(i) $f_{y}^{*}\left(\bar{\sigma}, x^{*}\right) \leq f^{*}\left(x^{*}\right)$, and therefore if $f^{*}(\cdot)$ is proper, then $f_{y}^{*}(\bar{\sigma}, \cdot)$ is too;
(ii) $g_{y}^{*}\left(\bar{\sigma}, x^{*}\right) \leq f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)$ whenever $f \leq g$;
(iii) $f_{y}^{*}\left(\bar{\sigma}^{\prime}, x^{*}\right) \leq f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)$ when $\bar{\sigma} \leq \bar{\sigma}^{\prime}$;
(iv) If $k(x):=f(x)+M$ for some real M, then $k_{y}^{*}\left(\bar{\sigma}, x^{*}\right)=f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)-M$;
(v) When M is a positive real number and $k(x):=M f(x)$, then $h_{y}^{*}\left(\bar{\sigma}, x^{*}\right)=M f_{y}^{*}\left(\frac{\bar{\sigma}}{M}, \frac{x^{*}}{M}\right)$;
(vi) Assume that M is a positive real number and σ is positively homogeneous of degree l. If $k(x):=f(M x)$, then $k_{y}^{*}\left(\bar{\sigma}, x^{*}\right)=f_{M^{l} y}^{*}\left(\frac{\bar{\sigma}}{M^{2 l}}, \frac{x^{*}}{M^{l}}\right)$;
(vii) Assume that $\operatorname{dom} \sigma=E$ and σ is bounded from above. Then f_{y}^{*} is Lipschitz with respect to y with a Lipschitz rank $l=\sup _{x \in E} \sigma(x)$;
(viii)The σ-conjugation map is convex, that is for each $\alpha \in] 0,1[$ we have

$$
(\alpha f+(1-\alpha) g)_{y}^{*}\left(\bar{\sigma}, x^{*}\right) \leq \alpha f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)+(1-\alpha) g_{y}^{*}\left(\bar{\sigma}, x^{*}\right)
$$

Proof. We note that the proofs of parts (i), (ii), (iii), and (iv) are easy consequences of the definition.

For part (v), we have

$$
\begin{aligned}
k_{y}^{*}\left(\bar{\sigma}, x^{*}\right) & =\sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-M f(x)-\bar{\sigma}(x, y)\|x-y\|\right\} \\
& =M \sup _{x \in E}\left\{\left\langle\frac{x^{*}}{M}, x\right\rangle-f(x)-\frac{1}{M} \bar{\sigma}(x, y)\|x-y\|\right\}=M f_{y}^{*}\left(\frac{\bar{\sigma}}{M}, \frac{x^{*}}{M}\right) .
\end{aligned}
$$

To prove the part (vi), by assumptions $M>0$, and σ is positively homogeneous of degree l, then $\bar{\sigma}$ is positively homogeneous of rank l with respect to (x, y). Now by setting $z=M x, u=y$, we
infer the desired formula. For the proof of part (vii), note that σ is bounded above. Thus $\bar{\sigma}$ has the same bound. So for $y_{1}, y_{2} \in E$ and $x^{*} \in E^{*}$, we get

$$
\begin{aligned}
f_{y_{1}}^{*}\left(\bar{\sigma}, x^{*}\right) & =\sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\bar{\sigma}\left(x, y_{1}\right)\left\|x-y_{1}\right\|\right\} \\
& \leq \sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\bar{\sigma}\left(x_{1}\right)\left\|x-y_{2}\right\|+\bar{\sigma}\left(x, y_{2}\right)\left\|y_{2}-y_{1}\right\|\right\} \\
& \leq \sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\bar{\sigma}\left(x, y_{2}\right)\left\|x-y_{2}\right\|\right\}+\sup _{x \in E} \sigma(x)\left\|y_{2}-y_{1}\right\| \\
& =f_{y_{2}}^{*}\left(\sigma, x^{*}\right)+l\left\|y_{2}-y_{1}\right\| .
\end{aligned}
$$

If in the above inequality we change x to y, the desired statement will be obtained.
To show part (viii), let $\alpha \in[0,1]$, then

$$
\begin{aligned}
(\alpha f+(1-\alpha) g)_{y}^{*}\left(\bar{\sigma}, x^{*}\right) & =\sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-(\alpha f+(1-\alpha) g)(x)-\bar{\sigma}(x, y)\|x-y\|\right\} \\
& \leq \alpha \sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-f(x)-\bar{\sigma}(x, y)\|x-y\|\right\} \\
& +(1-\alpha) \sup _{x \in E}\left\{\left\langle x^{*}, x\right\rangle-g(x)-\bar{\sigma}(x, y)\|x-y\|\right\} \\
& =\alpha f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)+(1-\alpha) g_{y}^{*}\left(\bar{\sigma}, x^{*}\right) .
\end{aligned}
$$

The proof is completed.
In the next results, we generalize some results from [9].
Proposition 2.2. Let $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be σ-convex. Then for each $y^{*} \in \partial f(y)$ we have $\partial^{\sigma} f(x) \subset \Omega$, where

$$
\Omega:=\left\{x^{*} \in E^{*}:\left\langle x^{*}-y^{*}, y-x\right\rangle \leq \bar{\sigma}(x, y)\|x-y\|\right\}
$$

Proof. By assumptions $x^{*} \in \partial^{\sigma} f(x)$ and $y^{*} \in \partial f(y)$. Therefore by using the related definitions, we obtain

$$
\begin{aligned}
& \left\langle x^{*}, x-y\right\rangle \geq f(x)-f(y)+\bar{\sigma}(y, x)\|x-y\| \\
& \left\langle y^{*}, y-x\right\rangle \geq f(y)-f(x)
\end{aligned}
$$

Now if we add the above inequalities, then we infer $x^{*} \in \Omega$ i.e., $\partial^{\sigma} f(x) \subset \Omega$.
Proposition 2.3. Let $l=\sup _{z \in E} \bar{\sigma}(z, y)$ and $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be a lsc and σ-convex map. Then for each $y \in E$, the maps f_{y}^{*} and $f_{y}^{* *}$ are proper.
Proof. Since f is proper and lsc map, therefore, according to [5] there is $x \in \operatorname{dom} f$ such that $\partial f^{C R}(x) \neq \emptyset$. By [2, Proposition 9], $\partial^{C R} f(x) \subset \partial^{\sigma} f(x)$, thus $\partial^{\sigma} f(x) \neq \emptyset$. So, we assume that $x^{*} \in \partial^{\sigma} f(x)$. Thus, for every $u \in E$ we have:

$$
\begin{aligned}
\left\langle x^{*}, u-x\right\rangle & \leq f(u)-f(x)+\bar{\sigma}(u, x)\|x-u\| \\
& \leq f(u)-f(x)+\bar{\sigma}(u, y)\|x-y\|+\bar{\sigma}(u, y)\|u-y\|
\end{aligned}
$$

From the above inequalities, we conclude that $\left\langle x^{*}, u\right\rangle-f(u)-\bar{\sigma}(u, y)\|u-y\| \leq \bar{\sigma}(u, y) \| x-$ $y \|+\left\langle x^{*}, x\right\rangle-f(x)$. Now get the supremum over $u \in E$. This implies that

$$
f_{y}^{*}\left(\sigma, x^{*}\right) \leq l\|x-y\|+\left\langle x^{*}, x\right\rangle-f(x) .
$$

Since $l=\sup _{z \in E} \bar{\sigma}(z, y)$, consequently f_{y}^{*} is proper. Thus at least for one $x^{*} \in E$, we have $f_{y}^{*}\left(\bar{\sigma}, x^{*}\right) \in \mathbb{R}$. Using the definition of $f_{y}^{* *}$ we obtain $f_{y}^{* *}(\bar{\sigma}, x)>-\infty$ for every $x \in E$. Applying Proposition 2.1(ix) implies that $f_{y}^{* *}$ is proper too.

We call $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ strongly coercive, if $\lim _{\|x\| \rightarrow+\infty}\left(\frac{f(x)}{\|x\|}\right)=+\infty$.
Proposition 2.4. Let $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be minorized by an affine map and be a σ-convex and strongly coercive map. Then $\operatorname{dom} f_{y}^{*}(\bar{\sigma}, \cdot)=E^{*}$ and also f is bounded on every bounded set.
Proof. By using [10, Lemma 3.6.1] we get that $f^{*}\left(x^{*}\right)<+\infty$ and also, it is bounded on any bounded set. Thus by Proposition 2.1(i) we obtain $f_{y}^{*}\left(\bar{\sigma}, x^{*}\right)<+\infty$. The proof is completed.

References

[1] M.H. Alizadeh, On e-convex functions and e-subdifferentials in locally convex spaces, Optimization (to appear), https://doi.org/10.1080/02331934.2021.2015769.
[2] M.H. Alizadeh, On generalized convex functions and generalized subdifferential, Optim. Lett. 14, 157169 (2020).
[3] M.H. Alizadeh, M. Roohi, Some results on pre-monotone operators, Bulletin of Iranian mathematical society 43, 2085-2097 (2017).
[4] M.H. Alizadeh, N. Hadjisavvas, M. Roohi, Local boundedness properties for generalized monotone operators, J. Convex Anal., 19 49-61 (2012).
[5] D. Aussel, J.N. Corvelec, M. Lassonde, Mean value property and subdifferential criteria for lower semicontinuous functions, Trans. Amer. Math. Soc. 347, 4147-4161,(1995).
[6] H. Huang, C. Sun, Sigma-subdifferential and its application to minimization problem, Positivity, 24, 539-551 (2020).
[7] A. Jofre, D.T. Luc, M. Thera, ϵ-subdifferential and ϵ-monotonicity, Nonlinear Anal., 33, 71-90, (1998).
[8] D.T. Luc, H.V. Ngai, M. Thera, On ϵ-monotonicity and ϵ-convexity, in: A. Ioffe et al. (eds.), Calculus of Variations and Differential Equations (Haifa, 1998), Res. Notes Math. Ser. 410, Chapman \& Hall, Boca Raton (1999) 82-100.
[9] D.T. Luc, H.V. Ngai, M. Thera, Approximate convex functions, J. Nonlinear Convex Anal. 1, No. 2 , 155-176 (2000).
[10] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, (2002).

Author information

Mohammad Hossein Alizadeh, Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66781 Zanjan, Iran.
E-mail: m.alizadeh@iasbs.ac.ir

