ON r-DYNAMIC COLORING OF PARA-LINE GRAPH OF SOME STANDARD GRAPHS

G.Nandini, M.Venkatachalam and Dafik
Communicated by V. Kokilavani

MSC 2010 Classifications: 05C15.
Keywords and phrases: bistar graph, cycle, complete graph, complete bipartite graph, fan graph, path, r-dynamic coloring, subdivision graph, para-line graph

Abstract

Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The Subdivision graph $S(G)$ of a graph G is the graph acquired by inserting a new vertex into every edge of G. The para-line graph of G is the line graph of the subdivision graph of G, which is symbolized by $L(S(G))$. An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \geq \min \{r, d(v)\}$, for each $v \in V(G)$. The r-dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper, we acquired the r-dynamic chromatic number of para-line graph of the some standard graphs.

1 Introduction

The conception of r-dynamic chromatic number was first initiated by Montgomery [14]. It is also consider under the name r-hued [15], [16]. The r-dynamic coloring is a generalization of the vertex coloring for which $r=1$. An r-dynamic coloring of a graph G is a proper coloring and it maps c from $V(G)$ to the set of colors such that (i) if $u v \in E(G)$, then $c(u) \neq c(v)$, and (ii) for each vertex $v \in V(G),|c(N(v))| \geq \min \{r, d(v)\}$, where $N(v)$ denotes the set of vertices adjacent to $v, d(v)$ its degree and r is a positive integer. The r-dynamic chromatic number of a graph G, written $\chi_{r}(G)$, is the minimum k such that G has an r-dynamic proper k-coloring. In this paper we speculate only the graphs which are simple, finite, loopless and connected. For all terms and definition which are not precisely described in this paper, we cite to [3]. The r dynamic chromatic number has been studied by many researcher, specifically in [1], [2], [4], [6], [7], [8], [9], [10], [11], [12], [13], [17].

2 Preliminaries

Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The Subdivision graph $S(G)$ of a graph G is the graph obtained by inserting a new vertex into every edge of G. The line graph [5] of G denoted by $L(G)$ is the graph whose vertex set is the edge set of G. Two vertices of $L(G)$ are adjacent whenever the corresponding edges of G are adjacent. The para-line graph [18] of G is the line graph of the subdivision graph of G, which is denoted by $L(S(G))$. An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \geq \min \{r, d(v)\}$, for each $v \in V(G)$. Para-line graphs are requisitioned in structural chemistry.

3 Results

Lemma 3.1. [13] $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$
In this section, we determine the r-dynamic chromatic number of para-line graph of path, cycle, complete graph, complete bipartite graph, fan graph, bistar graph, tadpole graph and lollipop graph. Firstly we will find the lower bounds of r-dynamic chromatic number of the graphs and we prove our theorems.

Lemma 3.2. Let $L\left(S\left(P_{n}\right)\right)$ be the Para-line graph of a Path graph P_{n}. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(P_{n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(P_{n}\right)\right)\right) \geq \begin{cases}2 ; & r=1 \\ 3 ; & r \geq 2\end{cases}
$$

Proof. The vertex and edge set of Path graph is represented as follows.

$$
\begin{aligned}
& V\left(P_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \\
& E\left(P_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}
\end{aligned}
$$

Let $V\left(S\left(P_{n}\right)\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ where v_{i} are the new vertices inserted on the edge $u_{i} u_{i+1}$ of P_{n}. The vertex set of the graph $L\left(S\left(P_{n}\right)\right)$ is represented as $V\left(L\left(S\left(P_{n}\right)\right)\right)=$ $\left\{e_{i i}, f_{i(i+1)}: 1 \leq i \leq n-1\right\}$, where $e_{i i}$ are the vertices corresponding to the edge $u_{i} v_{i}$ and $f_{i j}$ are the vertices corresponding to the edge $v_{i} u_{j}$.
For $r=1$, based on the Lemma 2.1, we have $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$ such that $\chi_{r}\left(L\left(S\left(P_{n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(P_{n}\right)\right)\right)\right\}+1=r+1=2$ 。
For $r \geq 2$, from the Lemma 2.1, we obtain $\chi_{r}\left(L\left(S\left(P_{n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(P_{n}\right)\right)\right)\right\}+1=$ $\Delta\left(L\left(S\left(P_{n}\right)\right)\right)+1=2+1=3$. It concludes the proof.

Theorem 3.3. Let $n \geq 2$, the r-Dynamic Chromatic number of $L\left(S\left(P_{n}\right)\right)$ is

$$
\begin{aligned}
& \chi_{r=1}\left(L\left(S\left(P_{n}\right)\right)\right)=2 . \\
& \chi_{r \geq 2}\left(L\left(S\left(P_{n}\right)\right)\right)=3 .
\end{aligned}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(P_{n}\right)\right)$ are obtained as $\Delta\left(L\left(S\left(P_{n}\right)\right)\right)=2$ and $\delta\left(L\left(S\left(P_{n}\right)\right)\right)=1$, respectively.

Case 1: $r=1$

Proceeding from the Lemma 3.1, the lower bound is

$$
\chi_{r}\left(L\left(S\left(P_{n}\right)\right)\right) \geq 2
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(P_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}\right\}$ as follows.

$$
\mathrm{c}\left(\mathrm{e}_{11}, f_{12}, e_{22}, f_{23}, \ldots, e_{(n-1)(n-1)}, f_{(n-1) n}\right)=\left\{c_{1}, c_{2}, c_{1}, c_{2}, \ldots\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r=1}\left(L\left(S\left(P_{n}\right)\right)\right) \leq 2$.
Thus, $\chi_{r=1}\left(L\left(S\left(P_{n}\right)\right)\right)=2$.
Case 2: $r \geq 2$
Proceeding from the Lemma 3.1, the lower bound is

$$
\chi_{r}\left(L\left(S\left(P_{n}\right)\right)\right) \geq 3
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(P_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, c_{3}\right\}$ as follows.

$$
c\left(e_{11}, f_{12}, e_{22}, f_{23}, \ldots, e_{(n-1)(n-1)}, f_{(n-1) n}\right)=\left\{c_{1}, c_{2}, c_{3}, c_{1}, c_{2}, c_{3}, \ldots\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(P_{n}\right)\right)\right) \leq 3$.
Thus, $\chi_{r \geq}\left(L\left(S\left(P_{n}\right)\right)\right)=3$. It conforms the proof.
Lemma 3.4. Let $L\left(S\left(C_{n}\right)\right)$ be the Para-line graph of a Cycle graph C_{n}.
The lower bound of r-Dynamic Chromatic number of $L\left(S\left(C_{n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \geq \begin{cases}2 ; & r=1 \\ 3 ; & r \geq 2\end{cases}
$$

Proof. The vertex and edge set of Cycle graph is represented as follows.

$$
\begin{aligned}
& V\left(C_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\} . \\
& E\left(C_{n}\right)=\left\{u_{i} u_{i+1}, u_{n} u_{1}: 1 \leq i \leq n-1\right\} .
\end{aligned}
$$

Let $V\left(S\left(C_{n}\right)\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ where $\left\{v_{i}: 1 \leq i \leq n-1\right\}$ are the new vertices inserted on the edge $u_{i} u_{i+1}$ and v_{n} is the new vertex inserted on the edge $u_{n} u_{1}$ of C_{n}. Let $V\left(L\left(S\left(C_{n}\right)\right)\right)=$ $\left\{e_{i i}, f_{i(i+1)}: 1 \leq i \leq n-1\right\} \cup\left\{e_{n n}, f_{n 1}\right\}$, where $e_{i i}$ are the vertices corresponding to the edge $u_{i} v_{i}$ and $f_{i j}$ are the vertices corresponding to the edge $v_{i} u_{j}$.
For $r=1$, from the Lemma 2.1, we have $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$ such that $\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \geq$ $\min \left\{r, \Delta\left(L\left(S\left(C_{n}\right)\right)\right)\right\}+1=r+1=2$.
For $r \geq 2$, from the Lemma 2.1, we obtain $\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(C_{n}\right)\right)\right)\right\}+1=$ $\Delta\left(L\left(S\left(C_{n}\right)\right)\right)+1=2+1=3$. It concludes the proof.

Theorem 3.5. Let $n \geq 3$, the r-Dynamic Chromatic number of $L\left(S\left(C_{n}\right)\right)$ is

$$
\begin{aligned}
& \chi_{r=1}\left(L\left(S\left(C_{n}\right)\right)\right)=2 . \\
& \chi_{r \geq 2}\left(L\left(S\left(C_{n}\right)\right)\right)= \begin{cases}3 ; & 2 n \equiv 0(\bmod 3) \\
4 ; & 2 n \equiv 1,2(\bmod 3)\end{cases}
\end{aligned}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(C_{n}\right)\right)$ are obtained as
$\Delta\left(L\left(S\left(C_{n}\right)\right)\right)=\delta\left(L\left(S\left(C_{n}\right)\right)\right)=2$.
Case 1: $r=1$
In reference to the Lemma 3.3, the lower bound is

$$
\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \geq 2
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(C_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}\right\}$ as follows.

$$
c\left(e_{11}, f_{12}, e_{22}, f_{23}, \ldots, e_{n n}, f_{n 1}\right)=\left\{c_{1}, c_{2}, c_{1}, c_{2}, \ldots\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \leq 2$.
Thus, $\chi_{r=1}\left(L\left(S\left(C_{n}\right)\right)\right)=2$.
Case 2: $r \geq 2$
Subcase(i): $2 n \equiv 0(\bmod 3)$
In reference to the Lemma 3.3, the lower bound is

$$
\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \geq 3
$$

To expose the upper bound, we describe a map $c: V\left(L\left(S\left(C_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, c_{3}\right\}$ as follows.

$$
c\left(e_{11}, f_{12}, e_{22}, f_{23}, \ldots, e_{n n}, f_{n 1}\right)=\left\{c_{1}, c_{2}, c_{3}, c_{1}, c_{2}, c_{3}, \ldots\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \leq 3$.
Thus, $\chi_{r=2}\left(L\left(S\left(C_{n}\right)\right)\right)=3,2 n \equiv 0(\bmod 3)$.
Subcase(ii): $2 n \equiv 1,2(\bmod 3)$
In reference to the Lemma 3.3, the lower bound is

$$
\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \geq 3
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(C_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ as follows.
For $2 n \equiv 1(\bmod 3)$,

$$
c\left(e_{11}, f_{12}, \ldots, e_{n n}, f_{n 1}\right)=\left\{c_{1}, c_{2}, c_{3}, c_{1}, c_{2}, c_{3}, \ldots, c_{1}, c_{2}, c_{3}, c_{4}\right\}
$$

For $2 n \equiv 2(\bmod 3)$,

$$
c\left(e_{11}, f_{12}, \ldots, e_{n n}, f_{n 1}\right)=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{1}, c_{2}, c_{3}, c_{4}, c_{1}, c_{2}, c_{3}, \ldots, c_{1}, c_{2}, c_{3}\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(C_{n}\right)\right)\right) \leq 4$.
Thus, $\chi_{r \geq 2}\left(L\left(S\left(C_{n}\right)\right)\right)=4,2 n \equiv 1,2(\bmod 3)$. It conforms the proof.

Lemma 3.6. Let $L\left(S\left(K_{n}\right)\right)$ be the Para-line graph of a Complete graph K_{n}. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(K_{n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \geq \begin{cases}n-1 ; & 1 \leq r \leq \Delta\left(L\left(S\left(K_{n}\right)\right)\right)-1 \\ \Delta+1 ; & r \geq \Delta\left(L\left(S\left(K_{n}\right)\right)\right)\end{cases}
$$

Proof. The vertex and edge set of Complete graph is represented as follows.

$$
\begin{aligned}
& V\left(K_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\} . \\
& E\left(K_{n}\right)=\left\{u_{i} u_{j}: 1 \leq i, j \leq n, i<j\right\} .
\end{aligned}
$$

Let $V\left(S\left(K_{n}\right)\right)=\left\{u_{i}, v_{i j}: 1 \leq i, j \leq n, i<j\right\}$ where $v_{i j}$ are the new vertices inserted on the edge $u_{i} u_{j}$ of K_{n}. The vertex set of the graph $L\left(S\left(C_{n}\right)\right)$ is represented as $V\left(L\left(S\left(K_{n}\right)\right)\right)=\left\{e_{i, i j}, e_{j, i j}: 1 \leq i \leq n-1,1 \leq j \leq n, i \neq j\right\}$, where $e_{i, i j}$ are the vertices corresponding to the edges $u_{i} v_{i j}(i<j)$ and $e_{j, i j}$ are the vertices corresponding to the edges $u_{j} v_{i j}(i>j)$.
Clearly the vertices $\left\{e_{i, i j}: 1 \leq i \leq n, 2 \leq j \leq n\right\}$ induces a clique of order K_{n-1} in $L\left(S\left(K_{n}\right)\right)$. For $1 \leq r \leq \Delta\left(L\left(S\left(K_{n}\right)\right)\right)-1$, $\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \geq n-1$. For $r \geq \Delta\left(L\left(S\left(K_{n}\right)\right)\right)$, based on the Lemma 2.1, we obtain $\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(K_{n}\right)\right)\right)\right\}+1=\Delta\left(L\left(S\left(K_{n}\right)\right)\right)+1$. It concludes the proof.

Theorem 3.7. Let $n \geq 6$, the r-Dynamic Chromatic number of $L\left(S\left(K_{n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right)= \begin{cases}n-1 ; & 1 \leq r \leq \Delta-1 \\ n ; & r \geq \Delta\end{cases}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(K_{n}\right)\right)$ are obtained as $\Delta\left(L\left(S\left(K_{n}\right)\right)\right)=\delta\left(L\left(S\left(K_{n}\right)\right)\right)=n-1$.
Case 1: $1 \leq r \leq \Delta-1$
In reference to the Lemma 3.5, the lower bound is

$$
\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \geq n-1 .
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(K_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\}$ as follows.

$$
\begin{aligned}
& c\left(e_{1,12}, e_{1,13}, \ldots, e_{1,1 n}\right)=\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\} \\
& c\left(e_{2,12}, e_{2,23}, \ldots, e_{2,2 n}\right)=\left\{c_{2}, c_{3}, \ldots, c_{n-1}, c_{1}\right\}
\end{aligned}
$$

Proceeding in the same manner we define,

$$
\begin{aligned}
c\left(e_{n-1,1(n-1)}, e_{n-1,2(n-1)}, \ldots, e_{n-1,(n-1) n}\right) & =\left\{c_{n-1}, c_{1}, c_{2}, \ldots, c_{n-2}\right\} \\
c\left(e_{n, 1 n}, e_{n, 2 n}, \ldots, e_{n,(n-1) n}\right) & =\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\}
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \leq n-1$.
Thus, $\chi_{1 \leq r \leq \Delta-1}\left(L\left(S\left(K_{n}\right)\right)\right)=n-1$.
Case 2: $r \geq \Delta$
In reference to the Lemma 3.5, the lower bound is

$$
\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \geq n .
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(K_{n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ as follows.

$$
\begin{aligned}
& c\left(e_{1,12}, e_{1,13}, \ldots, e_{1,1 n}\right)=\left\{c_{1}, c_{2}, \ldots, c_{n-1}\right\} \\
& c\left(e_{2,12}, e_{2,23}, \ldots, e_{2,2 n}\right)=\left\{c_{n}, c_{2}, c_{3}, \ldots, c_{n-1}\right\} \\
& c\left(e_{3,13}, e_{3,23}, \ldots, e_{3,3 n}\right)=\left\{c_{n}, c_{1}, c_{3}, \ldots, c_{n-1}\right\}
\end{aligned}
$$

Proceeding in the same manner we define,

$$
c\left(e_{n, 1 n}, e_{n, 2 n}, \ldots, e_{n,(n-1) n}\right)=\left\{c_{n}, c_{1}, c_{2}, \ldots, c_{n-2}\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(K_{n}\right)\right)\right) \leq n$.
Thus, $\chi_{r \geq \Delta}\left(L\left(S\left(K_{n}\right)\right)\right)=n$. It conforms the proof.
Lemma 3.8. Let $L\left(S\left(K_{m, n}\right)\right)$ be the Para-line graph of a Complete bipartite graph $K_{m, n}$. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(K_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \geq \begin{cases}n ; & 1 \leq r \leq \Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)-1 \\ \Delta+1 ; & r \geq \Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)\end{cases}
$$

Proof. The vertex and edge set of Complete bipartite graph is represented as follows.

$$
\begin{aligned}
& V\left(K_{m, n}\right)=\left\{x_{i}, y_{j}: 1 \leq i \leq m, m+1 \leq j \leq m+n\right\} . \\
& E\left(K_{m, n}\right)=\left\{x_{i} y_{j}: 1 \leq i \leq m, m+1 \leq j \leq m+n\right\} .
\end{aligned}
$$

Let $V\left(S\left(K_{m, n}\right)\right)=\left\{x_{i}, y_{j}, v_{i j}\right\}$ where $v_{i j}$ are the new vertices inserted on the edge $x_{i} y_{j}$ of $K_{m, n}$. The vertex set of the graph $L\left(S\left(K_{m, n}\right)\right)$ is represented as
$V\left(L\left(S\left(K_{m, n}\right)\right)\right)=\left\{e_{i, i j} \cup e_{j, i j}: 1 \leq i \leq m, m+1 \leq j \leq m+n\right\}$.
Clearly the vertices $\left\{e_{i, i j}: 1 \leq i \leq m, m+1 \leq j \leq m+n\right\}$ induces a clique of order K_{n} in $L\left(S\left(K_{m, n}\right)\right)$.
For $1 \leq r \leq \Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)-1$, we have $\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \geq n$.
For $r \geq \Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)$, based on the Lemma 2.1, we obtain
$\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)\right\}+1=\Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)+1$. It concludes the proof.

Theorem 3.9. Let $m, n \geq 3, m<n$, the r-Dynamic Chromatic number of $L\left(S\left(K_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right)= \begin{cases}n ; & 1 \leq r \leq \Delta-1 \\ m+n ; & r \geq \Delta\end{cases}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(K_{m, n}\right)\right)$ are obtained as $\Delta\left(L\left(S\left(K_{m, n}\right)\right)\right)=n$ and $\delta\left(L\left(S\left(K_{m, n}\right)\right)\right)=m$.
Case 1: $1 \leq r \leq \Delta-1$
In reference to the Lemma 3.7, the lower bound is

$$
\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \geq n
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(K_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ as follows.

$$
\begin{aligned}
& c\left(e_{i, i(m+1)}, e_{i, i(m+2)}, \ldots, e_{i, i(m+n)}\right)=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}, \text { for } 1 \leq i \leq m . \\
& c\left(e_{(m+1), 1(m+1)}, e_{(m+1), 2(m+1)}, \ldots, e_{(m+1), m(m+1)}\right)=\left\{c_{2}, c_{3}, \ldots, c_{m+1}\right\} \\
& c\left(e_{(m+2), 1(m+2)}, e_{(m+2), 2(m+2)}, \ldots, e_{(m+2), m(m+2)}\right)=\left\{c_{1}, c_{3}, c_{4}, \ldots, c_{m+1}\right\}
\end{aligned}
$$

Proceeding in the same manner we define,

$$
c\left(e_{(m+n), 1(m+n)}, e_{(m+n), 2(m+n)}, \ldots, e_{(m+n), m(m+n)}\right)=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \leq n$.
Thus, $\chi_{1 \leq r \leq \Delta-1}\left(L\left(S\left(K_{m, n}\right)\right)\right)=n$.
Case 2: $r \geq \Delta$
From the the Lemma 3.7, the lower bound is

$$
\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \geq \Delta+1=n+1
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(K_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{m+n}\right\}$ as follows.

$$
\begin{aligned}
c\left(e_{i, i(m+1)}, e_{i, i(m+2)}, \ldots, e_{i, i(m+n)}\right) & =\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}, \text { for } 1 \leq i \leq m \\
c\left(e_{j, 1 j}, e_{j, 2 j}, \ldots, e_{j, m j}\right) & =\left\{c_{m+1}, c_{m+2}, \ldots, c_{m+n}\right\}, \text { for } m+1 \leq j \leq m+n
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(K_{m, n}\right)\right)\right) \leq m+n$.
Thus, $\chi_{r \geq \Delta-1}\left(L\left(S\left(K_{m, n}\right)\right)\right)=m+n$.
It completes the proof.
Lemma 3.10. Let $L\left(S\left(B_{m, n}\right)\right)$ be the Para-line graph of a Bistar graph $B_{m, n}$. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(B_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \geq \begin{cases}n+1 ; & 1 \leq r \leq \Delta\left(L\left(S\left(B_{m, n}\right)\right)\right)-1 \\ \Delta+1 ; & r \geq \Delta\left(L\left(S\left(B_{m, n}\right)\right)\right)\end{cases}
$$

Proof. The vertex and edge set of Bistar graph is represented as follows.

$$
\begin{aligned}
& V\left(B_{m, n}\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq m+1,1 \leq j \leq n+1\right\} \\
& E\left(B_{m, n}\right)=\left\{u_{1} v_{1}, u_{1} u_{i}, v_{1} v_{j}: 2 \leq i \leq m, 2 \leq j \leq n\right\} .
\end{aligned}
$$

The vertex set of subdivision graph of Bistar graph is represented as
$V\left(S\left(B_{m, n}\right)\right)=\left\{u_{i}, v_{j}, u_{1 j}, v_{1 k}, w_{11}\right\}$ where $u_{1 j}$ are the new vertices inserted on the edge $u_{1} u_{j}$, $v_{1 j}$ are the new vertices inserted on the edge $v_{1} v_{j}$ and w_{11} is the new vertex inserted on the edge $u_{1} v_{1}$ of $B_{m, n}$.
The vertex set of Para-line graph of Bistar graph $L\left(S\left(B_{m, n}\right)\right)$ is represented as
$V\left(L\left(S\left(B_{m, n}\right)\right)\right)=\left\{e_{1,1 j}: 1 \leq j \leq m+1\right\} \cup\left\{e_{j, 1 j}: 2 \leq j \leq m+1\right\}$
$\cup\left\{f_{1,1 k}: 1 \leq k \leq n+1\right\} \cup\left\{f_{k, 1 k}: 2 \leq k \leq n+1\right\}$, where $e_{1,11}$ is the vertex corresponding to the edges $u_{1} w_{11}, e_{1,1 j}$ are the vertices corresponding to the edges $u_{1} u_{1 j}, e_{j, 1 j}$ are the vertices corresponding to the edges $u_{j} u_{1 j}$. Similarly $f_{1,11}$ is the vertex corresponding to the edges $v_{1} w_{11}$, $f_{1,1 j}$ are the vertices corresponding to the edges $v_{1} v_{1 j}, f_{j, 1 j}$ are the vertices corresponding to the edges $v_{j} v_{1 j}$.
For $1 \leq r \leq \delta\left(L\left(S\left(B_{m, n}\right)\right)\right)$, the vertices $V=\left\{f_{1,1 j}: 2 \leq j \leq n+1\right\}$ induce a clique of order $K_{n}+1$ in $L\left(S\left(B_{m, n}\right)\right)$. Thus, we have $\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \geq n+1$.
For $r \geq \Delta\left(L\left(S\left(B_{m, n}\right)\right)\right.$), based on the Lemma 2.1, we obtain
$\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(B_{m, n}\right)\right)\right)\right\}+1=\Delta\left(L\left(S\left(B_{m, n}\right)\right)\right)+1$.
It concludes the proof.
Theorem 3.11. Let $m \geq 3, m<n$, the r-Dynamic Chromatic number of $L\left(S\left(B_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right)= \begin{cases}n+1 ; & 1 \leq r \leq \Delta-1 \\ n+2 ; & r \geq \Delta\end{cases}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(B_{m, n}\right)\right)$ are obtained
$\Delta\left(L\left(S\left(B_{m, n}\right)\right)\right)=n+1$ and $\delta\left(L\left(S\left(B_{m, n}\right)\right)\right)=1$.
Case 1: $1 \leq r \leq \Delta-1$
In reference to the Lemma 3.9, the lower bound is

$$
\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \geq n+1 .
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(B_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n+1}\right\}$ as follows.

$$
\begin{aligned}
& c\left(f_{1,1 j}\right)=c_{j}, \text { for } 1 \leq j \leq n+1 \\
& c\left(e_{1,1 j}\right)=c_{j+1}, \text { for } 1 \leq j \leq m+1 . \\
& c\left(e_{i, 1 i}\right)=c_{1}, \text { for } 2 \leq i \leq m+1 . \\
& c\left(f_{j, 1 j}\right)=c_{1}, 2 \leq j \leq n+1 .
\end{aligned}
$$

For $2 \leq i \leq m+1$ and $2 \leq j \leq n+1$,
It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \leq n+1$.
Thus, $\chi_{1 \leq r \leq \Delta-1}\left(L\left(S\left(B_{m, n}\right)\right)\right)=n+1$.
Case 2: $r \geq \Delta$
In reference to the Lemma 3.9, the lower bound is

$$
\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \geq n+2
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(B_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n+2}\right\}$ as follows.

$$
\begin{aligned}
c\left(f_{1,1 j}\right) & =c_{j}, \text { for } 1 \leq j \leq n+1 \\
c\left(e_{1,11}, e_{1,12}, \ldots, e_{1,1(m+1)}\right) & =\left\{c_{n+2}, c_{2}, c_{3}, \ldots, c_{m+1}\right\} \\
c\left(e_{i, 1 i}\right) & =c_{1}, \text { for } 2 \leq i \leq m+1 . \\
c\left(f_{j, 1 j}\right) & =c_{n+2}, \text { for } 2 \leq j \leq n+1 .
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(B_{m, n}\right)\right)\right) \leq n+2$.
Thus, $\chi_{r \geq \Delta}\left(L\left(S\left(B_{m, n}\right)\right)\right)=n+2$.
It completes the proof.
Lemma 3.12. Let $L\left(S\left(T_{m, n}\right)\right)$ be the Para-line graph of a Tadpole graph $T_{m, n}$. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(T_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \geq \begin{cases}3 ; & r=1 \text { and } 2 \\ 4 ; & r \geq 3\end{cases}
$$

Proof. The vertex and edge set of Tadpole graph is represented as follows.

$$
\begin{aligned}
& V\left(T_{m, n}\right)=\left\{u_{i}: 1 \leq i \leq m+n\right\} \\
& E\left(T_{m, n}\right)=\left\{u_{i} u_{i+1}, u_{m} u_{1}, u_{j} u_{j+1}: 1 \leq i \leq m-1, m \leq j \leq m+n-1\right\}
\end{aligned}
$$

Let $V\left(S\left(T_{m, n}\right)\right)=\left\{u_{i}, v_{i j}, i<j\right\}$ where $v_{i j}$ are the new vertices inserted on the edge $u_{i} u_{j}$. The vertex set of Para-line graph of Tadpole graph $L\left(S\left(T_{m, n}\right)\right)$ is represented as
$V\left(L\left(S\left(T_{m, n}\right)\right)\right)=\left\{e_{i, j k}\right\}$, where $e_{i, j k}$ are the vertex corresponding to the edges $u_{i} v_{j k}$ of $T_{m, n}$. For $r=1$ and 2, the vertices $V=\left\{e_{m,(m-1) m}, e_{m, 1 m}, e_{m, m(m+1)}\right\}$ induce a clique of order K_{3} in $L\left(S\left(T_{m, n}\right)\right)$. Thus, $\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \geq 3$.
For $r \geq 3$, based on the Lemma 2.1, we obtain
$\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(T_{m, n}\right)\right)\right)\right\}+1=\Delta\left(L\left(S\left(T_{m, n}\right)\right)\right)+1=3+1=4$. It concludes the proof.

Theorem 3.13. Let $m>4, n \geq 3$, the r-Dynamic Chromatic number of $L\left(S\left(T_{m, n}\right)\right)$ is

$$
\begin{aligned}
\chi_{r=1,2}\left(L\left(S\left(T_{m, n}\right)\right)\right) & =3 \\
\chi_{r \geq 3}\left(L\left(S\left(T_{m, n}\right)\right)\right) & =4
\end{aligned}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(T_{m, n}\right)\right)$ are obtained as $\Delta\left(L\left(S\left(T_{m, n}\right)\right)\right)=3$ and $\delta\left(L\left(S\left(T_{m, n}\right)\right)\right)=1$.
Case 1: $r=1$ and 2
In reference to the Lemma 3.11, the lower bound is

$$
\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \geq 3
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(T_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, c_{3}\right\}$ as follows.

$$
\begin{aligned}
c\left(e_{1,12}, e_{2,12}, \ldots, e_{m,(m-1) m}, e_{m, 1 m}, e_{1,1 m}\right) & =\left\{c_{1}, c_{2}, c_{1}, c_{2}, \ldots, c_{1}, c_{2}\right\} \\
c\left(e_{m, m(m+1)}, e_{m+1, m(m+1)}, \ldots, e_{(m+n),(m+n-1)(m+n)}\right) & =\left\{c_{3}, c_{1}, c_{2}, c_{1}, c_{2}, \ldots,\right\}
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \leq 3$.
Thus, $\chi_{r=1,2}\left(L\left(S\left(T_{m, n}\right)\right)\right)=3$.
Case 2: $r \geq 3$
In reference to the Lemma 3.11, the lower bound is

$$
\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \geq 4
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(T_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ as follows.

$$
c\left(e_{1,12}, e_{2,12}, \ldots, e_{m, 1 m}, e_{1,1 m}\right)= \begin{cases}c_{1}, c_{2}, c_{3}, c_{1}, c_{2}, c_{3}, \ldots, c_{1}, c_{2}, c_{3} ; & 2 n \equiv 0(\bmod 3) \\ c_{1}, c_{2}, c_{3}, c_{4}, c_{1}, c_{2}, c_{3}, \ldots, c_{1}, c_{2}, c_{3} ; & 2 n \equiv 1(\bmod 3)\end{cases}
$$

For $2 n \equiv 2(\bmod 3)$

$$
c\left(e_{1,12}, e_{2,12}, \ldots, e_{m, 1 m}, e_{1,1 m}\right)=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{1}, c_{2}, c_{3}, c_{4}, c_{1}, c_{2}, c_{3}, \ldots, c_{1}, c_{2}, c_{3}\right\}
$$

For $2 n \equiv 0(\bmod 3)$

$$
\mathrm{c}\left(\mathrm{e}_{m, m(m+1)}, e_{m+1, m(m+1)}, \ldots, e_{(m+n),(m+n-1)(m+n)}\right)=\left\{c_{4}, c_{3}, c_{2}, c_{4}, c_{3}, c_{2}, \ldots\right\}
$$

For $2 n \equiv 1,2(\bmod 3)$

$$
\mathrm{c}\left(\mathrm{e}_{m, m(m+1)}, e_{m+1, m(m+1)}, \ldots, e_{(m+n),(m+n-1)(m+n)}\right)=\left\{c_{4}, c_{1}, c_{2}, c_{4}, c_{1}, c_{2}, \ldots\right\}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(T_{m, n}\right)\right)\right) \leq 4$.
Thus, $\chi_{r \geq 3}\left(L\left(S\left(T_{m, n}\right)\right)\right)=4$. It conforms the proof.
Lemma 3.14. Let $L\left(S\left(L_{m, n}\right)\right.$) be the Para-line graph of a Lollipop graph $L_{m, n}$. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(L_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \geq \begin{cases}m ; & 1 \leq r \leq \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)-1 \\ \Delta+1 ; & r \geq \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)\end{cases}
$$

Proof. The vertex and edge set of Lollipop graph is represented as follows.

$$
\begin{aligned}
& V\left(L_{m, n}\right)=\left\{u_{i}: 1 \leq i \leq m+n\right\} \\
& E\left(L_{m, n}\right)=\left\{u_{i} u_{j}: 1 \leq i, j \leq m, i<j\right\} \cup\left\{u_{i} u_{i+1}: m \leq i \leq m+n-1\right\}
\end{aligned}
$$

Let $V\left(S\left(L_{m, n}\right)\right)=\left\{u_{i}, v_{i j}, i<j\right\}$ where $v_{i j}$ are the new vertices inserted on the edge $u_{i} u_{j}$ of $L_{m, n}$. The vertex set of Para-line graph of Lollipop graph $L\left(S\left(L_{m, n}\right)\right)$ is represented as $V\left(L\left(S\left(L_{m, n}\right)\right)\right)=\left\{e_{i, j k}\right\}$, where $e_{i, j k}$ are the vertex corresponding to the edges $u_{i} v_{j k}$.
For $1 \leq r \leq \delta\left(L\left(S\left(L_{m, n}\right)\right)-1\right.$, the vertices $V=\left\{e_{m, i m}, e_{m, m(m+1)}: 1 \leq i \leq m-1\right\}$ induce a clique of order K_{m} in $L\left(S\left(L_{m, n}\right)\right)$. Thus, $\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \geq m$.
For $r \geq \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)$, based on the Lemma 2.1, we obtain
$\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)\right\}+1=\Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)+1$. It concludes the proof.

Theorem 3.15. Let $m \geq 5, n \geq 3$, the r-Dynamic Chromatic number of $L\left(S\left(L_{m, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right)= \begin{cases}m ; & 1 \leq r \leq \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)-1 \\ m+1 ; & r \geq \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)\end{cases}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(L_{m, n}\right)\right)$ are obtained as $\Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)=m$ and $\delta\left(L\left(S\left(L_{m, n}\right)\right)\right)=1$.
Case 1: $1 \leq r \leq \Delta\left(L\left(S\left(L_{m, n}\right)\right)\right)-1$
In reference to the Lemma 3.13, the lower bound is

$$
\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \geq m
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(L_{m, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ as follows.

$$
\begin{aligned}
& c\left(e_{1,12}, e_{1,13}, \ldots, e_{1,1 m}\right)=\left\{c_{1}, c_{2}, \ldots, c_{m-1}\right\} \\
& c\left(e_{2,12}, e_{2,23}, \ldots, e_{2,2 m}\right)=\left\{c_{2}, c_{3}, \ldots, c_{m-1}, c_{1}\right\}
\end{aligned}
$$

Proceeding in the same manner finally we define,

$$
\begin{aligned}
c\left(e_{m, 1 m}, e_{m, 2 m}, \ldots, e_{m,(m-1) m}\right) & =\left\{c_{1}, c_{2}, \ldots, c_{m-1}\right\} \\
c\left(e_{m, m(m+1)}, e_{m+1, m(m+1)}, \ldots, e_{(m+n),(m+n-1)(m+n)}\right) & =\left\{c_{m}, c_{1}, c_{2}, c_{m}, c_{1}, c_{2}, \ldots,\right\}
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \leq m$. Thus, $\chi_{1 \leq r \leq \Delta-1}\left(L\left(S\left(L_{m, n}\right)\right)\right)=m$.
Case 2: $r \geq \Delta$
In reference to the Lemma 3.13, the lower bound is

$$
\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \geq m+1
$$

To exhibit the upper bound, we describe a map $\left.c: V\left(L\left(S\left(L_{m, n}\right)\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{m+1}\right\}$ as follows.

$$
\begin{aligned}
& c\left(e_{1,12}, e_{1,13}, \ldots, e_{1,1 m}\right)=\left\{c_{1}, c_{2}, \ldots, c_{m-1}\right\} \\
& c\left(e_{2,12}, e_{2,23}, \ldots, e_{2,2 m}\right)=\left\{c_{m}, c_{2}, c_{3}, \ldots, c_{m-1}\right\}
\end{aligned}
$$

Proceeding in the same manner finally we define

$$
\begin{aligned}
c\left(e_{m, 1 m}, e_{m, 2 m}, \ldots, e_{m,(m-1) m}\right) & =\left\{c_{m}, c_{1}, c_{2}, \ldots, c_{m-2}\right\} \\
c\left(e_{m, m(m+1)}, e_{m+1, m(m+1)}, \ldots, e_{(m+n),(m+n-1)(m+n)}\right) & =\left\{c_{m+1}, c_{m-1}, c_{1}, c_{m+1}, c_{m-1}, c_{1}, \ldots\right\}
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(L_{m, n}\right)\right)\right) \leq m+1$. Thus, $\chi_{r \geq \Delta}\left(L\left(S\left(L_{m, n}\right)\right)\right)=m+1$.
Lemma 3.16. Let $L\left(S\left(F_{1, n}\right)\right)$ be the Para-line graph of a Fan graph $F_{1, n}$. The lower bound of r-Dynamic Chromatic number of $L\left(S\left(F_{1, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \geq \begin{cases}n ; & 1 \leq r \leq \Delta-1 \\ \Delta+1 ; & r \geq \Delta\end{cases}
$$

Proof. The vertex and edge set of Fan graph is represented as follows.

$$
\begin{aligned}
& V\left(F_{1, n}\right)=\left\{u_{i}: 1 \leq i \leq n+1\right\} \\
& E\left(F_{1, n}\right)=\left\{u_{1} u_{i}: 2 \leq i \leq n+1\right\} \cup\left\{u_{i} u_{i+1}: 2 \leq i \leq n-1\right\}
\end{aligned}
$$

Let $V\left(S\left(F_{1, n}\right)\right)=\left\{u_{i}, v_{i j}, i<j\right\}$ where $v_{i j}$ are the new vertices inserted on the edge $u_{i} u_{j}$ of $F_{1, n}$. The vertex set of Para-line graph of Fan graph $L\left(S\left(F_{1, n}\right)\right)$ is represented as $V\left(L\left(S\left(F_{1, n}\right)\right)\right)=$ $\left\{e_{1,1 j}, e_{j, 1 j}: 2 \leq j \leq n+1\right\} \cup\left\{e_{j, j(j+1)}, e_{(j+1), j(j+1)}: 2 \leq j \leq n\right\}$.
For $1 \leq r \leq \delta\left(L\left(S\left(F_{1, n}\right)\right)\right.$, the vertices $V=\left\{e_{1,1 j}: 2 \leq j \leq n+1\right\}$ induce a clique of order K_{n} in $L\left(S\left(F_{1, n}\right)\right)$. Thus, $\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \geq n$.
For $r \geq \Delta\left(L\left(S\left(F_{1, n}\right)\right)\right.$), based on the Lemma 2.1, we obtain
$\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \geq \min \left\{r, \Delta\left(L\left(S\left(F_{1, n}\right)\right)\right)\right\}+1=\Delta\left(L\left(S\left(F_{1, n}\right)\right)\right)+1$. It concludes the proof.
Theorem 3.17. Let $n \geq 6$, the r-Dynamic Chromatic number of $L\left(S\left(F_{1, n}\right)\right)$ is

$$
\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right)= \begin{cases}n ; & 1 \leq r \leq \Delta-1 \\ n+1 ; & r \geq \Delta\end{cases}
$$

Proof. The maximum and the minimum degrees of the graph $L\left(S\left(F_{1, n}\right)\right)$ are obtained as $\Delta\left(L\left(S\left(F_{1, n}\right)\right)\right)=n$ and $\delta\left(L\left(S\left(F_{1, n}\right)\right)\right)=2$.
Case 1: $1 \leq r \leq \Delta\left(L\left(S\left(F_{1, n}\right)\right)\right)-1$
From the Lemma 3.15, the lower bound is

$$
\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \geq n
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(F_{1, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ as follows.

$$
\begin{aligned}
c\left(e_{1,12}, e_{1,13}, \ldots, e_{1,1(n+1)}\right) & =\left\{c_{1}, c_{2}, \ldots, c_{n}\right\} \\
c\left(e_{j, 1 j}\right) & =c_{n}, \text { for } 2 \leq j \leq n \\
c\left(e_{n+1,1(n+1)}\right) & =c_{1} \\
c\left(e_{2,23}, e_{3,23}, \ldots, e_{n, n(n+1)}, e_{(n+1), n(n+1)}\right) & =\left\{c_{2}, c_{3}, \ldots, c_{n-1}, c_{2}, c_{3}, c_{4}, c_{2}, c_{3}, c_{4}, \ldots\right\}
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \leq n$.
Thus, $\chi_{1 \leq r \leq \Delta-1}\left(L\left(S\left(F_{1, n}\right)\right)\right)=n$.
Case 2: $r \geq \Delta\left(L\left(S\left(F_{1, n}\right)\right)\right)$
Based on the Lemma 3.15, the lower bound is

$$
\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \geq \Delta+1=n+1 .
$$

To exhibit the upper bound, we describe a map $c: V\left(L\left(S\left(F_{1, n}\right)\right)\right) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{n+1}\right\}$ as follows.

$$
\begin{aligned}
c\left(e_{1,12}, e_{1,13}, \ldots, e_{1,1(n+1)}\right) & =\left\{c_{1}, c_{2}, \ldots, c_{n}\right\} \\
c\left(e_{j, 1 j}\right) & =c_{n+1}, \text { for } 2 \leq j \leq n+1 \\
c\left(e_{2,23}, e_{3,23}, \ldots, e_{n, n(n+1)}, e_{(n+1), n(n+1)}\right) & =\left\{c_{2}, c_{3}, c_{4}, \ldots, c_{n}, c_{1}, c_{2}, c_{3}, c_{1}, c_{2}, c_{3}, \ldots\right\}
\end{aligned}
$$

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, $\chi_{r}\left(L\left(S\left(F_{1, n}\right)\right)\right) \leq n+1$.
Thus, $\chi_{r \geq \Delta}\left(L\left(S\left(F_{1, n}\right)\right)\right)=n+1$. It conforms the proof.

References

[1] Agustin I H, Dafik, Hatsya A Y, On r-Dynamic Coloring of Some Graph Operation, International Journal of Combinatorics, 02(01) 22-30 (2016).
[2] Arika Indah Kristiana, Dafik, M. Imam Utoyo, Ika Hesti Agustin, On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs, International Journal of Advanced Engineering Research and Science, Vol-4, Issue-4, (2017).
[3] J.A. Bondy and U.S.R. Murty, Graph theory with applications, New York: Macmillan Ltd. Press, (1976).
[4] A. Dehghan and A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Discrete Applied Mathematics, 160 2142-2146 (2012).
[5] F. Harary, Graph Theory, Narosa Publishing home, New Delhi (1969).
[6] W.Gao,M.F.Nadeem,S.Zafar,Z.Zahid,M.R.Farahani, On the Para-line graphs of certain nanostructures based on topological indices, UPB Scientific Bulletin, Series B: chemistry and Material science, October (2017).
[7] Gary Chartrand and Ping Zhang, Chromatic Graph Theory, CRC Press, London, (2009).
[8] D. Gernert, Inequalities between the domination number and the chromatic number of a graph, Discrete Mathematics, 76 151-153 (1986).
[9] Ika Hesti Agustin Dafik, A.Y.Harsya, On r-dynamic coloring of some graph operations, Indonesian Journal of combinatorics (1) 22-30 (2016).
[10] R. W. Irving and D. F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics, 91, 127-141 (1999).
[11] R. Kang, T. Muller, O. Suil and D. B. West, On r-dynamic coloring of grids, Discrete Applied Mathematics, 186, 286-290 (2015).
[12] S.J.Kim and W.J Park, List dynamic coloring of sparse graphs, Combinatorial optimization and applications, Lect. Notes Comput. Sci. 6831, 156-162 (2011).
[13] H.J. Lai, B. Montgomery, Dynamic coloring of graph, Department of Mathematics, West Virginia University, (2002).
[14] B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
[15] Song H.M, Fan S.H, Chen Y, Sun L, Lai H.J, On r-hued coloring of K_{4} - minor free graphs, Discrete Math. 47-52 (2014).
[16] Song H.M, Lai H.J, Wu J.L, On r-hued coloring of planar graphs with girth atleast 6, Discrete Appl. Math. 198, 251-263 (2016).
[17] A.Taherkhani. On r-Dynamic chromatic Number of Graphs, Discrete Applied Mathematics, 201, 222-227 (2016).
[18] Xiujun Zhang, Zohaib Zahid, Sohail Zafar, Mohammad R. Farahani, Muhammad F. Nadeem, Study of the Para-line graphs of certain polyphenyl chains using topological indices, International Journal of Biochemistry and Biotechnology , November (2017).

Author information

G.Nandini, Department of Mathematics, SNS College of Technology, Coimbatore 641035, India.

E-mail: nandiniap2006@gmail.com
M.Venkatachalam, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641029, India.
E-mail: venkatmaths@gmail.com
Dafik, Department of Mathematics Education,Jember 68121, Indonesia.
E-mail: d.dafik@unej.ac.id
Received : December 31, 2020
Accepted : March 25, 2021

