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Abstract In this work, a matrix form in spectral quasi-Newton algorithm of type BFGS,
named DH − SQNEI , is suggested. It is a diagonal matrix containing the proposed spectral pa-
rameter in BFGS direction along with an approximated Hessian matrix inverse, which is updated
by own formula. This is done all to find more effective algorithms for accelerating the solutions
in BFGS algorithm. The approximation of Hessian matrix may suffer from the ill-conditioned
problem or initialized poorly. Beside the new algorithm, there are some properties which are
studied to this proposed one. The analyses were conducted under suitable assumptions. Thor-
oughly, it provides the sufficient descent, global convergent and superlinear rate of convergence.
A list of randomly 50 test functions with various dimensions offered the numerical results. It is
concluded that DH − SQNEI algorithm is superior to the standard BFGS (QNBFGS ) as well
as a type of spectral scaling BFGS algorithm (SNQCh); by using Armijo line.

1 Introduction

Real life problems are issues that make scientist almost try to deal with solving them. There are
many approaches in mathematics to evaluate these models, in which optimization is one of them.
Unconstrained optimization problem is an active part in modeling problems.
Now, in minimization case, consider an unconstrained model with twice differentiable objective
function, f : Rn → R, and bounded below given as

min f (X) , X ∈ Rn (1.1)

Numerous numerical methods are invited to solving problem (1.1). Quasi-Newton (QN)
methods are among the recommended methods due to the efficiency of the methods, which is
convergence globally with super-linear rate. In numerical optimization, there are many steps or
iteration to obtain the desired solution. It means for minimizing (1.1),

xk+1 = xk + αkdk, k = 0, 1, . . . (1.2)

for the line search αk ∈ R and the direction search dk ∈ Rn. In quasi-Newton approaches, dk is
defined by

dk = −B−1
k gk (1.3)

where, gk is gradient and B−1
k is the inverse of Hessian matrix the objective function at xk.

Among most suitable procedures of QN, there is BFGS method, which is described as an ef-
fective approach (for more details, see chapter 11 from [1]). BFGS is an abbreviated form to
the name of four scientists named: Broyden, Fletcher, Goldfrab and Shanno; [2],[3],[4] and [5].
In this algorithm, the approximation of the Hessian matrix, usually it denotes by Bk, which is
used in optimizing problems. This approximated amount starts with any positive defined ma-
trix B0, usually identity matrix, and then it is updated with iterations maintaining the positive
definedness. The method used the following formula

Bk+1 = Bk −
Bksks

′

kBk

s
′
kBksk

+
yky

′

k

s
′
kyk

(1.4)
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where,
sk = xk − xk−1 , yk = gk − gk−1 (1.5)

However, the formula (1.4) is for approximation Hessian matrix and for finding the direction, an
inverse is needed. Therefore, the updated inverse of Hessian matrix for BFGS is given by

Hk+1 = Hk +
(sk +Hkyk)

′
yksks

′

k

(s
′
kyk)

2 − Hkyks
′

k + sky
′

kHk

s
′
kyk

(1.6)

for sk and yk are defined in (1.5) and Hk is the approximation of Hessian matrix inverse [6].
Moreover, BFGS has a good self-correcting property, that steps make the iterations run slowly
results from improperly estimated of Hk or poorly chose of initial matrix H0 (see [7] page 200).
For this property, Biggs [8] developed a self-scaling parameter using non-quadratic function.

A new quasi-Newton equation is a problem that many researchers deal with, see [9] and [10].
Adding to this, there is a new class for QN methods with non-monotonic line search proposed
by Latif and Hamko [11]. This is the result of the importance of QN and its equation in driving
more new effective algorithms.

Now, the spectral scaling is our area of interest. In 2010, Cheng and Li [12] proposed a
spectral scaling of BFGS which has the property of self-correcting and more effective than con-
ventional BFGS. Nakayama et al. [13] proposed a memoryless QN symmetry rank-1 formula
using a spectral scaling parameter of [12] to be sufficient descent property to tackle the prob-
lem of large. Nakayama and Narushima [14] prove the global convergence for that formula,
which is based on spectral scaling of [12]. At last, Nakayama [15] had been hybridizing the de-
signed formula of rank-1 memoryless QN by parameter [12] with three-term CG. Also, Lv et al.
[16] showed the efficient of memoryless BFGS algorithm with one-parameter scaling formula of
Cheng and Li and proved that this parameter is minimizing all eigenvalues of the formula given
by them. As more expansion, Bidabadi [17] began to involve the spectral scaling approaches
of BFGS on constrained problem starting with nonlinear least square problems. Chen and
Cheng [18] extend spectral scaling BFGS ideas to the Broyden with quadratic termination. The
reached algorithms were scaled with one parameter; however, Andrei [19] introduced a BFGS
spectral scaling using double parameters. He proved that his method is more efficient than other
scaled formula and standard BFGS. On the other hand, conjugate gradient (CG) methods take
a wide space of this topic, since CG does not need a large storage for matrices in evaluation;
this makes researchers to have more findings in this area. The first idea was done by Barzi-
lai and Borwein [20]. Li et al. [10] found spectral CG with using QN direction and equation,
it was spectral scaling parameter and three-term modified Polak–Ribière–Polyak (PRP); which
showed the superiority of their algorithm from the generated CG. Furthermore, Al-Naemi and
Sheekoo[21] utilized the gradient coefficient in designing new spectral scaling for non-linear CG
in large-scale problems with line search satisfying strong Wolf’s condition. Spectral parameter
nested with a CG one was new designed given by Wang et al.[22] and they saw its usefulness
for large-scale problem solving. Another step,[23] proposed a new spectral CG described as a
fast algorithm; which it is used the new direction combined spectral parameter with the previous
direction nested in it. In 2022, [24], there was a new idea in spectral scaling where, authors used
a convex combination between two CG coefficients and presented as a spectral parameter. In
addition, they prove the global convergence of their method. Again for constrained optimization
with boundedness condition, Nakayama et al. [25] presented a QN method with property mem-
oryless derived from spectral scaling of Broydon class that combined with modified Yuan-Lu’s
memoryless algorithm using Armijo line search. Finally, a real live problem takes spectral algo-
rithms as a tool for analyzing them. For instance, the data on the drug abuse analysis used this
type of algorithm; see [26].

With all above workings, especially the spectral parameter of [12] and all recent works about
it, we suggest a spectral parameter in a matrix form adding to the approximation of inverse
of Hessian matrix to accelerate the solution. The Hessian matrix approximation may suffer
from the ill-conditioned problem and make iterations run slowly that is from a large condition
number to that matrix. Sometimes, poor selection of the initial matrix to the approximate Hessian
matrix may slow down reaching the solution. This makes more work to do with the Hessian
approximation. Therefore, in this paper, we think of a parameter to add to the inverse Hessian
approximation matrix. It is of matrix form to add it only to the diagonal elements of Hk. It is
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important to select a matrix to maintain the positive definedness property in minimum type of
problem. It is setting in the direction to make it in the QN direction for its effectiveness among
other methods.

2 The Proposed Algorithm

In this work, a new idea is used in spectral QN algorithm of type BFGS. In the search direction,
there is a new term containing the spectral scaling parameter presented. The parameter is gath-
ered with the main diagonal of Hk in a QN direction of type BFGS. In other words, we use the
matrix form used outside the updating formula of Hessian inverse matrix. Thus, if In is identity
matrix with n representing the dimension of objective function, then the proposed term is given
by

Mk =

(
yTk sk

2 ‖yk‖2

)1/2

In (2.1)

We suggest the function of the minimizer of all eigenvalues of the spectral scaling formula as
it is given in [16]. In more details, it is the function that contains yT

k sk
‖yk‖2 . In addition, the positive

definiteness makes it always positive.
Then, the direction search would be as follows

dk =

{
−Hkgk k = 0
−(Hk +Mk)gk k ≥ 1

(2.2)

Therefore, the algorithm steps are given as follows:
STEP 1: Give initial values as: H0 identity matrix or any positive definite matrix, X0 ∈ Rn

initial point to f ; and inaccuracy ε = 1× 10−7

STEP 2: Begin from d0 = −H0g0 , then k = 1
STEP 3: Criteria for stopping:‖gk‖ ≤ ε, ‖xk+1 − xk‖ < ε ‖xk‖, or dimension of f ; n times

1000 represented as a maximum number of iterations.
STEP 4: Find αk inexact step length which satisfies strong Wolfe conditions.
STEP 5: Calculate sk and yk from (1.5)
STEP 6: Update Hk by (1.6) and Mk by (2.1)
STEP 7: Find the search direction dk by (2.2)
STEP 8: Calculate xk+1=xk+αkdk, where αk is Armijo line search.
STEP 9: Put k = k + 1, and return to STEP 3.

3 The Algorithm Convergence Analysis

The convergence analysis of our algorithm is discussed in this part.

3.1 Assumptions

The analysis of convergence needs a list of assumptions. These are imperative for gaining seam-
less pattern in solving problems.

(i) An objective function f is continuous with differentiability twice.
(ii) Hessian matrix of f (Hess(f (x)) ) meets the Lipschitz continuous properties, that is

‖Hess(f (x))−Hess(f (x∗))‖ ≤ c ‖x− x∗‖

where, c > 0; c ∈ R and ∀x ∈ N(x
∗
) ; in which N(x

∗
) is neighborhood of x∗

(iii) For a set of convex level of twice continuous objective function V = {x : f(x) ≤ f(x0)},
∃c1, c2 ∈ R such that c1‖z‖2 ≤ z′Hess(f (x))z ≤ c2‖z‖2 ∀ z ∈ Rn , x ∈ V and Hess(f (x))
is Hessian matrix of f .
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3.2 Sufficient Descent Condition

In this section, to show that proposed algorithm fulfills the descent property, it is enough to show
the positive definedness of the matrix that added to the direction. So, by the definition; any
symmetric matrix is positive defined it is satisfying the quadratic form. Therefore, let z be any
nonzero vector in Rn, then

z (Hk +Mk) z
′
= z

Hk +

(
yTk sk

2 ‖yk‖2

)1/2

In

 z
′

= zHkz
′
+

(
yTk sk

2 ‖yk‖2

)1/2

zInz
′

but, Hk is positive defined, then zHkz
′
> 0, also zIn z

′
> 0; and

(
yT
k sk

2‖yk‖2

)1/2
> 0

Hence, (Hk +Mk) is a positive defined matrix. Now, in sufficient descent condition; for k = 0,
it is obvious that it holds. And other step,

gTk dk = −gTk (Hk +Mk) gk

but the matrix (Hk +Mk) is proved to be positive defined, and gknonzero vector, then

gTk (Hk +Mk) gk > 0, k ≥ 1

Hence, the direction has descent direction.

3.3 The Global Convergence Analysis

The section presents the global convergence of the proposed algorithm. It is proved with the
usage of the Armijo line search with descent property is satisfies one of them or both

f (xk+1)− f (xk) ≤ −c1
(gTk dk)

2

‖dk‖2 (3.1)

f (xk+1)− f (xk) ≤ −c2 g
T
k dk (3.2)

where c1 and c2 any positive constant, see Lemma 7 in [27].

Theorem 3.1. Let assumption 1 hold, search direction dk is given by (2.2) satisfied descent
condition, with Armijo line search is Then,

Proof. The technique of contradiction is used to prove this. Suppose that δ is positive constant
with ‖gk‖ > δ , k ≥ 1 ; then

dk = − (Hk +Mk) gk

where Hk is defined by (1.6) and Mk by (2.1).
So,

‖dk‖ = ‖− (Hk +Mk) gk‖ ≤ ‖Hk +Mk‖ ‖gk‖

‖dk‖
‖gk‖2 ≤

‖Hk +Mk‖
‖gk‖

With the boundedness of Hessian matrix inverse approximation Hk, we have ‖Hk‖ < z.

Also, Mk is bounded, since the quantity
(

yT
k sk

2‖yk‖2

)1/2
is a function of yT

k sk
‖yk‖2 which is one of the

two presented step size in [20], then ‖Mk‖ < u.
Therefore;

‖dk‖
‖gk‖2 ≤

z u

‖gk‖
<
z u

δ
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Now, all amounts are positive, then by squaring both sides we get the following

‖gk‖4

‖dk‖2 ≥
δ2

z2u2

and,
∞∑
k=0

‖gk‖4

‖dk‖2 ≥ ∞

Here, with the sufficient descent property, gTk dk < −‖gk‖
2 , hence

∞∑
k=0

‖gk‖4

‖dk‖2 <

∞∑
k=0

(gTk dk)
2

‖dk‖2

Then this result is contradicting to (3.1) and the sufficient descent.
Therefore, the algorithm is global convergence which means

lim
k→∞

inf ‖gk‖ = 0

3.4 Superlinear Rate of Convergence

The super linear rate of convergence is proved in this section. There is a need to recall Lemma
4.9 and Lemma 4.10 of [28]. In details, suppose that f is continues and differentiable twice.
There are two formulae that tend to the boundedness of each approximation Hessian matrix and
its inverse ‖yk−Hess(f(x∗))sk‖

‖sk‖ ≤ εk with
∑∞

k=1 εk <∞
where, yk and sk are given in (1.5) and {εk} is a sequence of constants.

lim
k→∞

∥∥∥(H−1
k −Hess(f (x∗))

)
sk

∥∥∥
‖sk‖

= 0 (3.3)

Theorem 3.2. Assume that the (i) and (iii) holds in list of assumptions 3.1, and the sequence
of solutions obtained in each steps is convergent, that is {xk} → x∗ and also the sequence of
Hessian matrix approximation and its inverse are bounded; {Hk} and

{
H−1

k

}
. If

lim
k→∞

∥∥∥(H−1
k −Hess(f (x∗))

)
dk

∥∥∥
‖dk‖

= 0

,
for xk+1 = xk + dk , then

lim
k→∞

‖xk+1 − x∗‖
‖xk+1 − xk‖

= 0

Proof. [
H−1

k −Hess(f (x∗))
]
dk = H−1

k (−Hk −Mk) gk −Hess(f (x∗))dk

=
(
−gk −H−1

k M
k
gk

)
−Hess(f (x∗))dk

= −
(
In +H−1

k M
k

)
g
k
−Hess(f (x∗))dk

= −
(
In +H−1

k M
k

)
g
k
+
(
In +H−1

k M
k

)
Hess(f (x∗))dk

−
(
In +H−1

k M
k

)
Hess(f (x∗))dk −Hess(f (x∗))dk

= −
(
In +H−1

k M
k

)
[gk −Hess(f (x∗))dk]−

(
In +H−1

k M
k
− In

)
Hess(f (x∗))dk
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= −
(
In +H−1

k M
k

)
gk+1 −H−1

k M
k
Hess(f (x∗))dk + o(‖dk‖)

So that we obtain,∥∥∥(H−1
k −Hess(f (x∗))

)
dk

∥∥∥ = (1 +O (1)) ‖gk+1‖+ o(‖dk‖)

This means that,

lim
k→∞

∥∥∥(H−1
k −Hess(f (x∗))

)
dk

∥∥∥
‖dk‖

= 0

so that,

lim
k→∞

‖gk+1‖
‖xk+1 − xk‖

= 0

However, with Hess(f (x∗)) = 0 and

gk+1 −Hess(f (x∗))−Hess(f (x∗)) (xk+1 − x∗) = o (‖xk+1 − x∗‖)

Hence, we get;

lim
k→∞

‖xk+1 − x∗‖
‖xk+1 − xk‖

= 0

.

4 Numerical Discussions and Results

In this part, the result and all finding will present. In the work, our proposed algorithm is in
race with two other algorithms to find more efficient methods among them. One of them is the
standard QN method of type BFGS and the other is the spectral QN algorithm, that presented
by Cheng and Li [12]. The plot of performance profile (PP-Plot) is taken to show the outcomes
of the contest. This plot is suggested by [29]. It is a cumulative distribution function, which is
a curve over the probability values. The good point it is only present the significant variation
among the approaches. Two criterions are involved number of iteration and the time of running
the central processor unit (CPU). A set of 50 test functions are engaged along with various
dimensions to those are multivariate functions. The Table 1 presents the name of the whole test
problems, they are collected from [30] and [31]. There is also a column which shows the initial
points of starting functions. And at the last, the total of our run data become 263 data, in which
they used to plot the PP-Plot.

(a) Number of Iterations (b) CPU Running Time

Figure 1: Performance Profile Curves

The Figure 1 reveals an act of PP-Plot for three participated algorithms. The proposed algorithm
DH − SQNEI takes the first position in terms of iteration numbers and CPU time running. It
is the fact that not all algorithms are finding the solutions exactly, but our algorithm is more
effective in solving problems according to this list of functions than others.
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The functions are randomly selected with various dimensions. Some big dimensions also
are taken as 100, 200, 300, and 500 as shown in Table 1. The suggested algorithm again was
in the first in comparison to other two algorithms. The QNBFGSalgorithm was followed our
methods but SQNChwas in the last of the contest. In running programs, the MATLAB 2018a
is used and all codes were written with it. In the algorithms, all used inexact step length with
Armijo condition. Moreover, the termination of all algorithms was with accuracy ε = 1× 10−7,
‖xk+1 − xk‖ < ε ‖xk‖ or the dimension of function times 1000. At last, note that; the last
column of the Table 1 is intial values for the test functions with using the notation ⊗ for the
Kronecker product and 1n for column of ones.

Table 1: List of Test Functions with Used Dimension and Intial Values

ID Test Function Name Dimension Initial Point
1 Zirilli_2 n=2 X0 =(-1,2)
2 Aluffi Pentini n=2 X0 = (-10,10)
3 Brent n=2 X0 = (0,0)
4 Ursem_1 n=2 X0 = (-0.5,2)
5 Jennrich Sampson n=2 X0 = (0.15,0.15)
6 Keane n=2 X0 = (0,1)
7 Zettl n=2 X0 = (0,0)
8 Zakharov n=2 X0 = (1,10)
9 ARWHEAD n=2 X0 = (1,1)
10 Camel & Six Hump n=2 X0 = (1,4)
11 Camel Three Hump n=2 X0 = (3.5,4.5)
12 Wolfe Schwefel n=3 X0 = (0,1,2)
13 Extended DENSCHNB n=2,4,10 X0 = −0.5 ∗ 1n

14 Sphere n=2,4,6,8,10 X0 = 1n

15 Extended Freudenstein Roth n=1,2,3,4,10,15 X0 = 1n ⊗ (0.5,−2)
16 Extended DENSCHNF n=1,2,3,4,10,15 X0 = 1n ⊗ (2, 0)
17 Cliff n=1,2,3,4,10,15 X0 = 1n ⊗ (0,−1)
18 CUBE n=1,2,3,4,10,15 X0 = 1n ⊗ (−1.2, 1)
19 Extended White & Holst n=1,2,3,4,10,15 X0 = 1n ⊗ (−1.2, 1)
20 Extended Beale n=1,2,3,4,10,15 X0 = 1n ⊗ (1, 0.8)
21 Generalized Tridiagonal 1 n=1,2,3,4,10,15 X0 = 1n ⊗ (0.5,−2)
22 Extended Tridiagonal 1 n=2,4,6,8,20,30 X0 = 1n

23 Diagonal 5 n=2,4,6,8,20,30 X0 = 1n

24 Diagonal 6 n=2,4,6,8,20,30 X0 = 1n

25 Diagonal 7 n=2,4,6,8,20,30 X0 = 1n

26 Diagonal 8 n=2,4,6,8,20,30 X0 = 1n

27 Raydan 1 n=2,4,6,8,20,30 X0 = 1n

28 Extended DENSCHNB n=2,4,6,8,20,30 X0 = 1n

29 COSINE n=2,4,6,8,20,30 X0 = 1n

30 Full_Hessian_FH3 n=2,4,6,8,20,30 X0 = 1n

31 Quartc n=2,4,6,8,20,30 X0 = 2 ∗ 1n

32 HIMMELH n=2,4,6,8,20,30 X0 = 1.5 ∗ 1n

33 HIMMELBG n=2,4,6,8,20,30 X0 = 1.5 ∗ 1n

34 LIARWHD n=2,4,6,8,20,30 X0 = 4 ∗ 1n

35 NONSCOMP n=2,4,6,8,20,30 X0 = 3 ∗ 1n
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36 Extended Penalty n=2,4,6,8,20,30 X0 = (1, . . . , n)
37 Ex_BD1_Block_Diagonal n=2,4,6,8,20,30 X0 = 1.5 ∗ 1n

38 POWER n=2,4,6,8,20,30 X0 = 1n

39 DQDRTIC n=2,4,6,8,20,30 X0 = 3 ∗ 1n

40 SINE n=2,8,20,30,300 X0 = 1n

41 Schwefel_2_4 n=1,2,3,4,10,15,50,100,
150

X0 = 1n ⊗ (0, 10)

42 Almost Perturbed Quadratic n=1,2,3,4,10,15,50,100,
150, 250

X0 = 1n ⊗ (0, 1)

43 Raydan 2 n=2,4,6,8,20,30,100,200,
300

X0 = 1n

44 Generalized Quartic n=2,4,6,8,20,30,100,200,
300

X0 = 1n

45 Hager n=2,4,6,8,20,30,100,200,
300

X0 = 1n

46 Diagonal 2 n=2,4,10,100,200,
300,500

X0 = (1/n) ∗ 1n

47 Diagonal 3 n=2,4,6,8,10,15,200,
300,500

X0 = 1n

48 Dixon Price n=2,4,6,8,20,30,100,200,
300,500

X0 = 1n

49 Perturbed Quatratic n=2,4,6,8,20,30,100,200,
300,500

X0 = 0.1 ∗ 1n

50 ENGVAL1 n=2,4,6,8,20,30,100,200,
300,500

X0 = 2 ∗ 1n

5 Conclusions

Spectral scaling is one of interesting area for many researchers. In this work, the new idea was
proposed in this field. The suggested algorithm present the spectral parameter as a matrix form
adding to the Hessian matrix approximation formula in the last step to accelerate obtaining the
solution faster in consuming times by CPU and less number of iterations for the BFGS type of
QN with Armijo line search. This was the new algorithm DH − SQNEI . The DH − SQNEI

algorithm had a descent property with the convergence globally and superlinear rate of it. Prac-
tically, there was a competition among three algorithms, DH − SQNEI ; QNBFGS and the last
one was SQNCH for less iteration numbers and faster in reaching the solution. The outcomes
show the improvements in BFGS method with DH − SQNEI . In other word, all results reveal
how DH − SQNEIwas more plentiful than both standard BFGS and SQNCH in terms of the
two mentioned comparison criterions.
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