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Abstract Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The
Subdivision graph S(G) of a graph G is the graph acquired by inserting a new vertex into every
edge of G. The para-line graph of G is the line graph of the subdivision graph of G, which
is symbolized by L(S(G)). An r-dynamic coloring of a graph G is a proper coloring ¢ of the
vertices such that |c(N(v))| > min {r,d(v)}, for each v € V(G). The r-dynamic chromatic
number of a graph G is the minimum k& such that G has an r-dynamic coloring with & colors. In
this paper, we acquired the r-dynamic chromatic number of para-line graph of the some standard
graphs.

1 Introduction

The conception of r-dynamic chromatic number was first initiated by Montgomery [14]. It is
also consider under the name r- hued [15], [16]. The r- dynamic coloring is a generalization of
the vertex coloring for which » = 1. An r-dynamic coloring of a graph G is a proper coloring
and it maps ¢ from V(G) to the set of colors such that (i) if uv € E(QG), then c(u) # ¢(v), and
(ii) for each vertex v € V(G), |¢(N(v))| > min {r,d(v)}, where N (v) denotes the set of vertices
adjacent to v, d(v) its degree and r is a positive integer. The r-dynamic chromatic number of
a graph G, written y,.(G), is the minimum k& such that G has an r-dynamic proper k-coloring.
In this paper we speculate only the graphs which are simple, finite, loopless and connected. For
all terms and definition which are not precisely described in this paper, we cite to [3]. The 7-
dynamic chromatic number has been studied by many researcher, specifically in [1], [2], [4], [6],
(71, [81, [91, [10], [11], [12], [13], [17].

2 Preliminaries

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The Subdivision
graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G.
The line graph [5] of G denoted by L(G) is the graph whose vertex set is the edge set of G.
Two vertices of L(G) are adjacent whenever the corresponding edges of G are adjacent. The
para-line graph [18] of G is the line graph of the subdivision graph of GG, which is denoted by
L(S(G)). An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that
le(N(v))| > min{r,d(v)}, for each v € V(G). Para-line graphs are requisitioned in structural
chemistry.

3 Results
Lemma 3.1. [13] x,(G) > min {r,A(G)} + 1

In this section, we determine the r-dynamic chromatic number of para-line graph of path, cy-
cle, complete graph, complete bipartite graph, fan graph, bistar graph, tadpole graph and lollipop
graph. Firstly we will find the lower bounds of r-dynamic chromatic number of the graphs and
we prove our theorems.
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Lemma 3.2. Let L(S(P,,)) be the Para-line graph of a Path graph P,. The lower bound of
r-Dynamic Chromatic number of L(S(P,,)) is

2, r=1,

o (L(S(P))) > {3; iy

Proof. The vertex and edge set of Path graph is represented as follows.

V(P,) ={u;:1<i<n}.
E(Pn):{ulu,ﬂlgzgnfl}

Let V (S(P,)) = {ui,vj: 1 <i<n,1 <j<n— 1} where v; are the new vertices inserted on
the edge w;u;1 of P,. The vertex set of the graph L(S(P,)) is represented as V (L(S(P,))) =
{ei, Jitiry 1 <i<n— 1}, where e;; are the vertices corresponding to the edge u;v; and f;;
are the vertices corresponding to the edge v;u;.

For r = 1, based on the Lemma 2.1, we have x,.(G) > min {r,A(G)} + 1 such that

Yo (L(S(P.))) = min {r. A(L(S(P))} + 1 =7+ 1=2.

For r > 2, from the Lemma 2.1, we obtain x.,.(L(S(P,))) > min{r,A(L(S(P,)))} +1 =
A(L(S(P,))) + 1 =2+ 1= 3. It concludes the proof. ]

Theorem 3.3. Let n > 2, the r-Dynamic Chromatic number of L(S(P,,)) is

Xr=1(L(5(Pn))) = 2.

Xr22(L(S(Pn))) = 3.
Proof. The maximum and the minimum degrees of the graph L(S(P,)) are obtained as
A(L(S(P,))) =2and 6(L(S(P,))) = 1, respectively.

Casel: r =1
Proceeding from the Lemma 3.1, the lower bound is

xr(L(S(Pn))) > 2.

To exhibit the upper bound, we describe a map ¢ : V (L(S(P,,))) — {c1, 2} as follows.

c(err, fiz, €22, f235 -+ s €1y (mn=1)> Jn—1)n) = {c1, 2,1, 02, ..}

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,—1(L(S(P,))) < 2.

Thus, XT:I(L(S(Pn))) =2

Case2:7r>2

Proceeding from the Lemma 3.1, the lower bound is

Xr(L(S(Pn))) = 3.

To exhibit the upper bound, we describe amap ¢ : V (L(S(P,))) — {c1,c2, c3} as follows.

clenn, fi2, €22, 23, s (1) (n—1)s fn—1)n) = {c1, €2, ¢3,¢1, 02, ¢3, ...}

It is easy to explicit that ¢ is a »-Dynamic Coloring.
Hence, x,-(L(S(P,))) < 3.
Thus, x,>(L(S(P,))) = 3. It conforms the proof. m|

Lemma 3.4. Let L(S(C,,)) be the Para-line graph of a Cycle graph C,,.
The lower bound of r-Dynamic Chromatic number of L(S(C),)) is

2, r=1,

X (L(S(Cr))) > {3; r>2.
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Proof. The vertex and edge set of Cycle graph is represented as follows.
V(C,) ={u;: 1 <i<n}.
E(C) = {uiuisrr,upuy 1 1 <i<n-—1}.

Let V (S(Cr)) = {us,v; : 1 <i<n} where {v; : 1 <i<mn— 1} are the new vertices inserted
on the edge u;u;+1 and v, is the new vertex inserted on the edge u,,u; of Cy,. Let V (L(S(Cy,))) =
{em Jitivy 1 <i<n— 1} U {€nn, fn1}, where e;; are the vertices corresponding to the edge
u;v; and f;; are the vertices corresponding to the edge v;u;.

For r = 1, from the Lemma 2.1, we have x,.(G) > min {r, A(G)}+1 such that x,.(L(S(C,))) >
min {r,A(L(S(Cy)))} +1=r+1=2.

For r > 2, from the Lemma 2.1, we obtain x,.(L(S(Cy))) > min{r,A(L(S(Cy)))} +1 =
A(L(S(Cy))) + 1 =2+ 1 = 3. It concludes the proof. O

Theorem 3.5. Let n > 3, the r-Dynamic Chromatic number of L(S(C,,)) is
Xr=1(L(5(Cn))) = 2.

3; 2n=0(mod 3),

XTZZ(L(S(C"))) = {4, 2n=1 Z(mod 3)

Proof. The maximum and the minimum degrees of the graph L(S(C,,)) are obtained as
A(L(5(Cn))) = 6(L(5(Cn))) = 2.

Casel: r =1

In reference to the Lemma 3.3, the lower bound is

X (L(S(Cn))) = 2.
To exhibit the upper bound, we describe a map ¢ : V (L(S(C,,))) — {c1, 2} as follows.

C(ell7f1276227f237 e 767’L7la fnl) - {C]a627013627 .t }

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, v,(L(S(C.,))) < 2.

Thus, Xr=1 (L(S(Cn))) =2

Case2:r>2

Subcase(i): 2n = 0 (mod 3)

In reference to the Lemma 3.3, the lower bound is

xr(L(S(Cn))) = 3.

To expose the upper bound, we describe amap ¢ : V (L(S(C))) — {c1, e, c3} as follows.

C(ellaf1276227f237 .. '7enn7fnl) = {617027637017027637 .. }

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x-(L(S(Cy))) < 3.

Thus, x,—2(L(S(Cy))) = 3,2n =0 (mod 3).
Subcase(ii): 2n = 1,2 (mod 3)

In reference to the Lemma 3.3, the lower bound is

xr(L(S(Cy))) > 3.

To exhibit the upper bound, we describe amap ¢ : V (L(S(C))) — {c1, c2, ¢3,ca} as follows.
For 2n = 1(mod 3),

clerr, fiz,-- s enn, fu1) = {1, e2,63,¢1, 00,63, ., e1, 00,63, ¢4}
For 2n = 2(mod 3),
cletr, fiz,- -+  €nn, fu1) = {c1, 2,63, ¢, ¢1, 00,3, ¢4, €1, 2,03, ... C1, 02,03}

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x-(L(S(Cy))) < 4.
Thus, x,>2(L(S(Cy))) =4, 2n = 1,2 (mod 3). It conforms the proof. i



15 G.Nandini, M.Venkatachalam and Dafik

Lemma 3.6. Let L(S(K,,)) be the Para-line graph of a Complete graph K,,. The lower bound
of r-Dynamic Chromatic number of L(S(K,,)) is

n—1; 1<r<ALS(K,)) -1,

xr(L(S(Ky))) > {A+ I, r>A(L(S(Ky))).

Proof. The vertex and edge set of Complete graph is represented as follows.

V(K ={u;:1<i<n}.

E(K,) ={wu; : 1 <i,j <n,i<j}.
Let V (S(K,)) = {u;,v;j : 1 <i,j <n,i < j} where v;; are the new vertices inserted on the
edge u;u; of K,,. The vertex set of the graph L(S(C,,)) is represented as
V(L(S(K,))) ={eiij.ejij: 1 <i<n—1,1<j<n,i#j}, where e, ;; are the vertices cor-
responding to the edges u;v;;(i < j) and e;;; are the vertices corresponding to the edges
UjVij (Z > j)

Clearly the vertices {e; ;; : 1 < i <n,2 < j <n}induces a clique of order K,,_; in L(S(K})).
For 1 <r < A(L(S(K,))) — 1, x» (L(S(K ))) > n—1. Forr > A(L(S(K,))), based on the
Lemma 2.1, we obtain x,.(L(S(K,))) > min {r,A(L(S(K,)))} + 1 = A(L(S(K,))) + 1. Tt
concludes the proof. O

Theorem 3.7. Let n > 6, the r-Dynamic Chromatic number of L(S(K,,)) is

n—1; 1<r<A-—1,
n; r>A.

X (L(S(K2))) = {

Proof. The maximum and the minimum degrees of the graph L(S(K,)) are obtained as
A(L(S(K,))) = 0(L(S(Kn))) =n — L.
Casel: 1 <r<A-1
In reference to the Lemma 3.5, the lower bound is
XT(L(S(KH))) >n—1

To exhibit the upper bound, we describe a map ¢ : V (L(S(K,))) — {ci,c2,...,cn_1} as
follows.
cleriz, €113, e11n) = {e1, 2, Cnt }

cler12,€203,...,€200) ={c2,¢3,....Ccn1,01}

Proceeding in the same manner we define,

C(en—l,l(n—l)v en—l,Z(n—l)a ey en—l,(n—l)n) = {Cn—lacla Coy e aCn—Z}
c(en}ln, €n)2n, ey em(n,l)n) = {Cl, Coy. .. 7Cn,l}
It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,(L(S(K,))) <n— 1.
Thus, XlgrgA—l(L(S(Kn))) =n-—1.

Case2:r > A
In reference to the Lemma 3.5, the lower bound is

Xr(L(S(Kn))) = n.
To exhibit the upper bound, we describe amap ¢ : V (L(S(K,))) — {c1,¢2,...,cn} as follows.

0(61,12761,13,---,61,10 = {013027"'7077,—1}
0(62,12762,237 S ,62,2n) = {Cn,02,637 S 7Cn—1}
0(63,13,63,23, cee 763,3n) = {Cn7017037 cee 7Cn71}

Proceeding in the same manner we define,

c(En,1ns €n2ns - -+ €n (n—1)n) = {CnsC1,C, ..., Cn2}
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It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,(L(S(K,))) < n.
Thus, x,>a(L(S(K},))) = n. It conforms the proof. i

Lemma 3.8. Let L(S(K . »,)) be the Para-line graph of a Complete bipartite graph K, ,,. The
lower bound of r-Dynamic Chromatic number of L(S(K,, ,)) is

n; 1 <r<AL(S(Kmn))) —1,

XT(L(S(Km,n))) Z {A+ 1, r> A(L(S(Kmm)))'

Proof. The vertex and edge set of Complete bipartite graph is represented as follows.
E(Km,n) = {331% 1 Szﬁm,m—{—l S']Sm-f—ﬂ}

Let V (S(Kmn)) = {xi,yj,vi;} where v;; are the new vertices inserted on the edge z;y; of
K, . The vertex set of the graph L(S(K,, ,,)) is represented as

\% (L(S(Km,n))) = {emj U €j,ij - 1 < ) S m,m —+ 1 S] <m-+ ’Il}

Clearly the vertices {ei,ij 1 <i<m,m+1<j<m+n} induces a clique of order K,, in
L(S(Kpnn)).

For 1 <r < A(L(S(Kpmn))) — 1, we have x,.(L(S(Km.n))) > n.

For r > A(L(S(K )) based on the Lemma 2.1, we obtain

Xr(L(S(Kp.n))) > min{r,A(L(S(Kmn)))} + 1 = A(L(S(Km))) + 1. It concludes the
proof. O

Theorem 3.9. Let m,n > 3, m < n, the r-Dynamic Chromatic number of L(S(K,, ,,)) is

XT‘(L(S(Km’,n))) — {n; I1<r<A-1,

m+n; r>A

Proof. The maximum and the minimum degrees of the graph L(S(K,,,)) are obtained as
A(L(S(Kym.n))) =nand §(L(S(Kp.n))) = m.

Casel: 1 <r<A-1

In reference to the Lemma 3.7, the lower bound is

Xr(L(S(Kmn))) > n.

To exhibit the upper bound, we describe a map ¢ : V (L(S(K,.n))) — {ci1,¢2,..., ¢} as fol-
lows.
c(€ii(m+1)s Ciyitm+2)s - 5 Ciyitman)) = 1C1,C25 -+ -5 Cn}, for 1 <i<m.
(€(me41),1(m+1)s €(m+1),2(m+1)5 - - - » €(m+1),m(m+1)) = €25 €35+ s Cmy1}
(€(m12),1(m+2)s €(m+2).2(m+2)s « - - » E(m+2),m(m+2)) = {€1,€3,C4, -+, Cmi1}

Proceeding in the same manner we define,

C(e(m+n),l(m+n)a €(m+n),2(m4n)s -+ > e(m+n),m(m+n)) = {clv €2,y cm}

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x, (L(S(Kmn))) < n.

Thus, x1<r<a—1(L(S(Knn))) = n.

Case2:r > A

From the the Lemma 3.7, the lower bound is

Xr(L(S(Kmp))) > A+1=n+1.

To exhibit the upper bound, we describe a map ¢ : V (L(S(Km.n))) = {c1,¢2y- -, Cmin} aS
follows.

C(ei,i(erl)a €ii(m42)s - - 7€i,i(m+n)) = {Clv €2,y Cn} ) fO’I" 1<i<m.

c(€1:€25s > €5.mj) = {Cmt1,Cmi2s s Cman}, form+1<j<m-+n.
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It is easy to explicit that ¢ is a r-Dynamic Coloring.

Hence, x, (L(S(Km.n))) < m+n.

Thus, Xr>A—1 (L(S(Km,n))) =m-+n.

It completes the proof. O

Lemma 3.10. Let L(S(B,y.»)) be the Para-line graph of a Bistar graph B, .. The lower bound
of r-Dynamic Chromatic number of L(S(Byy,.»)) is

ntli 1<r<ALSBun) - 1,
Xr(L(S5(Bmn))) 2 {A+ I 7> AL(S(Bon)).

Proof. The vertex and edge set of Bistar graph is represented as follows.

V(Bmn) ={uvj:1<i<m+1,1<j<n+1}.
E (Bmn) = {wvr, wiug,viv; 12 <i<m,2<j<n}.

The vertex set of subdivision graph of Bistar graph is represented as

V (S(Bm,n)) = {ui, vj, uij, vk, wi1 } where u; are the new vertices inserted on the edge uu;,
vy, are the new vertices inserted on the edge vjv; and wy; is the new vertex inserted on the edge
ujvy of By, p.

The vertex set of Para-line graph of Bistar graph L(S(B,, ,,)) is represented as
V(L(S(Bmn))) ={erj: 1 <j<m+1}U{ej1;:2<j<m+1}

U{fitg: 1 <k<n+1}U{frir:2 <k <n+ 1}, where e) j; is the vertex corresponding to
the edges ujwii, er,1; are the vertices corresponding to the edges ujuy;, €;,1; are the vertices
corresponding to the edges u;u1;. Similarly fi 11 is the vertex corresponding to the edges viwi1,
f1,1; are the vertices corresponding to the edges vv;, f;,1; are the vertices corresponding to the
edges v;v1;.

For 1 <r < 6(L(S(Bm,n))), the vertices V = {f11; : 2 < j < n+ 1} induce a clique of order
K, + 1in L(S(Bm,x))- Thus, we have x, (L(S(By,n))) > n+ 1.

For r > A(L(S(Bm.n))), based on the Lemma 2.1, we obtain

N (L(S(Bynn))) = min {7, AL(S (B )} + 1 = AL(S(B)) + 1.

It concludes the proof. O

Theorem 3.11. Let m > 3, m < n, the r-Dynamic Chromatic number of L(S(By, .,)) is

n+1;, 1<r<A-—1,

Xr(L(S(Bm,n))) = {n+2- r > A.

Proof. The maximum and the minimum degrees of the graph L(S(B,,.,)) are obtained
AL(S(Bp.p))) = n+ 1 and 8(L(S(Bp.n))) = 1.

Casel: 1 <r<A-1

In reference to the Lemma 3.9, the lower bound is

XT(L(S(Bm,n)» >n+ 1.

To exhibit the upper bound, we describe a map ¢ : V (L(S(Bm.n))) — {ci1,¢2,...,cny1} as
follows.

c(frnj) =cj, for 1<j<n+1
clery) = cjs1, for 1 <j<m+1.
clesni) =ci, for2<i<m+1.
o(fij)=c,2<j<n+1.

For2<i<m+4land2<j<n+1,

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,(L(S(Bm.n))) <n+ 1.

Thus, X1<r<A—1 (L(S(Bmm))) =n-+1.

Case2:r > A

In reference to the Lemma 3.9, the lower bound is
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Xr(L(S(Bm,n))) = n+2.
To exhibit the upper bound, we describe a map ¢ : V (L(S(Bm.n))) — {ci1,¢2,...,Cni2} as
follows.
c(fiij) =c¢j, for1 <j<n+1
)= n+2,62703,~--,6m+1}
cleini) =ci, for2<i<m+1.

c(fjj) = cnga, for2<j<n+1.

It is easy to explicit that ¢ is a r-Dynamic Coloring.

Hence, x,(L(S(Bm.n))) < n+2.

Thus, x;>a(L(S(Bmn))) =n+ 2.

It completes the proof. O

0(61,11,61,12,-- » €1,1(m+1)

Lemma 3.12. Let L(S(T},,,)) be the Para-line graph of a Tadpole graph T,,, ,,. The lower bound
of r-Dynamic Chromatlc number of L(S(Tn.n)) is

3; r=land?2,

XT(L(S(va"))) = {4’ r > 3.

Proof. The vertex and edge set of Tadpole graph is represented as follows.

V(Tn) ={ui:1<i<m-+n}.

s

E (Tpn) = {uittis1, umur, ujujpr 1 <i<m—1,m<j<m+n—1}.

)

Let V (S(Ton.n)) = {ui,vij,i < j} where v;; are the new vertices inserted on the edge u;u;. The
vertex set of Para-line graph of Tadpole graph L(S(7,,.,)) is represented as

V(L(S(Tnn))) = {ei jx}, where e; ji, are the vertex corresponding to the edges w;vjx of Ty, .
For r = 1 and 2, the vertices V' = {€y, (m—1)m> €m,1ms €m,m(m+1)} induce a clique of order K
in L(S(Tom.n)). Thus, x,(L(S(Tmn))) > 3.

For » > 3, based on the Lemma 2.1, we obtain

(LS (Tnn))) 2 min {r, LS (Ta))} + 1 = ALS(Twa)) +1 = 341 = 4 Tt
concludes the proof. O

Theorem 3.13. Let m > 4,n > 3, the r-Dynamic Chromatic number of L(S(Ty, ) is

Xr=12(L(S(Tmn))) = 3.
Xr23(L(S(Tm,n))) =4
Proof. The maximum and the minimum degrees of the graph L(S(7,, ,)) are obtained as
A(L(S(Tm,n))) = 3 and 6(L(S(Tin,n))) = 1.
Casel: r =1and2
In reference to the Lemma 3.11, the lower bound is

Xr(L(S(Tin,n))) = 3.
To exhibit the upper bound, we describe a map ¢ : V (L(S(Tyn.n))) — {c1, 2, c3} as follows.

C(61,127 €212, .-, em,(m—l)mv €m,1m> 6l,lm) = {Cl yC2,C1,C2y ..., C1, 02}
c(em,m(m+l)7 Cm+1,m(m+1)s -+ s e(m+n),(m+n71)(m+n)) = {C3a C1,C2,C1,Cy .- -, }

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, x,(L(S(Tyn.0))) < 3.

Thus, x;=12(L(S(Tin.n))) = 3.

Case2:r >3

In reference to the Lemma 3.11, the lower bound is

XT(L(S(Tm,n))) > 4.
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To exhibit the upper bound, we describe a map ¢ : V (L(S(Ton,n))) — {c1,c2, 3, ca} as follows.

_Jeasenaien a0, 00,0, 033 2n =0 (mod 3)
c(€1,12,€2,125 - -+, €m,1m» €1,1m) =

C1,(2,C3,C4,C1,C2,C3,...,C1,C2,C3; 2n=1 (mOd 3)

For 2n = 2(mod 3)

0(61,127 €2,12y -+ -5 €m,Im; el,lm) = {617627033 C4,C1,C2,C3,C4,C1,C2,C3,...,Cl,C, 63}

For 2n = 0(mod 3)

C(evrz,m(m+l)7 Cmtl,m(m41)s -« e(m+n),(m+n—1)(m+n)) = {647 C3,02,C4,C3,C2;, . . }
For 2n = 1,2(mod 3)

C(evrz,m(m+l)7 Cm41,m(m+1)s -+ e(m+n),(m+n—1)(m+n)) = {047 C1,C2,C4,C1,C2, . - }

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,(L(S(Tim.n))) < 4.
Thus, x;>3(L(S(T}.n))) = 4. It conforms the proof. o

Lemma 3.14. Let L(S(Ly,.,)) be the Para-line graph of a Lollipop graph Ly, ,,. The lower
bound of r-Dynamic Chromatic number of L(S(Ly, »)) is

m; 1< r < ALSLmn))) — 1,

XT(L(S(Lm,n))) 2 {A-l— I, r>AL(S(Lmn))).

Proof. The vertex and edge set of Lollipop graph is represented as follows.

V(Lin) ={u;: 1 <i<m+n}.
E(Lmyn) ={uuj: 1 <i,7<m,i<jtU{uuis1 :m<i<m-+n-—1}.

Let V (S(Lm,n)) = {u;,vij,t < j} where v;; are the new vertices inserted on the edge u;u;

of Ly, . The vertex set of Para-line graph of Lollipop graph L(S(L,,)) is represented as

V (L(S(Lm.n))) = {ei jr}> where e; j, are the vertex corresponding to the edges u;v;.

For 1 <7 < 0(L(S(Lm,n)) — 1. the vertices V' = {€p,im; €m m(m+1) : 1 <4 < m — 1} induce a

clique of order K, in L(S(Ly,.»)). Thus, x;(L(S(Lym,n))) > m.

For r > A(L(S(Ly,.,»))), based on the Lemma 2.1, we obtain

Xr(L(S(Lmn))) > min {r,A(L(S(Lmn)))}+1=A(L(S(Lm.n)))+ 1. It concludes the proof.
o

Theorem 3.15. Let m > 5,n > 3, the r-Dynamic Chromatic number of L(S(Lyy, »,)) is

m; 1< < ALSLinn))) — 1,

X (L(S (L .n))) = {m + 15 72 AL(S(Limn)))-

Proof. The maximum and the minimum degrees of the graph L(S(L,, ,)) are obtained as
A(L(S(Ly,n))) =mand §(L(S(Lm.n))) = 1.
Casel: 1 <r <A(L(S(Lmn))) —1
In reference to the Lemma 3.13, the lower bound is
Xr(L(S(Lim.n))) = m.

To exhibit the upper bound, we describe a map ¢ : V (L(S(Lm.n))) — {c1,¢2,...,cm} as
follows.
cleri2, €113, - -+, €1,1m) = {e1, 2, -+, Cm1 }

0(62,12,62,23, - ~,€2,2m) ={c2, ¢35, ..., Cm-1,01}
Proceeding in the same manner finally we define,
c(emlm, em,2m7 ey em,(mfl)m) = {Cl, Coyen vy Cmfl}

C(em,m('rn+1)7 Em+1,m(m+1)s > 6(m+n),(m+n—1)(m+n)) = {C7m C1,€2,Cm; C1,C2, - - -, }
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It is easy to explicit that ¢ is a r-Dynamic Coloring.

Hence, x,(L(S(Lm.n))) < m. Thus, x1<r<a—1(L(S(Lm.n))) = m.
Case2: 7> A

In reference to the Lemma 3.13, the lower bound is

Xr(L(S(Lmn))) > m+ 1.

To exhibit the upper bound, we describe a map ¢ : V (L(S(Lyn)))) — {c1,¢2,...,Cm+1} as
follows.
cleriz, €13, -+, eim) = {e1, e, .. et }

clez,12,€203, ..., €20m) = {Cm,2,63,. .., Cm—_1}

Proceeding in the same manner finally we define

C(em,lma €m2ms- -+ Em (m—l)m) = {Cmv C1,C2y - -+, Cm—2}

C(em,m(m+1)7 Cmtl,m(m+1)s -+ s e(m+n),(m+n71)(m+n)) = {Cm-ﬁ-lacmflacla Cm+1,Cm—1,C1, - - }

It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,(L(S(Lm,n))) < m+ 1. Thus, x,>A(L(S(Lm.n))) =m+ L. O

Lemma 3.16. Let L(S(F) ,,)) be the Para-line graph of a Fan graph F) ,,. The lower bound of
r-Dynamic Chromatic number of L(S(F ,,)) is

n; 1<r<A-1,

XT(L(S(FLTL))) 2 {A+ 1, »r>A.

Proof. The vertex and edge set of Fan graph is represented as follows.

V(Fin)={u:1<i<n+1}.
E(F1,) ={wu; :2<i<n+1}U{wuq:2<i<n-—1}.

Let V (S(F1,,)) = {wi,vi;,i < j} where v;; are the new vertices inserted on the edge u,;u; of
F ,,. The vertex set of Para-line graph of Fan graph L(S(Fj ,,)) is represented as V (L(S(F},,))) =
{enijrejiy 02 <j<n+1}U{e; G e 641 2 <J<nj.

For 1 <r < 46(L(S(Fi,,)), the vertices V = {e1 1, : 2 < j < n+ 1} induce a clique of order K,
in L(S(F},,)). Thus, x,(L(S(F1,))) > n.

For r > A(L(S(F\ ,,))), based on the Lemma 2.1, we obtain

Xr(L(S(Fi,n))) = min{r,A(L(S(Fi,,)))}+1 = A(L(S(F},)))+1. It concludes the proof. O

Theorem 3.17. Let n > 6, the r-Dynamic Chromatic number of L(S(F\ ,,)) is

n; 1<r<A-1,

XAMSGMW):{n+n r> A

Proof. The maximum and the minimum degrees of the graph L(S(Fj ,,)) are obtained as
A(L(S(Fi,n))) =nand §(L(S(Fi,))) = 2.

Casel: 1 <r <A(L(S(Fi,))) —1

From the Lemma 3.15, the lower bound is

Xr(L(S(F10))) = n.

To exhibit the upper bound, we describe amap ¢ : V (L(S(F1,n))) — {ci1,¢2,. .., ¢y} as follows.

0(61,12, €1,13,- -+ €L 1(n+1)) = {er, 2,000 5en}

)
clejij) =cn, for2<j<n.
C(en+1,1(n+1)) =

)

C<62,237 €323,..., en,n(nJr])v e(n+l),n(n+1) = {027 C3,...,Cp—1,C2,C3,C4,C2,C3,C4, .. }
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It is easy to explicit that ¢ is a r-Dynamic Coloring.
Hence, x,(L(S(F1,))) < n.

Thus, x1<r<a—1(L(S(Fi1,n))) = n.

Case 2: 7 > A(L(S(Fi1,n)))

Based on the Lemma 3.15, the lower bound is

xXr(L(S(Fi,0))) > A4+ 1=n+1.

To exhibit the upper bound, we describe a map ¢ : V (L(S(Fi,,))) — {c1,¢2,...,Cnt1} as
follows.

0(61,12,61,137 e ,61,1(n+1)) ={c1,e2,.0 500}
clejij) = cnt1, for2<j<n+1.
0(62,237 €323, ;en,n(n+1)> e(n+l),n(n+l)) = {02; C3,C4,...,Cp,C1,C2,C3,C1,C2,C3, .. }

It is easy to explicit that c is a 7-Dynamic Coloring.
Hence, x, (L(S(F1,n))) <n+ 1.
Thus, x;>a(L(S(F},,))) = n+ 1. It conforms the proof. o
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