
Palestine Journal of Mathematics 

Vol. 10 (Special Issue II, 2021), 110–121 © Palestine Polytechnic University-PPU 2021

b-CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT
OF SOME GRAPHS

Kaliraj K and Manjula M

Communicated by M. Venkatachalam

MSC 2010 Classifications: 05C15, 05C75.

Keywords and phrases: b−Chromatic number, Lexicographic Product.

Abstract A b−coloring of a graph G is a coloring of the vertices of G such that each color
class contains at least one vertex that has a neighbour in all other color classes. The b−chromatic
number of a graph G, denoted by χb(G), is the largest integer k such that G admits a b−coloring
with k colors. In this paper, we obtain the b−Chromatic number of lexicographic product of two
graphs G and H , denoted by G [H]. First, we consider the graph G [H], where G is the path
graph, and H is the sunlet graph and wheel graph. Secondly, we consider G as the cycle graph
and H as the wheel graph respectively. Finally, consider G and H are the wheel graphs.

1 Introduction

All graphs considered in this paper are non-trivial, simple and undirected. A k−coloring (we
may refer to it simply as a coloring) of a graph G = (V,E) is a function c : V → {1, 2, . . . , k},
such that c(u) 6= c(v) for all uv ∈ E(G). The color class ci is the subset of vertices of G that
are assigned to color i. The chromatic number of G, denoted χ (G), is the smallest integer k
such that G admits a k−coloring. The problem of determining the chromatic number of a graph
is widely studied [10],[14]. In particular, because of its many applications, since it corresponds
to the fundamental problem of determining an optimal partition of a set of objects into classes
according to some restriction. Problems of scheduling, frequency assignment [8] and register
allocation [4],[5], besides of the finite element method, are naturally modelled by the coloring
problem.

Given a coloring c, a vertex v is a b−vertex of color i, if c(v) = i and v has at least one
neighbour in every color class cj , j 6= i. A b−coloring is a coloring such that each color class
has a b−vertex. The b−chromatic number of a graph G, denoted χb (G), is the largest integer k
such that G admits a b−coloring with k colors. A b−coloring may be obtained by the following
heuristic that improves some given coloring of a graph G. One can start with any coloring c of
G and, as long as possible, do the following: pick-up a color class of c with no b−vertices and
recolor every vertex v in this class with some color that does not occur in its neighborhood. If
c is not a b−coloring, this process produces a coloring c′ (which is a b−coloring) better than c
in terms of the number of used colors. Observe that an optimal vertex coloring is necessarily
a b−coloring, and then the b−chromatic number is an upper bound for the chromatic number
of a graph. Since it is very easy to obtain a b−coloring of a graph, and since any b−coloring
provides an upper bound on the chromatic number [9], a natural application of the b−coloring
is to evaluate the performance of any graph coloring heuristics. On the other hand, the concept
of b−coloring was used in databases clustering [6] and in automatic recognition of documents
[2]. The b−colorings were first defined in [7]. In that paper, Irving and Manlove prove that the
problem of determining the b−chromatic number of a graph is NP-Hard. In fact, it is shown
in [11] that deciding whether a graph admits a b−coloring with a given number of colors is an
NP-complete problem, even for connected bipartite graphs.
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2 Preliminaries

A trail is called a path if all its vertices are distinct. A closed trail whose origin and internal
vertices are distinct is called a cycle. [1]

For any positive integer n ≥ 4, the wheel graphWn is the n−vertex graph obtained by joining
a vertex v1 to each of the n− 1 vertices {w1, w2, . . . wn−1} of the cycle graph Cn−1 [12].

The n−sunlet graph is the graph on 2n vertices obtained by attaching n pendant edges to a
cycle graph Cn and it is denoted by Sn [12].

Lexicographic product was first introduced by Felix Hausdorff in 1914. In graph theory, the
Lexicographic Product G[H] of graphs G and H is a graph such that the vertex set of G·H is the
cartesian product V (G)×V (H) [13] and any two vertices (u, v) and (x, y) are adjacent in G[H]
if and only if either
• u is adjacent with x in G or
• u=x and v is adjacent with y in H .
The Lexicographic product is also called the composition [3].

3 Main Results

In this section, we obtain the b−Chromatic number of lexicographic product of two graphs G
and H , denoted by G [H]. First, we consider the graph G [H], where G is the path graph, and H
is the sunlet graph and wheel graph. Secondly, we consider G as the cycle graph and H as the
wheel graph respectively. Finally, consider G and H are the wheel graphs.

First we consider the graph G be the isomorphic to the path graph of order m vertices and H
be the isomorphic to the sunlet graph of order n vertices. Let V (G) = {ui : 1 ≤ i ≤ m} and
V (H) = {vj : 1 ≤ j ≤ 2n}, where vj , (j = 1, 2, . . . n) are the vertices of cycle taken in a cyclic
order and vn+j , (j = 1, 2, . . . n) are pendant vertices such that each vjvn+j are the pendant edge.

Let V (G[H]) =
m⋃
i=1
{xi,j : 1 ≤ j ≤ 2n}, where xi,j are the vertices of uivj(1 ≤ i ≤ m, 1 ≤ j ≤

2n).

Theorem 3.1. The graph G be the isomorphic to the path graph of order m vertices and H
be the isomorphic to the sunlet graph of order n vertices. Then the b−chromatic number of
lexicographic product of G[H] is 6.

Proof. Define a mapping σ : V (G[H])→ N as follows:

Case 1: For n is odd

σ(x2i−1,2j) = 3, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n− 1;

σ(x2i−1,2j+1) = 5, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n− 1;

σ(x2i−1,1) = σ(x2i−1,2n) = 1, for 1 ≤ i ≤ m+ 1
2

;

σ(x2i,2j) = 4, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n− 1;

σ(x2i,2j+1) = 6, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n− 1;

σ(x2i,1) = σ(w2i,2n) = 2, for 1 ≤ i ≤ m− 1
2

.
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Case 2: For n is even

σ(x2i−1,2j) = 3, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n

2
;

σ(x2i−1,2j+1) = 5, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n

2
;

σ(x2i−1,1) = 1, for 1 ≤ i ≤ m

2
;

σ(x2i,2j) = 4, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n

2
;

σ(x2i,2j+1) = 6, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ n

2
;

σ(x2i,2) = 2, for 1 ≤ i ≤ m

2
;

σ(x2i−1,2n) = 5, for 1 ≤ i ≤ m+ 1
2

;

σ(x2i,2n) = 6, for 1 ≤ i ≤ m− 1
2

.

By assumption, χb(G[H]) ≥ 6. Let us assume that χb(G[H]) is greater than 6. As cycle Cn

increases, the adjacency between any two vertex decreases and hence the color assigned to the
corresponding vertices doesn’t form anyone of the color class which contradict the definition of
b−coloring which states that any two assigned color must exist at least once. So, χb(G[H]) ≤ 6.
But, the b−chromatic number of χb(G[H]) is the largest integer. Therefore χb(G[H]) = 6.

We consider the graph G be the isomorphic to the path graph of order m vertices and H be
the isomorphic to the wheel graph of order n vertices. Let V (G) = {ui : 1 ≤ i ≤ m} and
V (H) = {v1} ∪ {vj : 2 ≤ j ≤ n}, where vj’s are the vertices obtained by joining a vertex v1

of the n − 1 vertices and {v2 · · · vn} of the cycle graph. Let V (G[H]) =
m⋃
i=1
{xi,j : 1 ≤ j ≤ n};

where xi,j are the vertices of uivj(1 ≤ i ≤ m, 1 ≤ j ≤ n).

Theorem 3.2. The graph G be the isomorphic to the path graph of order m vertices and H be
the isomorphic to the wheel graph of order n vertices.Then

χb(G[H]) =

{
8, for n 6= 5
6, for n = 5

Proof. Define a mapping σ : V (G[H])→ N as follows:

Case 1: For n 6= 5

Subcase 1: For m is even and n is even

σ(x2i−1,j) = 2j − 1, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ 4;

σ(x2i,j) = 2j, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ 4;

σ(x2i−1,2j−1) = 3, for 3 ≤ j ≤ n

2
, 1 ≤ i ≤ m

2
;

σ(x2i−1,2j) = 5, for 3 ≤ j ≤ n

2
, 1 ≤ i ≤ m

2
;

σ(x2i,2j−1) = 4, for 3 ≤ j ≤ n

2
, 1 ≤ i ≤ m

2
;

σ(x2i,2j) = 6, for 3 ≤ j ≤ n

2
, 1 ≤ i ≤ m

2
.
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Subcase 2: For m is odd & n is odd

σ(x2i−1,j) = 2j − 1, for 1 ≤ i ≤ m+ 1
2

, 1 ≤ j ≤ 4;

σ(x2i,j) = 2j, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ 4;

σ(x2i−1,3j−1) = 3, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m+ 1
2

;

σ(x2i−1,3j) = 5, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m+ 1
2

;

σ(x2i−1,3j+1) = 7, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m+ 1
2

;

σ(x2i,3j−1) = 4, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m− 1
2

;

σ(x2i,3j) = 6, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m− 1
2

;

σ(x2i,3j+1) = 8, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m− 1
2

.

Subcase 3: For m is odd & n is even

σ(x2i−1,j) = 2j − 1, for 1 ≤ i ≤ m+ 1
2

, 1 ≤ j ≤ 4;

σ(x2i,j) = 2j, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ 4;

σ(x2i−1,2j+1) = 3, for 2 ≤ j ≤ n− 2
2

, 1 ≤ i ≤ m+ 1
2

;

σ(x2i−1,2j+2) = 5, for 2 ≤ j ≤ n− 2
2

, 1 ≤ i ≤ m+ 1
2

;

σ(x2i,2j+1) = 4, for 2 ≤ j ≤ n− 2
2

, 1 ≤ i ≤ m− 1
2

;

σ(x2i,2j+2) = 6, for 2 ≤ j ≤ n− 2
2

, 1 ≤ i ≤ m− 1
2

.

Subcase 4: For m is even & n is odd

σ(x2i−1,j) = 2j − 1, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ 4;

σ(x2i,j) = 2j, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ 4;

σ(x2i−1,3j−1) = 3, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m

2
;

σ(x2i−1,3j) = 5, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m

2
;

σ(x2i−1,3j+1) = 7, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m

2
;

σ(x2i,3j−1) = 4, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m

2
;

σ(x2i,3j) = 6, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m

2
;

σ(x2i,3j+1) = 8, for 2 ≤ j ≤ n− 3
2

, 1 ≤ i ≤ m

2
.

By assumption, χb(G[H]) ≥ 8. Let us assume that χb(G[H]) is greater than 8. As wheel G
increases the adjacency between any two vertex decreases (ie.,) x2,4, x2,5, x3,5, . . . are not
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connected. So, the colors assigned to the corresponding vertices doesn’t form any one of
the color class which contradicts the definition of b− coloring. So, χb(G[H]) ≤ 8. But, the
b−chromatic number of χb(G[H]) is the largest positive integer. Therefore χb(G[H]) = 8,
for n 6= 5.

Case 2: For n = 5

Subcase 1: For m is odd:

σ(w2i−1,j) = 2j − 1, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ 3;

σ(w2i,j) = 2j, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ 3;

σ(w2i−1,4) = 3, for 1 ≤ i ≤ m− 1
2

;σ(w2i,4) = 4, for 1 ≤ i ≤ m− 1
2

;

σ(w2i−1,5) = 5, for 1 ≤ i ≤ m− 1
2

;σ(w2i,5) = 6, for 1 ≤ i ≤ m− 1
2

.

Subcase 2: For m is even:

σ(w2i−1,j) = 2j − 1, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ 3;

σ(w2i,j) = 2j, for 1 ≤ i ≤ m

2
, 1 ≤ j ≤ 3;

σ(w2i−1,4) = 3, for 1 ≤ i ≤ m

2
;σ(w2i,4) = 4, for 1 ≤ i ≤ m

2
;

σ(w2i−1,5) = 5, for 1 ≤ i ≤ m

2
;σ(w2i,5) = 6, for 1 ≤ i ≤ m

2
.

By assumption, χb(G[H]) ≥ 6. Let us assume that χb(G[H]) is greater than 6. As path Pm

increases the adjacency between any 2 vertex decreases (ie.,) there is no connection between
x1,3, x1,4, x2,4, ... . . . and also in graph G. Hence, the colors assigned to the corresponding ver-
tices doesn’t form any one of the color class which contradicts the definition of b− coloring.
So, χb(G[H]) ≤ 6. But, the b−chromatic number of χb(G[H]) is the largest positive integer.
Therefore χb(G[H]) = 6, for n = 5.

We consider the graph G be the isomorphic to the cycle graph of order m vertices and H
be the isomorphic to the wheel graph of order n vertices. Let V (G) = {ui : 1 ≤ i ≤ m} and
V (H) = {vj : 1 ≤ j ≤ 2n}, where vj , (j = 1, 2, . . . n) are the vertices of cycle taken in a cyclic
order and vn+j , (j = 1, 2, . . . n) are pendant vertices such that each vjvn+j are the pendant edge.

Let V (G[H]) =
m⋃
i=1
{xi,j : 1 ≤ j ≤ 2n}, where xi,j are the vertices of uivj(1 ≤ i ≤ m, 1 ≤ j ≤

2n).

Theorem 3.3. The graph G be the isomorphic to the cycle graph of order m and H be the
isomorphic to the wheel graph of order n. Then

χb(G[H]) =


9, for n = 5 & m 6= 4
8, for m = 4 & n 6= 5
6, for m = 4 & n = 5
12, otherwise.

Proof. Define a mapping σ : V (G[H])→ N as follows:

Case 1: For n = 5 and m 6= 4.

σ(xi,1) = i, for 1 ≤ i ≤ 3;σ(x1,2j) = 4, for 1 ≤ j ≤ n− 3;

σ(x2,2j) = 5, for 1 ≤ j ≤ n− 3;σ(x3,2j) = 6, for 1 ≤ j ≤ n− 3;
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σ(x1,2j+1) = 7, for 1 ≤ j ≤ n− 3;σ(x2,2j+1) = 8, for 1 ≤ j ≤ n− 3;

σ(x3,2j+1) = 9, for 1 ≤ j ≤ n− 3;σ(xm,1) = 3;

σ(x2i,1) = 1, for 2 ≤ i ≤
⌈
m− 2

2

⌉
;

σ(x2i+1,1) = 2, for 2 ≤ i ≤
⌊
m− 2

2

⌋
;

σ(x2i,2j) = 4, for 2 ≤ i ≤
⌈
m− 2

2

⌉
, 1 ≤ j ≤ n− 3;

σ(x2i+1,2j) = 5, for 2 ≤ i ≤
⌊
m− 2

2

⌋
, 1 ≤ j ≤ n− 3;

σ(x2i,2j+1) = 7, for 2 ≤ i ≤
⌈
m− 2

2

⌉
, 1 ≤ j ≤ n− 3;

σ(x2i+1,2j+1) = 8, for 2 ≤ i ≤
⌊
m− 2

2

⌋
, 1 ≤ j ≤ n− 3;

σ(xm,2j) = 6, for 1 ≤ j ≤ n− 3;σ(xm,2j+1) = 9, for 1 ≤ j ≤ n− 3.

By assumption, χb(G[H]) ≥ 9. Let us assume that χb(G[H]) is greater than 9. As n =
5 & m increases, the adjacency between any two vertex decreases. So, the colors assigned
to the corresponding vertices doesn’t form any one of the color class which contradicts the
definition of b− coloring. So, χb(G[H]) ≤ 9. But, the b−chromatic number of χb(G[H]) is
the largest positive integer. Therefore χb(G[H]) = 9, for n = 5.

Case 2: For m = 4 & n 6= 5

σ(x2i−1,1) = 1, for 1 ≤ i ≤ m− 2;σ(x2i,1) = 2, for 1 ≤ i ≤ m− 2;

σ(x2i−1,2) = 3, for 1 ≤ i ≤ m− 2;σ(x2i,2) = 4, for 1 ≤ i ≤ m− 2;

σ(x2i−1,3) = 5, for 1 ≤ i ≤ m− 2;σ(x2i,3) = 6, for 1 ≤ i ≤ m− 2;

σ(x2i−1,4) = 7, for 1 ≤ i ≤ m− 2;σ(x2i,4) = 8, for 1 ≤ i ≤ m− 2;

σ(x2i−1,2j+3) = 3, for 1 ≤ i ≤ m− 2 & 1 ≤ j ≤
⌊
n− 4

2

⌋
;

σ(x2i,2j+3) = 4, for 1 ≤ i ≤ m− 2 & 1 ≤ j ≤
⌊
n− 4

2

⌋
;

σ(x2i−1,2j+4) = 5, for 1 ≤ i ≤ m− 2 & 1 ≤ j ≤
⌈
n− 6

2

⌉
;

σ(x2i,2j+4) = 6, for 1 ≤ i ≤ m− 2 & 1 ≤ j ≤
⌈
n− 6

2

⌉
;

σ(x2i−1,n) = 7, for 1 ≤ i ≤ m− 2;σ(x2i,n) = 8, for 1 ≤ i ≤ m− 2.

By assumption, χb(G[H]) ≥ 8. Let us assume that χb(G[H]) is greater than 8. As m = 4
and Wn increases, the adjacency between any two vertex decreases. So, the colors assigned
to the corresponding vertices doesn’t form any one of the color class which contradicts the
definition of b− coloring. So, χb(G[H]) ≤ 8. But, the b−chromatic number of χb(G[H]) is
the largest positive integer. Therefore χb(G[H]) = 8, for m = 4.

Case 3: For m = 4 and n = 5

σ(x2i−1,1) = 1, for 1 ≤ i ≤ m− 2;σ(x2i,1) = 2, for 1 ≤ i ≤ m− 2;

σ(x2i−1,2j) = 3, for 1 ≤ i ≤ m− 2, 1 ≤ j ≤ n− 3;

σ(x2i,2j) = 4, for 1 ≤ i ≤ m− 2, 1 ≤ j ≤ n− 3;

σ(x2i−1,2j+1) = 5, for 1 ≤ i ≤ m− 2, 1 ≤ j ≤ n− 3;

σ(x2i,2j+1) = 6, for 1 ≤ i ≤ m− 2, 1 ≤ j ≤ n− 3.
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By assumption, χb(G[H]) ≥ 6. Let us assume that χb(G[H]) is greater than 6. As m =
4 & n = 5 the edges between most of the two vertices are not connected. So, the colors
assigned to the corresponding vertices doesn’t form any one of the color class which con-
tradicts the definition of b− coloring. So, χb(G[H]) ≤ 6. But, the b−chromatic number of
χb(G[H]) is the largest positive integer. Therefore χb(G[H]) = 6, for m = 4, n = 5.

Case 4: For m 6= 4 and n 6= 5

Subcase 1: For m is odd.

σ(xi,1) = i, for 1 ≤ i ≤ 3;σ(xi,2) = i+ 3, for 1 ≤ i ≤ 3;

σ(xi,3) = i+ 6, for 1 ≤ i ≤ 3;σ(xi,4) = i+ 9, for 1 ≤ i ≤ 3;

σ(x2i,1) = 1, for 2 ≤ i ≤ m− 1
2

;σ(x2i+1,1) = 3, for 2 ≤ i ≤ m− 1
2

;

σ(x2i,2) = 4, for 2 ≤ i ≤ m− 1
2

;σ(x2i+1,2) = 6, for 2 ≤ i ≤ m− 1
2

;

σ(x2i,3) = 7, for 2 ≤ i ≤ m− 1
2

;σ(x2i+1,3) = 9, for 2 ≤ i ≤ m− 1
2

;

σ(x2i,4) = 10, for 2 ≤ i ≤ m− 1
2

;σ(x2i+1,4) = 12, for 2 ≤ i ≤ m− 1
2

;

σ(x1,n) = 10;σ(x2,n) = 11;σ(x3,n) = 12;

σ(x1,2j+3) = 4, for 1 ≤ j ≤
⌊
n− 4

2

⌋
;σ(x2,2j+3) = 5, for 1 ≤ j ≤

⌊
n− 4

2

⌋
;

σ(x3,2j+3) = 6, for 1 ≤ j ≤
⌊
n− 4

2

⌋
;σ(x1,2j+4) = 7, for 1 ≤ j ≤

⌈
n− 6

2

⌉
;

σ(x2,2j+4) = 8, for 1 ≤ j ≤
⌈
n− 6

2

⌉
;σ(x3,2j+4) = 9, for 1 ≤ j ≤

⌈
n− 6

2

⌉
;

σ(x2i,2j+3) = 4, for 2 ≤ i ≤ m− 1
2

, 1 ≤ j ≤
⌊
n− 4

2

⌋
;

σ(x2i+1,2j+3) = 6, for 2 ≤ i ≤ m− 1
2

, 1 ≤ j ≤
⌊
n− 4

2

⌋
;

σ(x2i,2j+4) = 7, for 2 ≤ i ≤ m− 1
2

, 1 ≤ j ≤
⌈
n− 6

2

⌉
;

σ(x2i+1,2j+4) = 9, for 2 ≤ i ≤ m− 1
2

, 1 ≤ j ≤
⌈
n− 6

2

⌉
;

σ(x2i,n) = 10, for 2 ≤ i ≤ m− 1
2

;σ(x2i+1,n) = 12, for 2 ≤ i ≤ m− 1
2

.

Subcase 2: For m is even.

σ(xi,1) = i, for 1 ≤ i ≤ 3;σ(xi,2) = i+ 3, for 1 ≤ i ≤ 3;

σ(xi,3) = i+ 6, for 1 ≤ i ≤ 3;σ(xi,4) = i+ 9, for 1 ≤ i ≤ 3;

σ(x1,2j+3) = 4, for 1 ≤ j ≤
⌊
n− 4

2

⌋
;σ(x2,2j+3) = 5, for 1 ≤ j ≤

⌊
n− 4

2

⌋
;

σ(x3,2j+3) = 6, for 1 ≤ j ≤
⌊
n− 4

2

⌋
;σ(x1,2j+4) = 7, for 1 ≤ j ≤

⌈
n− 6

2

⌉
;

σ(x2,2j+4) = 8, for 1 ≤ j ≤
⌈
n− 6

2

⌉
;σ(x3,2j+4) = 9, for 1 ≤ j ≤

⌈
n− 6

2

⌉
;
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σ(x1,n) = 10;σ(x2,n) = 11;σ(x3,n) = 12;

σ(x2i,1) = 1, for 2 ≤ i ≤ m− 2
2

;σ(x2i+1,1) = 2, for 2 ≤ i ≤ m− 2
2

;

σ(x2i,2) = 4, for 2 ≤ i ≤ m− 2
2

;σ(x2i+1,2) = 5, for 2 ≤ i ≤ m− 2
2

;

σ(x2i,3) = 7, for 2 ≤ i ≤ m− 2
2

;σ(x2i+1,3) = 8, for 2 ≤ i ≤ m− 2
2

;

σ(x2i,4) = 10, for 2 ≤ i ≤ m− 2
2

;σ(x2i+1,4) = 11, for 2 ≤ i ≤ m− 2
2

;

σ(xm,1) = 3;σ(xm,2) = 6;σ(xm,3) = 9;σ(xm,4) = 12;

σ(x2i,2j+3) = 4, for 2 ≤ i ≤ m− 2
2

, 1 ≤ j ≤
⌊
n− 4

2

⌋
;

σ(x2i+1,2j+3) = 5, for 2 ≤ i ≤ m− 2
2

, 1 ≤ j ≤
⌊
n− 4

2

⌋
;

σ(x2i,2j+4) = 7, for 2 ≤ i ≤ m− 2
2

, 1 ≤ j ≤
⌈
n− 6

2

⌉
;

σ(x2i+1,2j+4) = 8, for 2 ≤ i ≤ m− 2
2

, 1 ≤ j ≤
⌈
n− 6

2

⌉
;

σ(xm,2j+3) = 6, for 1 ≤ j ≤
⌊
n− 4

2

⌋
;σ(xm,2j+4) = 9, for 1 ≤ j ≤

⌈
n− 6

2

⌉
;

σ(x2i,n) = 10, for 2 ≤ i ≤ m− 2
2

;σ(x2i+1,n) = 11, for 2 ≤ i ≤ m− 2
2

;

σ(xm,n) = 12.

By assumption, χb(G[H]) ≥ 12. Let us assume that χb(G[H]) is greater than 12. As Cm and
Wn increases, the adjacency between any two vertex decreases. So, the colors assigned to the
corresponding vertices doesn’t form any one of the color class which contradicts the definitions
of b− coloring. So, χb(G[H]) ≤ 12. But, the b−chromatic number of χb(G[H]) is the largest
positive integer. Therefore χb(G[H]) = 12.

We consider the graph G and H be the isomorphic to the wheel graphs of order m and n
vertices. Let V (G) == {u1} ∪ {ui : 2 ≤ i ≤ m} and V (H) = {v1} ∪ {vj : 2 ≤ j ≤ n}. By

the definition of lexicographic product, let V (G[H]) =
m⋃
i=1
{xi,j : 1 ≤ j ≤ n}; where xi,j are the

vertices of uivj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Theorem 3.4. The graph G and H be the isomorphic to the wheel graphs of order m and n
vertices. Then

χb(G[H]) =


9, for m = n = 5
12, for m = 5 & n 6= 5, n = 5 & m 6= 5
16, otherwise.

Proof. Define a mapping σ : V (G[H])→ N as follows:

Case 1: For m = n = 5

σ(x1,1) = 1;σ(x2i,1) = 2, for 1 ≤ i ≤ m− 1
2

;

σ(x2i+1,1) = 3, for 1 ≤ i ≤ m− 1
2

;σ(x1,2j) = 4, for 1 ≤ j ≤ n− 1
2

;
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σ(x1,2j+1) = 7, for 1 ≤ j ≤ n− 1
2

;

σ(x2i,2j) = 5, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ n− 1
2

;

σ(x2i,2j+1) = 8, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ n− 1
2

;

σ(x2i+1,2j) = 6, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ n− 1
2

;

σ(x2i,2j+1) = 9, for 1 ≤ i ≤ m− 1
2

, 1 ≤ j ≤ n− 1
2

.

By assumption, χb(G[H]) ≥ 9. Let us assume that χb(G[H]) is greater than 9. As m&n =
5, there is no adjacency between x2,4 and x3,5. So, the colors assigned to the corresponding
vertices doesn’t form any one of the color class which contradicts the definition of b−
coloring. So, χb(G[H]) ≤ 9. But, the b−chromatic number of χb(G[H]) is the largest
positive integer. Therefore χb(G[H]) = 9, for m&n = 5.

Case 2: For m = 5 & n 6= 5, n = 5 & m 6= 5

Subcase 1: For n = 5

σ(xi,1) = i, for 1 ≤ i ≤ 4;σ(x1,2j) = 5, for 1 ≤ j ≤ n− 3;

σ(x1,2j+1) = 9, for 1 ≤ j ≤ n− 3;σ(x2,2j) = 6, for 1 ≤ j ≤ n− 3;

σ(x2,2j+1) = 10, for 1 ≤ j ≤ n− 3;σ(x3,2j) = 7, for 1 ≤ j ≤ n− 3;

σ(x3,2j+1) = 11, for 1 ≤ j ≤ n− 3;σ(x4,2j) = 8, for 1 ≤ j ≤ n− 3;

σ(x4,2j+1) = 12, for 1 ≤ j ≤ n− 3;σ(xm,1) = 4;

σ(xm,2j) = 8, for 1 ≤ j ≤ n− 3;σ(xm,2j+1) = 12, for 1 ≤ j ≤ n− 3;

σ(x2i+1,1) = 2, for 2 ≤ i ≤
⌊
m− 2

2

⌋
;σ(x2i+2,1) = 3, for 2 ≤ i ≤

⌊
m− 4

2

⌋
;

σ(x2i+1,2j) = 6, for 2 ≤ i ≤
⌊
m− 2

2

⌋
, 1 ≤ j ≤ n− 3;

σ(x2i+2,2j) = 7, for 2 ≤ i <
⌊
m− 4

2

⌋
, 1 ≤ j ≤ n− 3;

σ(x2i+1,2j+1) = 10, for 2 ≤ i ≤
⌊
m− 2

2

⌋
, 1 ≤ j ≤ n− 3;

σ(x2i+2,2j+1) = 11, for 2 ≤ i <
⌊
m− 4

2

⌋
, 1 ≤ j ≤ n− 3.

Subcase 2: For m = 5

σ(x1,j) = 3j − 2 for 1 ≤ j ≤ 4;σ(x2i,1) = 2, for 1 ≤ i ≤ m− 3;

σ(x2i+1,1) = 3, for 1 ≤ i ≤ m− 3;σ(x2i,2) = 5, for 1 ≤ i ≤ m− 3;

σ(x2i+1,2) = 6, for 1 ≤ i ≤ m− 3;σ(x2i,3) = 8, for 1 ≤ i ≤ m− 3;

σ(x2i+1,3) = 9, for 1 ≤ i ≤ m− 3;σ(x2i,4) = 11, for 1 ≤ i ≤ m− 3;

σ(x2i+1,4) = 12, for 1 ≤ i ≤ m− 3;σ(x1,n) = 10;

σ(x2i,n) = 11, for 1 ≤ i ≤ m− 3;σ(x2i+1,n) = 12, for 1 ≤ i ≤ m− 3;

σ(x1,2j+3) = 4, for 1 ≤ j ≤
⌈
n− 3

2

⌉
;

σ(x2i,2j+3) = 5, for 1 ≤ j ≤
⌈
n− 3

2

⌉
, 1 ≤ i ≤ m− 3;
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σ(x2i+1,2j+3) = 6, for 1 ≤ j ≤
⌈
n− 3

2

⌉
, 1 ≤ i ≤ m− 3;

σ(x1,2j+4) = 7, for 1 ≤ j ≤
⌊
n− 5

2

⌋
;

σ(x2i,2j+4) = 8, for 1 ≤ j ≤
⌊
n− 5

2

⌋
, 1 ≤ i ≤ m− 3;

σ(x2i+1,2j+4) = 9, for 1 ≤ j ≤
⌊
n− 5

2

⌋
, 1 ≤ i ≤ m− 3.

By assumption, χb(G[H]) ≥ 12. Let us assume that χb(G[H]) is greater than 12. As
m increases the adjacency between any 2 vertex decreases. So, the colors assigned to
the corresponding vertices doesn’t form any one of the color class which contradicts
the definition of b− coloring. So, χb(G[H]) ≤ 12. But, the b−chromatic number of
χb(G[H]) is the largest positive integer. Therefore χb(G[H]) = 12.

Case 3: For m 6= 5 6= n

σ(x1,j) = 4j − 3, for 1 ≤ j ≤ 4;σ(x2,j) = 4j − 2, for 1 ≤ j ≤ 4;

σ(x3,j) = 4j − 1, for 1 ≤ j ≤ 4;σ(x4,j) = 4j, for 1 ≤ j ≤ 4;

σ(xi,n) = i+ 12, for 1 ≤ i ≤ 4;σ(xm,j) = 4j, for 1 ≤ j ≤ 4;

σ(x1,2j+1) = 5, for 2 ≤ j ≤
⌈
n− 3

2

⌉
;

σ(x1,2j+2) = 9, for 2 ≤ j ≤
⌊
n− 3

2

⌋
;

σ(x2,2j+1) = 6, for 2 ≤ j ≤
⌈
n− 3

2

⌉
;

σ(x2,2j+2) = 10, for 2 ≤ j ≤
⌊
n− 3

2

⌋
;

σ(x3,2j+1) = 7, for 2 ≤ j ≤
⌈
n− 3

2

⌉
;

σ(x3,2j+2) = 11, for 2 ≤ j ≤
⌊
n− 3

2

⌋
;

σ(x4,2j+1) = 8, for 2 ≤ j ≤
⌈
n− 3

2

⌉
;

σ(x4,2j+2) = 12, for 2 ≤ j ≤
⌊
n− 3

2

⌋
;

σ(x2i+1,1) = 2, for 2 ≤ i ≤
⌈
m− 3

2

⌉
;

σ(x2i+2,1) = 3, for 2 ≤ i ≤
⌊
m− 3

2

⌋
;

σ(x2i+1,2) = 6, for 2 ≤ i ≤
⌈
m− 3

2

⌉
;

σ(x2i+2,2) = 7, for 2 ≤ i ≤
⌊
m− 3

2

⌋
;

σ(x2i+1,3) = 10, for 2 ≤ i ≤
⌈
m− 3

2

⌉
;

σ(x2i+2,3) = 11, for 2 ≤ i ≤
⌊
m− 3

2

⌋
;
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σ(x2i+1,4) = 14, for 2 ≤ i ≤
⌈
m− 3

2

⌉
;

σ(x2i+2,4) = 15, for 2 ≤ i ≤
⌊
m− 3

2

⌋
;

σ(x2i+1,2j+1) = 6, for 2 ≤ i ≤
⌈
m− 3

2

⌉
, 2 ≤ j ≤

⌈
n− 3

2

⌉
;

σ(x2i+2,2j+1) = 7, for 2 ≤ i ≤
⌊
m− 3

2

⌋
, 2 ≤ j ≤

⌊
n− 3

2

⌋
;

σ(x2i+1,2j+2) = 10, for 2 ≤ i ≤
⌈
m− 3

2

⌉
, 2 ≤ j ≤

⌈
n− 3

2

⌉
;

σ(x2i+2,2j+2) = 11, for 2 ≤ i ≤
⌊
m− 3

2

⌋
, 2 ≤ j ≤

⌊
n− 3

2

⌋
;

σ(x2i+1,n) = 14, for 2 ≤ i ≤
⌈
m− 3

2

⌉
;

σ(x2i+2,n) = 15, for 2 ≤ i ≤
⌊
m− 3

2

⌋
;

σ(xm,2j+1) = 8, for 2 ≤ j ≤
⌈
n− 3

2

⌉
;

σ(xm,2j+2) = 12, for 2 ≤ j ≤
⌊
n− 3

2

⌋
;

σ(xm,n) = 16.

By assumption, χb(G[H]) ≥ 16. Let us assume that χb(G[H]) is greater than 16. As wheel
Wn increases the adjacency between any 2 vertex decreases (ie.,) x2,4, x2,5, x3,5, . . . are not
connected. So, the colors assigned to the corresponding vertices doesn’t form any one of the
color class which contradicts the definition of b− coloring. So, χb(G[H]) ≤ 16. But, the
b−chromatic number of χb(G[H]) is the largest positive integer. Therefore χb(G[H]) = 16,
for m&n 6= 5.

References
[1] J. A. Bondy and U.S.R.Murty, Graph theory with applications, Elseiver Science Publishing Co., U.S.A.,

(1976).

[2] M. Blidia, F. Maffray and Z. Zemir, On b-colorings in regular graphs Discrete Applied Mathematics
157(8) (2009), 1787-1793.

[3] B. Brear, T. Kraner Umenjak, A. Tepeh, The geodetic number of lexicographic product of graphs, Discrete
Math., 308 (2011), 1693-1698.

[4] S. Cabello and M. Jakovac, On the b-chromatic number of regular graphs, Discrete Applied Mathematics
159 (2011), 1303-1310.

[5] V. Campos, V. Farias and A. Silva, b-Coloring graphs with large girth, J. of the Brazilian Computer
Society 18(4) (2012), 375-378.

[6] F. Havet, C. Linhares and L. Sampaio, b-coloring of tight graphs, Discrete Applied Mathematics 160(18)
(2012), 2709-2715.

[7] R. W. Irving, D. F. Manlove, The b−chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-
141.

[8] M. Jakovac, S. Klavzar, The b−chromatic number of cubic graphs, Graphs Comb. 26 (1) (2010) 107-118.

[9] M. Kouider, M. Maheo, Some bounds for the b−chromatic number of a graph, Discrete Math. 256 (1-2)
(2002) 267-277.

[10] M. Kouider and A. E. Sahili, About b-colouring of regular graphs, Technical Report 1432, UniversitÃl’
Paris Sud, 2006.

[11] J. Kratochvil, Zs. Tuza and M. Voigt, On the b-chromatic number of graphs, Lecture Notes In Computer
Science 2573 (2002), 310-320.



121 Kaliraj K and Manjula M

[12] Vernold Vivin.J, M. Venkatachalam , On b− chromatic number of sunlet graphs and wheel graph families,
Journal of Egyptian Mathematical Society, (2015), 215-218.

[13] F. Maffray and A. Silva, b-colouring the Cartesian product of trees and some other graphs, Disc. Appl.
Math. 161 (2013), 650-669.

[14] S. Shaebani, On the b-chromatic number of regular graphs without 4-cycle, Discrete Applied Mathematics
160 (2012), 1610-1614.

Author information
Kaliraj K, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai-
600 005, Tamil Nadu, India.
E-mail: kalirajriasm@gmail.com

Manjula M, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk,
Chennai-600 005, Tamil Nadu, India.
E-mail: manjumosha@gmail.com

Received : January 27, 2021
Accepted : April 30, 2021


	1 Introduction
	2 Preliminaries
	3 Main Results
	Bibliography

