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Abstract The work in this paper is a continuation of the recent work in [10] that the local
integrability of a three dimensional Lotka–Volterra system is studied. More precisely, necessary
and sufficient conditions are given for the existence of two independent analytic first integrals
of the considered system. Here, in this paper, for particular parametric subsystems of three-
dimensional Lotka-Volterra systems in [10], the non-existence of polynomial first integrals are
investigated. Moreover, we mainly used the contradiction technique to prove that the given
subsystems admits no polynomial first integrals.

1 Introduction

The characterisation of first integrals of polynomial differential systems is one of the interesting
and difficult problems in the qualitative theory of differential equations. For two dimensional
differential equations, the existence of one first integral will classify all its trajectories in phase
plane. In general, to characterize the phase portrait of n dimensional differential systems, n− 1
functionally independent first integrals are required.

This study has been motivated to the recent work in [10] which investigated the necessary
conditions under which the three dimensional Lotka–Volterra system

ẋ = x(1 + ax+ by + cz) = P (x, y, z),

ẏ = y(−3 + dx+ ey + fz) = Q(x, y, z),

ż = z(1 + gx+ hy + kz) = R(x, y, z),

(1.1)

admits two independent analytic first integrals. Note that the existence of an analytic first integral
of a given polynomial differential system does not imply the existence of a polynomial first in-
tegral, it may have or may have not. Hence having ideas on the existence analytic first integrals;
it would be also a good idea to have knowledge on the existence of polynomial first integrals.
So, here, we distinguish a family of differential systems in which they admit no polynomial first
integrals.

The investigation of polynomial first integrals for two dimensional polynomial differential
systems was considered by several authors in [11] and [4]. Other works on two dimensional
quasi homogeneous polynomial differential systems and a family of three dimensional systems
can be found in [3] and [6] respectively. They gave necessary conditions for which the given
differential systems admits a polynomial, rational or analytic first integral. Recently, the authors
in [1], gave necessary and sufficient conditions in order that a subfamily of three dimensional
Lotka–Volterra systems has no polynomial first integrals. Other related works can be found in
[5, 6, 8, 9] and references therein.

Let U be an open subset of C3, we recall that the non-constant function H : U → C is a
first integral if H is constant on all its solutions of system (1.1) contained on U . That means, the
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function H(x, y, z) satisfies

P
∂H(x, y, z)

∂x
+Q

∂H(x, y, z)

∂y
+R

∂H(x, y, z)

∂z
= 0, (1.2)

for all (x, y, z) ∈ U . We say that H is a polynomial first integral when H is a polynomial. That
is, H ∈ C[x, y, z] where C[x, y, z] denotes the ring of all polynomials in the variables x, y and z
with coefficients in C.

Given a polynomial F ∈ C[x, y, z], we say that F = 0 is a Darboux polynomial (an invariant
algebraic surface) of system (1.1), if it satisfies

P ∂xF +Q ∂yF +R ∂zF = KF, (1.3)

for some polynomial K = K(x, y, z) ∈ C[x, y, z], called the cofactor of F = 0 and for system
(1.1) has at most degree one. Note that ∂x, ∂y and ∂z denotes the partial derivatives with respect
to x, y and z respectively. If the cofactor is zero then the Darboux polynomial reduces to poly-
nomial first integral [2, 7].
The paper is organized as follows: in Section 2 we give an approach for proving the non-
existence of polynomial first integrals for a family of subcases in system (1.1). Section 3 is
devoted to conclude the ideas and results of this paper.

2 The non-existence of the polynomial first integral.

In this section, we mainly study the non-existence of polynomial first integrals for some subfam-
ilies of Lotka–Volterra system (1.1) in which those subfamilies admit two independent analytic
first integrals. All considered subfamilies are obtained in integrability conditions in Theorem
5.1, in [10]. Note that, Theorem 2.1 to Theorem 2.11 correspond to integrability conditions (1,
2*, 5, 6, 7, 11, 12, 34, 39, 40) of Theorem 5.1 in [10] respectively.

Theorem 2.1. The subsystem

ẋ = x(1 + ax+ by),

ẏ = y(−3 + ey),

ż = z(1 + hy + kz),

(2.1)

has no polynomial first integrals if a = 0.

Proof. Assume that H = H(x, y, z) is a polynomial first integral of system (2.1). Then, this
implies

x(1+ ax+ by)
∂H(x, y, z)

∂x
+ y(−3+ ey)

∂H(x, y, z)

∂y
+ z(1+hy+ kz)

∂H(x, y, z)

∂z
= 0. (2.2)

We can also assume H(x, y, z) =
∑n

i=0 Hi(y, z)xi, where Hi(y, z) is a polynomial in the vari-
ables y and z for each i and n ∈ N ∪ {0}. The terms of degree n+ 1 of variable x in equation
(2.2), satisfy

naHn(y, z) = 0. (2.3)

We consider the following two cases.

(i) If a = 0, we compute the terms of xn in (2.2) which satisfy the partial differential equation

y(−3 + ey)
∂Hn(x, y)

∂y
+ z(1 + hy + kz)

∂Hn(x, y)

∂z
+ n(1 + by)Hn(y, z) = 0,

and its solution by a software system Maple is

Hn(y, z) = y
n
3 (−3+ey)

−n(e+3b)
3e Fn

((−1)1−h
e 3

3h+e
3e kz2F1(− 1

3 ,
2e−3h

3e ; 2
3 ; ey

3 ) + (−3 + ey)
3h+e

3e

y
1
3 z

)
,

(2.4)
where Fn is a function in the variables y and z and 2F1(− 1

3 ,
2e−3h

3e ; 2
3 ; ey

3 ) is a hypergeo-
metric function. Since Hn is a polynomial, then from the solution (2.4) it must be Fn = 0
and hence Hn = 0. This is a contradiction.
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(ii) If n = 0, then the variable x does not involve in the polynomial first integral and H =
H0(y, z). The relation (2.2) implies,

y(−3 + ey)
∂H0(y, z)

∂y
+ z(1 + hy + kz)

∂H0(y, z)

∂z
= 0.

The function

H0(y, z) = F0

((−1)1−h
e 3

3h+e
3e kz2F1(− 1

3 ,
2e−3h

3e ; 2
3 ; ey

3 ) + (−3 + ey)
3h+e

3e

y
1
3 z

)
,

satisfies the last partial differential equation where F0 is a function in the variables y and z.
Since H0 is a polynomial, then F0 must be a constant. So, the function H = H0 must also
be a constant. This is a contradiction.

Note that, if both e = −3b and a = 0, then (2.1) has a polynomial first integral H0 = F0(x3y).

Theorem 2.2. The system

ẋ = x(1 + ax+ by − kz),

ẏ = y(−3 + ey),

ż = z(1 + hy + kz),

(2.5)

admits no polynomial first integrals.

Proof. Let H = H(x, y, z) be a polynomial first integral of system (2.5). Then H satisfies the
partial differential equation

x(1+ax+by−kz)∂H(x, y, z)

∂x
+y(−3+ey)

∂H(x, y, z)

∂y
+z(1+hy+kz)

∂H(x, y, z)

∂z
= 0. (2.6)

Without lost of generality we can write H(x, y, z) =
∑n

i=0 Hi(x, y)zi, where for each i, Hi(x, y)
is a polynomial in the variables x and y and the degree n ∈ N∪ {0}. In equation (2.6), the terms
in zn+1 satisfy

k
(
x
∂Hn(x, y)

∂y
− nHn(x, y)

)
= 0. (2.7)

We distinguish the following two cases.

(i) If k = 0. The terms of variable z of degree n in equation (2.6) we have

x(1 + ax+ by)
∂Hn(x, y)

∂x
+ y(−3 + ey)

∂Hn(x, y)

∂y
+ n(1 + hy)Hn(x, y) = 0.

The solution of the equation above is

Hn(x, y) = y
n
3 (−3+ey)

−n(e+3h)
3e Fn

((−1)1− b
e 3

3b+e
3e ax2F1(− 1

3 ,
2e−3b

3e ; 2
3 ; ey

3 ) + (−3 + ey)
3b+e

3e

y
1
3 x

)
,

where Fn is a function in the variables x and y. We now proceed as Case (i) in Theorem
2.1.

(ii) If k 6= 0, then
Hn(x, y) = Fn(y)x

n, (2.8)

where Fn is an arbitrary function in y. We first consider the case if n = 0, and from
equation (2.6), we have

x(1 + ax+ by)
∂H0(x, y)

∂x
+ y(−3 + ey)

∂H0(x, y)

∂y
= 0.
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The solution of the equation above is

H0(x, y) = F0

((−1)1− b
e 3

3b+e
3e ax2F1(− 1

3 ,
2e−3b

3e ; 2
3 ; ey

3 ) + (−3 + ey)
3b+e

3e

y
1
3 x

)
, (2.9)

where F0 is a function of the variables x and y. Since F0 is not a polynomial then it must
be constant. Therefore, the function H0 must also be constant and this is a contradiction.

We now investigate the case where the first integral H is of degree n > 0. From equation
(2.8), the function Fn(y) must be a constant Cn and the solution becomes

Hn(x, y) = Cnx
n.

Next, computing the terms in zn in equation (2.6) which is

k
(
− x

∂Hn−1(x, y)

∂x
+ (n− 1)Hn−1(x, y)

)
+ nCn

(
ax+ (2 + (b+ h)y)

)
xn = 0. (2.10)

The function

Hn−1(x, y) =
(n
k
Cn(

a

2
x2 + (b+ h)xy + 2x) + Fn−1(y)

)
xn−1, (2.11)

satisfies the equation (2.10). Since Hn−1 is a polynomial of degree n−1, then must the term
n
kCn(

a
2x

2 +(b+h)xy+2x) be zero and this only holds if Cn = 0 which is a contradiction.

Theorem 2.3. Consider the three parametric family

ẋ = x(1− gx− hy),

ẏ = y(−3− gx− hy),

ż = z(1 + gx+ hy + kz).

(2.12)

Then the system has no polynomial first integrals.

Proof. Assume H(x, y, z) =
∑n

i=0 Hi(x, z)yi is a polynomial first integral of system (2.12),
where each Hi(x, z) is a polynomial in the variables x and z of degree i. Then, H(x, y, z)
satisfies

x(1−gx−hy)∂H(x, y, z)

∂x
+y(−3−gx−hy)∂H(x, y, z)

∂y
+z(1+gx+hy+kz)

∂H(x, y, z)

∂z
= 0.

(2.13)
The coefficient of yn+1 in equation (2.13) is

h
(
− x

∂Hn(x, z)

∂x
+ z

∂Hn(x, z)

∂z
− nkHn(x, z)

)
= 0. (2.14)

We consider two cases.

(i) When h = 0, the coefficient of yn in equation (2.13) is

x(1− gx)
∂Hn(x, z)

∂x
+ z(1 + gx+ kz)

∂Hn(x, z)

∂z
− n(3 + gx)Hn(x, z) = 0.

It has a solution

Hn(x, z) = x3n(−1 + gx)−4nFn(
2gx+ kz

2gz(1− gx)2 ),

where Fn is an arbitrary function in the variables x and z. Thus, Hn(x, z) is not a polyno-
mial of degree n. This is a contradiction.
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(ii) When h 6= 0, equation (2.14) has a solution

Hn(x, z) = Fn(xz)x
−n,

where Fn is an arbitrary function in the variable xz.
There is a possibility that the variable y is missing in the polynomial first integral Hn where
n = 0. Then, H = H0(x, z) and it satisfies

x(1− gx)
∂H0(x, z)

∂x
+ z(1 + gx+ kz)

∂H0(x, y)

∂z
= 0.

Solving equation above, we obtain

H0(x, z) = F0(
2gx+ kz

2gz(1− gx)2 ),

where F0 is a function in the variable 2gx+kz
2gz(1−gx)2 and it is not a polynomial. This is a

contradiction.
For n > 0, the coefficient of yn in equation (2.13) is

h(−x∂Hn−1(x, z)

∂x
+ z

∂Hn−1(x, z)

∂z
− (n− 1)Hn−1(x, z)) + x1−nz(2 + kz)DFn(xz)

− 4nFn(xz)x
−n = 0,

and this differential equation has a solution

Hn−1(x, z) =
x−n

h

(
− 2xz(1 +

kz

2
)DFn(xz) + 4nFn(xz)

)
+ Fn−1(xz)x

1−n,

where Fn−1 is a function in the variable xz. Since x−nFn(xz) is also in Hn, then must
Fn(xz) = 0 and consequently Hn = 0. This is a contradiction.

Theorem 2.4. The system

ẋ = x(1 + dx+ ey),

ẏ = y(−3 + dx+ ey),

ż = z(1− 2dx− 2ey + kz),

(2.15)

admits no polynomial first integrals.

Proof. Let H(x, y, z) be a polynomial first integral of system (2.15). We write H(x, y, z) as a
polynomial in the variable x as H(x, y, z) =

∑n
i=0 Hi(y, z)xi, where each Hi(y, z) ∈ C[y, z].

The coefficient of xn+1 in

x(1 + dx+ ey)
∂H(x, y, z)

∂x
+ y(−3 + dx+ ey)

∂H(x, y, z)

∂y
+ z(1− 2dx− 2dy + kz)

∂H(x, y, z)

∂z
= 0, (2.16)

is

d(y
∂Hn(y, z)

∂y
− 2z

∂Hn(y, z)

∂z
+ nkHn(y, z)) = 0. (2.17)

We first consider the case when d = 0. Computing the coefficient of xn in (2.16)

y(−3 + ey)
∂Hn(y, z)

∂y
+ z(1− 2ey + kz)

∂Hn(y, z)

∂z
+ n(1 + ey)Hn(y, z) = 0. (2.18)
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The function

Hn(y, z) = y
n
3 (ey − 3)

−4n
3 Fn

(kz((ey)2 − 5ey + 5) + 5
5(ey − 3) 5

3 zy
n
3

)
,

satisfies (2.18) where Fn is a function in the variables y and z. It is clear that for any value of n,
Hn(y, z) is not a polynomial. This is a contradiction.
Now if d 6= 0 then the solution of equation (2.17) is

Hn(y, z) = Fn(zy
2)y−n,

where Fn is an arbitrary function in the variable zy2.
If n = 0, we obtain H(x, y, z) = H0(y, z) and it satisfies

y(−3 + ey)
∂H0(y, z)

∂y
+ z(1− 2ey + kz)

∂H0(y, z)

∂z
= 0.

Solving this differential equation we obtain

H0(y, z) = F0

(5 + kz((ey)2 − 4ey + 5)
5zy 1

3 (ey − 3) 5
3

)
,

where F0 is a function of variable 5+kz((ey)2−4ey+5)

5zy
1
3 (ey−3)

5
3

which is not a polynomial. This is also a

contradiction.
Now if n > 0 the coefficient of xn in equation (2.16) is

d(y
∂Hn−1(y, z)

∂y
− 2z

∂Hn−1(y, z)

∂z
+ (n− 1)Hn−1(y, z)) + y2−nz(−5 + kz)DFn(zy

2)

+ 4nFn(zy
2)y−n = 0.

It has a solution

Hn−1(y, z) =
y−n

3d

(
zy2(−5 + kz)DFn(zy

2) + 12nFn(zy
2)
)
+ Fn−1(zy

2)y1−n,

where Fn−1 is a function in the variable zy2.
Since y−nFn(zy2) is also in Hn, then must Fn(zy2) = 0 and eventually Hn = 0. This is a

contradiction.

Theorem 2.5. The system

ẋ = x(1 + ax+ hy + cz),

ẏ = y(−3 + ey),

ż = z(1 + gx+ hy + kz),

(2.19)

has no polynomial first integrals.

Proof. We assume that the polynomial first integral of system (2.19) is H(x, y, z) =
∑n

i=0 Hn(x, y)zi,
where for each i, Hi(x, y) is a polynomial in the variables x and y. Then it satisfies

x(1 + ax+ hy + cz)
∂H(x, y, z)

∂x
+ y(−3 + ey)

∂H(x, y, z)

∂y
+ z(1 + gx+ hy + kz)

∂H(x, y, z)

∂z
= 0. (2.20)

The coefficient of zn+1 in equation (2.20) is

cx
∂Hn(x, y)

∂x
+ nkHn(x, y) = 0.
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Solving this partial differential equation, we obtain

Hn(x, y) = Fn(y)x
−nk

c , (2.21)

where Fn is a function in y.
The following cases are considered.

(i) If k = 0 and n 6= 0 then Hn(x, y) = Fn(y) is a function in the variable y alone.
The coefficient of zn in equation (2.20) is

cx
∂Hn−1(x, y)

∂x
+ y(−3 + ey)

dFn(y)

dy
+ n(1 + gx+ hy)Fn(y) = 0,

which has a solution

Hn−1(x, y) =
1
c
(y ln(x)(−3 + ey)

dFn(y)

dy
− n(ln(x)(1 + hy) + gx)Fn(y)) + Fn−1(y),

where Fn−1 is an arbitrary function in the variable y. Since Hn−1(x, y) is a polynomial of
degree n− 1, then ngxFn(y) = 0 and

y(−3 + ey)
dFn(y)

dy
− n(1 + hy)Fn(y) = 0. (2.22)

From ngxFn(y) = 0 must Fn(y) = 0 if g 6= 0 and this implies (2.22) vanishes as well and
consequently Hn = 0. This is a contradiction.
If g = 0, we solve equation (2.22) and its solution is

Fn(y) = Cny
n
3 (−3 + ey)−

n
3 (

e+3h
e ),

where Cn ia an arbitrary constant. Since n 6= 0, then Fn(y) is not a polynomial and even-
tually Hn(x, y) is not a polynomial. This is also a contradiction.

(ii) If n = 0, then the variable z will not appear in the polynomial first integral and H =
H0(x, y). Then it satisfies the partial differential equation

x(1 + ax+ hy)
∂H0(x, y)

∂x
+ y(−3 + ey)

∂H0(x, y)

∂y
= 0,

and its solution is

H0(x, y) = F0(
1

xy
1
3
((−3 + ey)

e+3h
3e − ax(−1)

2e−3h
3e 3

e+3h
3e 2F1(−

1
3
,

2e− 3h
3e

;
2
3

;
ey

3
))),

where F0 is a function in the variables x and y and the function 2F1(− 1
3 ,

2e−3h
3e ; 2

3 ; ey
3 ) is a

hypergeometric function. Therefore, it is not a polynomial. This is a contradiction.

(iii) If k = −c. Then (2.21) becomes

Hn(x, y) = Fn(y)x
n,

where Fn is a polynomial in the variable y.
The proof is the same as Case(ii) in Theorem (2.2).

Theorem 2.6. The system

ẋ = x(1 + ax+ by − 2kz),

ẏ = y(−3− 3ax− 3by),

ż = z(1 + 4ax− 8by + kz),

(2.23)

has no polynomial first integrals.
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Proof. Let H(x, y, z) be a polynomial first integral of system (2.23). Without lost of generality,
we can write H(x, y, z) =

∑n
i=0 Hi(x, y)zi where for each i, Hi(x, y) is a polynomial in the

variables x and y. Then H(x, y, z) satisfies

x(1+ ax+ by− 2kz)
∂H(x, y, z)

∂x
+ y(−3− 3ax− 3by)

∂H(x, y, z)

∂y
+ z(1+ 4ax− 8by+ kz)

∂H(x, y, z)

∂z
= 0. (2.24)

The terms of degree n+ 1 in equation (2.24) are

k
(
− 2x

∂Hn(x, y)

∂x
+ nHn(x, y)

)
= 0. (2.25)

First we consider the case when k = 0.
The terms of degree n in equation (2.24) are

x(1+ax+by)
∂Hn(x, y)

∂x
−3y(1+ax+by)

∂Hn(x, y)

∂y
+n(1+4ax−8by)Hn(x, y) = 0. (2.26)

The solution of equation (2.26) is

Hn(x, y) = Fn(yx
3)(1 + ax+ by)−3nx−n, (2.27)

where Fn is a polynomial in the variable yx3. We see that the function Hn(x, y) is not a polyno-
mial. When n = 0 we can obtain a polynomial first integral of the form H0(x, y) = F0(yx3).
Now, if k 6= 0, then the solution of equation (2.25) is

Hn(x, y) = Fn(y)x
n
2 ,

where Fn is a function in y.
If n 6= 0, we get a fractional power and this is a contradiction.
If n = 0, then equation (2.24) becomes

(1 + ax+ by)
(
x
∂H0(x, y)

∂x
− 3y

∂H0(x, y)

∂y

)
= 0,

the equation above have the polynomial first integral H0(x, y) = F0(yx3).

Theorem 2.7. If e 6= −3h then the system

ẋ = x(1 + ax),

ẏ = y(−3− 2ax+ ey),

ż = z(1 + gx+ hy),

(2.28)

has no polynomial first integrals.

Proof. We propose that a polynomial first integral H(x, y, z) exists of the system (2.28). There-
fore, it can be expressed as H(x, y, z) =

∑n
i=0 Hi(y, z)xi, where each Hi(y, z) are polynomials

in (y, z), Hn 6= 0. Then H(x, y, z) satisfies

x(1+ ax)
∂H(x, y, z)

∂x
+ y(−3− 2ax+ ey)

∂H(x, y, z)

∂y
+ z(1+ gx+ hy)

∂H(x, y, z)

∂z
= 0.

(2.29)

The terms of degree n+ 1 in equation (2.29) become

−2ay
∂Hn(y, z)

∂y
+ gz

∂Hn(y, z)

∂z
+ anHn(y, z) = 0,

and whose solution is
Hn(y, z) = Fn(zy

g
2a )y

n
2 , (2.30)

where Fn is a function in the variable zy
g

2a .
We consider the following two cases.
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(i) If n = 0, then the variable x will disappear in the polynomial first integral and H =
H0(x, y). Then it satisfies the differential equation

y(ey − 3)
∂H0(y, z)

∂y
+ z(1 + hy)

∂H0(y, z)

∂z
= 0. (2.31)

Solving it, we obtain
H0(y, z) = F0(z

3y(ey − 3)−
3h+e

e ). (2.32)

Note that H0 will be a polynomial only when e = −3h, but since e 6= −3h, so we get a
contradiction.

(ii) If n > 0 and g = ma, where m ∈ Z \ Z− then we have two subcases.

1) If m = 0, then Hn(y, z) = Fn(z)y
n
2 . Since n 6= 0, we get a fractional power and this is

a contradiction.

2) If m is positive integer then Hn(y, z) = Fn(zy
m
2 )y

n
2 .

The coefficient of xn in equation (2.29) is

a(−2y
∂Hn−1(y, z)

∂y
+mz

∂Hn−1(y, z)

∂z
+(n−1)Hn−1(y, z))+

z

2
(2−3m+(2h+em)y)

DFn(zy
m
2 )y

m+n
2 − n

2
(1− ey)Fn(zy

m
2 )y

n
2 = 0.

Solving the equation above yields

Hn−1(y, z) =
1

6a
(z((em+2h)y−3(3m−2))DFn(zy

m
2 )y

n+m
2 +n(ey−3)Fn(zy

m
2 )y

n
2 ).

Since Hn−1 is a polynomial of degree n− 1 then must be

z((em+ 2h)y − 3(3m− 2))DFn(zy
m
2 )y

n+m
2 + n(ey − 3)Fn(zy

m
2 )y

n
2 = 0.

The transformation u = zy
m
2 gives

(((em+ 2h)y − 9m+ 6)uDFn(u) + n(ey − 3)Fn(u))y
n
2 = 0,

it has a solution
Fn(u) = Cnu

−n(ey−3)
(em+2h)y−3(3m−2) ,

and pull back to the solution, we obtain

Fn(zy
m
2 ) = Cn(zy

m
2 )

−n(ey−3)
(em+2h)y−3(3m−2) ,

then
Hn(y, z) = Cn(zy

m
2 )

−n(ey−3)
(em+2h)y−3(3m−2) y

n
2 .

It is clearly that Hn(y, z) is not a polynomial.

Theorem 2.8. If d 6= −3a, then the differential system

ẋ = x(1 + ax+ cz),

ẏ = y(−3 + dx+ fz),

ż = z(1 + gx+ kz),

(2.33)

has no polynomial first integrals.
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Proof. Let the system (2.33) has a polynomial first integral H(x, y, z). It can be written as a
polynomial in the variable z. That is, H(x, y, z) =

∑n
i=0 Hi(x, y)zi where Hi(x, y) are polyno-

mials in the remaining variables. So H(x, y, z) satisfies

x(1 + ax+ cz)
∂H(x, y, z)

∂x
+ y(−3 + dx+ fz)

∂H(x, y, z)

∂y
+ z(1 + gx+ kz)

∂H(x, y, z)

∂z
= 0. (2.34)

The coefficient of zn+1 in equation (2.34) is

cx
∂Hn(x, y)

∂x
+ fy

∂Hn(x, y)

∂y
+ nkHn(x, y) = 0,

whose solution is
Hn(x, y) = Fn(yx

− f
c )x− kn

c , (2.35)

where Fn is a function in the variable yx− f
c . The following cases are considered.

(i) When k = 0 we have several subcases.

(1) If f = −c then
Hn(x, y) = Fn(xy),

where Fn is an arbitrary function in the variable xy.
The coefficient of zn in equation (2.34) is

c(x
∂Hn−1(x, y)

∂x
−y ∂Hn−1(x, y)

∂y
)+xy(−2+x(a+d))DFn(xy)+n(1+gx)Fn(xy) = 0.

It has a solution

Hn−1(x, y) = Fn−1(xy)−
1
c
(((a+d)yx2−2xy lnx)DFn(xy)+n(lnx+gx)Fn(xy)),

where Fn−1 is an arbitrary function in the variable xy. Since the power of Hn−1(x, y)
is higher than n− 1 then must be

−1
c
(((a+ d)yx2 − 2xy lnx)DFn(xy) + n(lnx+ gx)Fn(xy)) = 0. (2.36)

If we let u = xy then the differential equation above reduces to

1
cy

(u(2y ln
u

y
− (a+ d)u)DFn(u)− n(y ln

u

y
+ gu)Fn(u)) = 0. (2.37)

Solving equation (2.37), we get

Fn(u) = Cn exp
∫
(

n(y ln u
y

+gu)

u(2y ln u
y

−(a+d)u)
)du

.

Where Cn is a constant and Fn is not a polynomial, then we get a contradiction.

(2) If f = 0 then equation (2.35) becomes

Hn(x, y) = Fn(y),

where Fn is a function in y. The coefficient of zn in equation (2.34) is

cx
∂Hn−1(x, y)

∂x
+ y(−3 + ey)DFn(y) + n(1 + gx)Fn(y) = 0.
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It has a solution

Hn−1(x, y) = Fn−1(y)−
1
c
(y(dx− 3 lnx)DFn(y) + n(lnx+ gx)Fn(y)),

where Fn−1 is an arbitrary function in the variable y. Since the powers of Hn−1(x, y)
is higher then n− 1 then must be

−1
c
(y(dx− 3 lnx)DFn(y) + n(lnx+ gx)Fn(y)) = 0.

The solution of the differential equation above is

Fn(y) = Cny
n(gx+ln(x))
−dx+3 ln(x) ,

we get that Fn(y) is not a polynomial. Consequently the function Hn(x, y) is not a
polynomial which contradict with our assumption.

(ii) If n = 0 and k 6= 0 then the equation (2.34) does not depend in variable z. Then it becomes

x(1 + ax)
∂H0(x, y)

∂x
+ y(−3 + dx)

∂H0(x, y)

∂y
= 0,

and whose solution is

H0(x, y) = F0(
yx3(1 + ax)−

d
a

(1 + ax)3 ), (2.38)

where F0 is a function in the variables x and y. Since d 6= −3a, then H0(x, y) is not a
polynomial. This is a contradiction.

(iii) If k = −c, then
Hn(x, y) = Fn(yx

−f
c )xn, (2.39)

where Fn is an arbitrary function in the variable yx
−f
c . Since Hn(x, y) is a polynomial of

degree n then Fn(yx− f
c ) must be a constant and let it is equal to Cn.

The coefficient of zn in equation (2.34) is

c(x
∂Hn−1(x, y)

∂x
− y

∂Hn−1(x, y)

∂y
− (n−1)Hn−1(x, y))+n(x(g+a)+2)Cnx

n = 0.

This equation has a solution

Hn−1(x, y) = Fn−1(yx
−f
c )x(n−1) − nCn

2c
(4 + (a+ g)x)xn. (2.40)

Where Fn−1 is an arbitrary function in the variable yx
−f
c . Since the power of Hn−1(x, y)

is higher then n− 1 then the term nCn

2c (4+(a+ g)x) must be zero and it is hold only when
Cn = 0. It is contradict with assumption Hn(x, y) is a polynomial of degree n.

Remark 2.9. The system (2.33) where n = 0 and k 6= 0 with additional condition d = −3a,
admits a polynomial first integral of form yx3.

Theorem 2.10. The subfamily

ẋ = x(1 + ax− 8hy + 4kz),

ẏ = y(−3 + hy + kz),

ż = z(1− 2ax+ hy + kz),

(2.41)

admits no polynomial first integrals if a 6= 0.
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Proof. Suppose that a polynomial H = H(x, y, z) is a first integral of (2.41), and we write
H(x, y, z) =

∑n
i=0 Hi(y, z)xi, where each Hi(y, z) is a polynomial. Then H(x, y, z) satisfies

x(1 + ax− 8hy+ 4kz)
∂H(x, y, z)

∂x
+ y(−3 + hy+ kz)

∂H(x, y, z)

∂y
+ z(1− 2ax+ hy+ kz)

∂H(x, y, z)

∂z
= 0. (2.42)

The coefficient of xn+1 in equation (2.42) is

a(−2z
∂Hn(y, z)

∂z
+ nHn(y, z)) = 0. (2.43)

Solving equation (2.43), we obtain

Hn(y, z) = Fn(y)z
n
2 ,

where a 6= 0 and Fn is an arbitrary function in the variable y.
If n > 0, we get a fractional power and this is a contradiction.
If n = 0 then equation (2.42) reduces to

y(−3 + hy + kz)
∂H0(y, z)

∂y
+ z(1 + hy + kz)

∂H0(y, z)

∂z
= 0, (2.44)

and it has a solution

H0(y, z) = F0(
−4096yz3k3

875(−3 + hy − 3kz)4 ), (2.45)

which is not a polynomial first integral.

Theorem 2.11. The system

ẋ = x(1− gx− 5hy + 3kz),

ẏ = y(−3 + gx− 3hy − 3kz),

ż = z(1 + gx+ hy + kz).

(2.46)

has no polynomial first integrals.

Proof. Consider H(x, y, z) is a polynomial first integral of system (2.46), and suppose H(x, y, z) =∑n
i=0 Hi(y, z)xi, where each Hi(y, z) is a polynomial in the variables y and z. Then it satisfies

x(1−gx−5hy+3kz)
∂H(x, y, z)

∂x
+y(−3+gx−3hy−3kz)

∂H(x, y, z)

∂y
+z(1+gx+hy+kz)

∂H(x, y, z)

∂z
= 0. (2.47)

The terms of degree n+ 1 in the variable x in equation (2.47) obtain

g(y
∂Hn(y, z)

∂y
+ z

∂Hn(y, z)

∂z
− nHn(y, z)) = 0. (2.48)

If g = 0 then the terms of degree n in the variable x in equation (2.47) become

−3y(1+hy+kz)
∂Hn(y, z)

∂y
+z(1+hy+kz)

∂Hn(y, z)

∂z
+n(1−5hy+3kz)Hn(y, z) = 0. (2.49)

It has a solution
Hn(y, z) = Fn(z

3y)zn(1 + hy + kz)2n. (2.50)

Note that if n = 0, we can get the polynomial first integral of the form H0(y, z) = F0(z3y) and
if n 6= 0 we get a contradiction.
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More precisely, it is clear that from (2.46), the polynomial first integral is H0(y, z) = F0(z3y).
Now for g 6= 0 then the solution of the partial differential equation (2.48) is

Hn(y, z) = Fn(
z

y
)yn, (2.51)

where Fn is an arbitrary function in the variable z
y .

We have two possibilities.
If n = 0 and from equation (2.47) we can get a polynomial first integral of the form

H0(y, z) = F0(z
3y).

If n 6= 0, we calculate the coefficient of xn in equation (2.47) is

g(y
∂Hn−1(y, z)

∂y
+ z

∂Hn−1(y, z)

∂z
− (n− 1)Hn−1(y, z)) + 4z(1 + hy + kz)yn−1DFn(

z

y
)

− 2n(1 + 4hy)ynFn(
z

y
)) = 0.

It has a solution

Hn−1(y, z) = Fn−1(
z

y
)yn−1 +

yn−1

g
(−2z(2+hy+kz)DFn(

z

y
)+2n(1+2hy)Fn(

z

y
)), (2.52)

where Fn−1 is an arbitrary function in the variable z
y .

Since Hn−1(x, y) is a polynomial of degree n− 1 then must

−2z(2 + hy + kz)DFn(
z

y
) + 2n(1 + 2hy)Fn(

z

y
) = 0, (2.53)

and it has a solution

Fn(
z

y
) = Cn(2 + hy + kz)

−n(1+2hy)
2+hy (zy−1)

n(1+2hy)
2+hy ,

where Cn is a constant. Since n 6= 0 then Fn(
z
y ) is not a polynomial. Therefore, Hn(y, z). This

is a contradiction.

3 Conclusion

In this study, we proved that some subfamilies of three-dimensional Lotka-Volterra system (1.1)
have no polynomial first integrals even though they admit two independent first integrals. Then
we conclude that the existence of analytic first integrals does not guarantee the existence of poly-
nomial first integrals. Some subsystems which have analytic first integrals and without any extra
conditions have shown that they also admit no polynomial first integrals. However, in some
cases, one has assumed extra condition to prove the non-existence of polynomial first integrals.
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