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Abstract In this note, we investigate the properties of the sigma-conjugate map. Also, we
drive various mutual results regarding the sigma-subdifferential and sigma-conjugate. Indeed,
we prove that some well-known properties regarding the Fenchel conjugate and ε-conjugate
remain valid for the sigma-conjugate.

1 Introduction and preliminaries

Throughout this note, E is a Banach space and we will denote its topological dual by E∗. The
evaluation of a functional x∗ ∈ E∗ at a point x ∈ E∗ is written as 〈·, ·〉.

In what follows, f : E → R ∪ {+∞} is a map. The domain of f will be defined by dom f =
{x ∈ E : f (x) < +∞}. We say that f is proper if dom f 6= ∅. Moreover, we call a map f is
convex if for each x, y ∈ E and for any λ ∈ [0, 1]

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) .

Let f : E → R ∪ {+∞} be a map. Its Fenchel subdifferential at x ∈ dom f is defined by

∂f (x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ f (y)− f (x) ∀y ∈ E} (1.1)

and ∂f (x) = ∅ if x /∈ dom f.
We recall that from [10], for a mapping f : E → R ∪ {+∞} its generalized directional

derivative (in the sense of Clarke-Rockafellar) at x in a direction z ∈ E is defined as follows:

f↑ (x, z) = sup
δ>0

lim sup
(y,α)

f→x,λ↘0

inf
u∈B(z,δ)

f (y + λu)− α
λ

where (y, α) f→ x means that y → x, α→ f (x) and α ≥ f (y). We recall that the subdifferential
of f at x ∈ dom f (in the sense of Clarke-Rockafellar) is defined in the following way:

∂CRf (x) =
{
x∗ ∈ E∗ : 〈x∗, z〉 ≤ f↑ (x, z) ∀z ∈ E

}
.

As in [7] we say that a map f : E → R ∪ {+∞} is ε-convex if for all a, b ∈ E, and α ∈]0, 1[

f (αa+ (1− α) b) ≤ αf (a) + (1− α) f (b) + α (1− α) ε||a− b||.

We also recall that:

Definition 1.1. [3].Given a map f : E → R ∪ {+∞} and a function σ from E to R+ ∪ {+∞},
such that dom f ⊆ domσ. Then f is called σ-convex if

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) + λ (1− λ)min{σ (x) , σ (y)}||x− y|| (1.2)

for every x, y ∈ E, and λ ∈ [0, 1].

It should be noticed that from now on, to simplify the writing, we define σ̄ (x, y) := min {σ (x) , σ (y)}.
Note that σ and σ̄ are different maps because their domains are different, i.e., dom σ̄ ⊂ X ×X
and domσ ⊂ X .



2 Mohammad Hossein Alizadeh

In a word,
σ-convexity =⇒ ε-convexity =⇒ convexity.

In [8], various properties of ε-convex maps are presented. Some links between ε-subdifferential
and ε-monotonicity were found in [7]. These concepts are generalized to σ-convexity and σ-
monotonicity in [1, 2, 3, 4, 6]. In this note, we provide additional results regarding the concepts
σ-convexity and σ-subdifferential.

2 Main results

Here, we study the concept of σ̄-conjugate which is reduced to the notion of "ε-conjugate" [9]
and conjugate if we choose σ̄ (x, y) = ε and σ̄ (x, y) = 0, respectively.

Let f : E → R ∪ {+∞} be a σ-convex map and y ∈ E be fixed. Then the function
f∗y : E∗ → R ∪ {+∞} defined by

f∗y (σ̄, x
∗) = sup

x∈E
{〈x∗, x〉 − f (x)− σ̄ (x, y) ||x− y||} , ∀x∗ ∈ E∗ (2.1)

is named the σ̄-conjugate of f , where σ̄ (x, y) = min {σ (x) , σ (y)}. In the whole of this section,
we will use this notation regarding σ̄.

Note that when σ̄ (x, y) ≡ 0 then f∗y (σ̄, x
∗) reduces to f∗ (x∗) and if σ̄ (x, y) = ε,(ε ∈

]0,+∞[) then σ̄-conjugacy coincides with ε-conjugacy [9].
As for the convex case, the map f∗∗y : E → R ∪ {±∞} is defined as follows:

f∗∗y (σ̄, x) = sup
x∗∈E∗

{
〈x∗, x〉 − f∗y (σ̄, x∗)

}
, ∀x ∈ E

and it is called the σ̄-biconjugate of f .
From (2.1), we obtain a generalized Fenchel inequality as follows:

f∗y (σ̄, x
∗) + f (x) + σ̄ (x) ||x− y|| ≥ 〈x∗, x〉 , ∀x ∈ E,∀x∗ ∈ E∗. (2.2)

The next proposition represents some properties regarding σ̄-conjugate maps.

Proposition 2.1. Suppose that f, g : E → R ∪ {+∞} are σ-convex maps. Then we have
(i) f∗y (σ̄, x∗) ≤ f∗(x∗), and therefore if f∗(·) is proper, then f∗y (σ̄, ·) is too;
(ii) g∗y (σ̄, x∗) ≤ f∗y (σ̄, x∗) whenever f ≤ g;
(iii) f∗y (σ̄′, x∗) ≤ f∗y (σ̄, x∗) when σ̄ ≤ σ̄′;
(iv) If k (x) := f (x) +M for some real M , then k∗y (σ̄, x∗) = f∗y (σ̄, x

∗)−M ;

(v) WhenM is a positive real number and k (x) :=Mf (x), then h∗y (σ̄, x∗) =Mf∗y

(
σ̄
M , x

∗

M

)
;

(vi) Assume that M is a positive real number and σ is positively homogeneous of degree l. If
k (x) := f (Mx), then k∗y (σ̄, x∗) = f∗M ly

(
σ̄
M2l ,

x∗

M l

)
;

(vii) Assume that domσ = E and σ is bounded from above. Then f∗y is Lipschitz with respect
to y with a Lipschitz rank l = supx∈E σ (x) ;

(viii)The σ-conjugation map is convex, that is for each α ∈]0, 1[ we have

(αf + (1− α)g)∗y (σ̄, x
∗) ≤ αf∗y (σ̄, x∗) + (1− α) g∗y (σ̄, x∗) ;

Proof. We note that the proofs of parts (i), (ii), (iii), and (iv) are easy consequences of the
definition.

For part (v), we have

k∗y (σ̄, x
∗) = sup

x∈E
{〈x∗, x〉 −Mf (x)− σ̄ (x, y) ||x− y||}

=M sup
x∈E

{〈
x∗

M
,x

〉
− f (x)−

1
M
σ̄ (x, y) ||x− y||

}
=Mf∗y

(
σ̄

M
,
x∗

M

)
.

To prove the part (vi), by assumptions M > 0, and σ is positively homogeneous of degree l, then
σ̄ is positively homogeneous of rank l with respect to (x, y). Now by setting z =Mx, u = y, we
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infer the desired formula. For the proof of part (vii), note that σ is bounded above. Thus σ̄ has
the same bound. So for y1, y2 ∈ E and x∗ ∈ E∗, we get

f∗y1
(σ̄, x∗) = sup

x∈E
{〈x∗, x〉 − f (x)− σ̄ (x, y1) ||x− y1||}

≤ sup
x∈E
{〈x∗, x〉 − f (x)− σ̄ (x1) ||x− y2||+ σ̄ (x, y2) ‖y2 − y1‖}

≤ sup
x∈E
{〈x∗, x〉 − f (x)− σ̄ (x, y2) ||x− y2||}+ sup

x∈E
σ (x) ‖y2 − y1‖

= f∗y2
(σ, x∗) + l ‖y2 − y1‖ .

If in the above inequality we change x to y, the desired statement will be obtained.
To show part (viii), let α ∈ [0, 1], then

(αf + (1− α) g)∗y (σ̄, x
∗) = sup

x∈E
{〈x∗, x〉 − (αf + (1− α) g) (x)− σ̄ (x, y) ||x− y||}

≤ α sup
x∈E
{〈x∗, x〉 − f (x)− σ̄ (x, y) ||x− y||}

+ (1− α) sup
x∈E
{〈x∗, x〉 − g (x)− σ̄ (x, y) ||x− y||}

= αf∗y (σ̄, x
∗) + (1− α) g∗y (σ̄, x∗) .

The proof is completed.

In the next results, we generalize some results from [9].

Proposition 2.2. Let f : E → R ∪ {+∞} be σ-convex. Then for each y∗ ∈ ∂f (y) we have
∂σf (x) ⊂ Ω, where

Ω := {x∗ ∈ E∗ : 〈x∗ − y∗, y − x〉 ≤ σ̄(x, y)‖x− y‖} .

Proof. By assumptions x∗ ∈ ∂σf (x) and y∗ ∈ ∂f (y). Therefore by using the related defini-
tions, we obtain

〈x∗, x− y〉 ≥ f (x)− f (y) + σ̄(y, x)‖x− y‖,
〈y∗, y − x〉 ≥ f (y)− f (x) .

Now if we add the above inequalities, then we infer x∗ ∈ Ω i.e., ∂σf (x) ⊂ Ω.

Proposition 2.3. Let l = supz∈E σ̄(z, y) and f : E → R ∪ {+∞} be a lsc and σ-convex map.
Then for each y ∈ E , the maps f∗y and f∗∗y are proper.

Proof. Since f is proper and lsc map, therefore, according to [5] there is x ∈ dom f such that
∂fCR (x) 6= ∅. By [2, Proposition 9], ∂CRf (x) ⊂ ∂σf (x), thus ∂σf (x) 6= ∅. So, we assume
that x∗ ∈ ∂σf (x). Thus, for every u ∈ E we have:

〈x∗, u− x〉 ≤ f (u)− f (x) + σ̄(u, x)‖x− u‖
≤ f (u)− f (x) + σ̄(u, y)‖x− y‖+ σ̄(u, y)‖u− y‖.

From the above inequalities, we conclude that 〈x∗, u〉 − f (u) − σ̄(u, y)‖u − y‖ ≤ σ̄(u, y)‖x −
y‖+ 〈x∗, x〉 − f (x). Now get the supremum over u ∈ E. This implies that

f∗y (σ, x
∗) ≤ l‖x− y‖+ 〈x∗, x〉 − f (x) .

Since l = supz∈E σ̄(z, y), consequently f∗y is proper. Thus at least for one x∗ ∈ E, we have
f∗y (σ̄, x

∗) ∈ R. Using the definition of f∗∗y we obtain f∗∗y (σ̄, x) > −∞ for every x ∈ E.
Applying Proposition 2.1(ix) implies that f∗∗y is proper too.

We call f : E → R ∪ {+∞} strongly coercive, if lim‖x‖→+∞

(
f(x)
‖x‖

)
= +∞.

Proposition 2.4. Let f : E → R ∪ {+∞} be minorized by an affine map and be a σ-convex and
strongly coercive map. Then dom f∗y (σ̄, ·) = E∗ and also f is bounded on every bounded set.

Proof. By using [10, Lemma 3.6.1] we get that f∗ (x∗) < +∞ and also, it is bounded on any
bounded set. Thus by Proposition 2.1(i) we obtain f∗y (σ̄, x∗) < +∞. The proof is completed.
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