ON *r*-DYNAMIC COLORING OF PARA-LINE GRAPH OF SOME STANDARD GRAPHS

G.Nandini, M.Venkatachalam and Dafik

Communicated by V. Kokilavani

MSC 2010 Classifications: 05C15.

Keywords and phrases: bistar graph, cycle, complete graph, complete bipartite graph, fan graph, path, r-dynamic coloring, subdivision graph, para-line graph

Abstract Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The Subdivision graph S(G) of a graph G is the graph acquired by inserting a new vertex into every edge of G. The para-line graph of G is the line graph of the subdivision graph of G, which is symbolized by L(S(G)). An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \ge min \{r, d(v)\}$, for each $v \in V(G)$. The r-dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper, we acquired the r-dynamic chromatic number of para-line graph of the some standard graphs.

1 Introduction

The conception of r-dynamic chromatic number was first initiated by Montgomery [14]. It is also consider under the name r- hued [15], [16]. The r- dynamic coloring is a generalization of the vertex coloring for which r = 1. An r-dynamic coloring of a graph G is a proper coloring and it maps c from V(G) to the set of colors such that (i) if $uv \in E(G)$, then $c(u) \neq c(v)$, and (ii) for each vertex $v \in V(G)$, $|c(N(v))| \geq \min \{r, d(v)\}$, where N(v) denotes the set of vertices adjacent to v, d(v) its degree and r is a positive integer. The r-dynamic chromatic number of a graph G, written $\chi_r(G)$, is the minimum k such that G has an r-dynamic proper k-coloring. In this paper we speculate only the graphs which are simple, finite, loopless and connected. For all terms and definition which are not precisely described in this paper, we cite to [3]. The rdynamic chromatic number has been studied by many researcher, specifically in [1], [2], [4], [6], [7], [8], [9], [10], [11], [12], [13], [17].

2 Preliminaries

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The Subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G. The line graph [5] of G denoted by L(G) is the graph whose vertex set is the edge set of G. Two vertices of L(G) are adjacent whenever the corresponding edges of G are adjacent. The para-line graph [18] of G is the line graph of the subdivision graph of G, which is denoted by L(S(G)). An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \ge \min \{r, d(v)\}$, for each $v \in V(G)$. Para-line graphs are requisitioned in structural chemistry.

3 Results

Lemma 3.1. [13] $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$

In this section, we determine the r-dynamic chromatic number of para-line graph of path, cycle, complete graph, complete bipartite graph, fan graph, bistar graph, tadpole graph and lollipop graph. Firstly we will find the lower bounds of r-dynamic chromatic number of the graphs and we prove our theorems.

Lemma 3.2. Let $L(S(P_n))$ be the Para-line graph of a Path graph P_n . The lower bound of *r*-Dynamic Chromatic number of $L(S(P_n))$ is

$$\chi_r(L(S(P_n))) \ge \begin{cases} 2; & r = 1, \\ 3; & r \ge 2. \end{cases}$$

Proof. The vertex and edge set of Path graph is represented as follows.

$$V(P_n) = \{u_i : 1 \le i \le n\}.$$

$$E(P_n) = \{u_i u_{i+1} : 1 \le i \le n-1\}.$$

Let $V(S(P_n)) = \{u_i, v_j : 1 \le i \le n, 1 \le j \le n-1\}$ where v_i are the new vertices inserted on the edge $u_i u_{i+1}$ of P_n . The vertex set of the graph $L(S(P_n))$ is represented as $V(L(S(P_n))) = \{e_{ii}, f_{i(i+1)} : 1 \le i \le n-1\}$, where e_{ii} are the vertices corresponding to the edge $u_i v_i$ and f_{ij} are the vertices corresponding to the edge $v_i u_j$.

For r = 1, based on the Lemma 2.1, we have $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$ such that $\chi_r(L(S(P_n))) \ge \min\{r, \Delta(L(S(P_n)))\} + 1 = r + 1 = 2.$

For $r \ge 2$, from the Lemma 2.1, we obtain $\chi_r(L(S(P_n))) \ge \min\{r, \Delta(L(S(P_n)))\} + 1 = \Delta(L(S(P_n))) + 1 = 2 + 1 = 3$. It concludes the proof.

Theorem 3.3. Let $n \ge 2$, the r-Dynamic Chromatic number of $L(S(P_n))$ is

$$\chi_{r=1}(L(S(P_n))) = 2.$$

 $\chi_{r\geq 2}(L(S(P_n))) = 3.$

Proof. The maximum and the minimum degrees of the graph $L(S(P_n))$ are obtained as $\Delta(L(S(P_n))) = 2$ and $\delta(L(S(P_n))) = 1$, respectively. **Case 1:** r = 1

Proceeding from the Lemma 3.1, the lower bound is

$$\chi_r(L(S(P_n))) \ge 2.$$

To exhibit the upper bound, we describe a map $c : V(L(S(P_n))) \to \{c_1, c_2\}$ as follows.

$$\mathbf{c}(\mathbf{e}_{11}, f_{12}, e_{22}, f_{23}, \dots, e_{(n-1)(n-1)}, f_{(n-1)n}) = \{c_1, c_2, c_1, c_2, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_{r=1}(L(S(P_n))) \leq 2$. Thus, $\chi_{r=1}(L(S(P_n))) = 2$. **Case 2:** $r \geq 2$ Proceeding from the Lemma 3.1, the lower bound is

$$\chi_r(L(S(P_n))) \ge 3$$

To exhibit the upper bound, we describe a map $c : V(L(S(P_n))) \to \{c_1, c_2, c_3\}$ as follows.

$$c(e_{11}, f_{12}, e_{22}, f_{23}, \dots, e_{(n-1)(n-1)}, f_{(n-1)n}) = \{c_1, c_2, c_3, c_1, c_2, c_3, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(P_n))) \leq 3$. Thus, $\chi_{r\geq}(L(S(P_n))) = 3$. It conforms the proof.

Lemma 3.4. Let $L(S(C_n))$ be the Para-line graph of a Cycle graph C_n . The lower bound of r-Dynamic Chromatic number of $L(S(C_n))$ is

$$\chi_r(L(S(C_n))) \ge \begin{cases} 2; & r = 1, \\ 3; & r \ge 2. \end{cases}$$

Proof. The vertex and edge set of Cycle graph is represented as follows.

$$V(C_n) = \{u_i : 1 \le i \le n\}.$$

$$E(C_n) = \{u_i u_{i+1}, u_n u_1 : 1 \le i \le n-1\}$$

Let $V(S(C_n)) = \{u_i, v_i : 1 \le i \le n\}$ where $\{v_i : 1 \le i \le n-1\}$ are the new vertices inserted on the edge $u_i u_{i+1}$ and v_n is the new vertex inserted on the edge $u_n u_1$ of C_n . Let $V(L(S(C_n))) = \{e_{ii}, f_{i(i+1)} : 1 \le i \le n-1\} \cup \{e_{nn}, f_{n1}\}$, where e_{ii} are the vertices corresponding to the edge $u_i v_i$ and f_{ij} are the vertices corresponding to the edge $v_i u_j$.

For r = 1, from the Lemma 2.1, we have $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$ such that $\chi_r(L(S(C_n))) \ge \min\{r, \Delta(L(S(C_n)))\} + 1 = r + 1 = 2$.

For $r \ge 2$, from the Lemma 2.1, we obtain $\chi_r(L(S(C_n))) \ge \min\{r, \Delta(L(S(C_n)))\} + 1 = \Delta(L(S(C_n))) + 1 = 2 + 1 = 3$. It concludes the proof.

Theorem 3.5. Let $n \ge 3$, the r-Dynamic Chromatic number of $L(S(C_n))$ is

$$\chi_{r=1}(L(S(C_n))) = 2.$$

$$\chi_{r\geq 2}(L(S(C_n))) = \begin{cases} 3; & 2n \equiv 0 \pmod{3}, \\ 4; & 2n \equiv 1, 2 \pmod{3}. \end{cases}$$

Proof. The maximum and the minimum degrees of the graph $L(S(C_n))$ are obtained as $\Delta(L(S(C_n))) = \delta(L(S(C_n))) = 2.$

Case 1: r = 1

In reference to the Lemma 3.3, the lower bound is

$$\chi_r(L(S(C_n))) \ge 2$$

To exhibit the upper bound, we describe a map $c : V(L(S(C_n))) \to \{c_1, c_2\}$ as follows.

$$c(e_{11}, f_{12}, e_{22}, f_{23}, \dots, e_{nn}, f_{n1}) = \{c_1, c_2, c_1, c_2, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(C_n))) \leq 2$. Thus, $\chi_{r=1}(L(S(C_n))) = 2$. **Case 2:** $r \geq 2$ **Subcase(i):** $2n \equiv 0 \pmod{3}$ In reference to the Lemma 3.3, the lower bound is

$$\chi_r(L(S(C_n))) \ge 3.$$

To expose the upper bound, we describe a map $c: V(L(S(C_n))) \to \{c_1, c_2, c_3\}$ as follows.

$$c(e_{11}, f_{12}, e_{22}, f_{23}, \dots, e_{nn}, f_{n1}) = \{c_1, c_2, c_3, c_1, c_2, c_3, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(C_n))) \leq 3$. Thus, $\chi_{r=2}(L(S(C_n))) = 3$, $2n \equiv 0 \pmod{3}$. **Subcase(ii):** $2n \equiv 1, 2 \pmod{3}$ In reference to the Lemma 3.3, the lower bound is

$$\chi_r(L(S(C_n))) \ge 3.$$

To exhibit the upper bound, we describe a map $c : V(L(S(C_n))) \to \{c_1, c_2, c_3, c_4\}$ as follows. For $2n \equiv 1 \pmod{3}$,

$$c(e_{11}, f_{12}, \dots, e_{nn}, f_{n1}) = \{c_1, c_2, c_3, c_1, c_2, c_3, \dots, c_1, c_2, c_3, c_4\}$$

For $2n \equiv 2 \pmod{3}$,

$$c(e_{11}, f_{12}, \dots, e_{nn}, f_{n1}) = \{c_1, c_2, c_3, c_4, c_1, c_2, c_3, c_4, c_1, c_2, c_3, \dots, c_1, c_2, c_3\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(C_n))) \leq 4$. Thus, $\chi_{r\geq 2}(L(S(C_n))) = 4$, $2n \equiv 1, 2 \pmod{3}$. It conforms the proof.

Lemma 3.6. Let $L(S(K_n))$ be the Para-line graph of a Complete graph K_n . The lower bound of *r*-Dynamic Chromatic number of $L(S(K_n))$ is

$$\chi_r(L(S(K_n))) \ge \begin{cases} n-1; & 1 \le r \le \Delta(L(S(K_n))) - 1, \\ \Delta+1; & r \ge \Delta(L(S(K_n))). \end{cases}$$

Proof. The vertex and edge set of Complete graph is represented as follows.

$$V(K_n) = \{u_i : 1 \le i \le n\}.$$

$$E(K_n) = \{u_i u_j : 1 \le i, j \le n, i < j\}.$$

Let $V(S(K_n)) = \{u_i, v_{ij} : 1 \le i, j \le n, i < j\}$ where v_{ij} are the new vertices inserted on the edge $u_i u_j$ of K_n . The vertex set of the graph $L(S(C_n))$ is represented as

 $V(L(S(K_n))) = \{e_{i,ij}, e_{j,ij} : 1 \le i \le n-1, 1 \le j \le n, i \ne j\}$, where $e_{i,ij}$ are the vertices corresponding to the edges $u_i v_{ij} (i < j)$ and $e_{j,ij}$ are the vertices corresponding to the edges $u_j v_{ij} (i > j)$.

Clearly the vertices $\{e_{i,ij}: 1 \le i \le n, 2 \le j \le n\}$ induces a clique of order K_{n-1} in $L(S(K_n))$. For $1 \le r \le \Delta(L(S(K_n))) - 1$, $\chi_r(L(S(K_n))) \ge n - 1$. For $r \ge \Delta(L(S(K_n)))$, based on the Lemma 2.1, we obtain $\chi_r(L(S(K_n))) \ge min \{r, \Delta(L(S(K_n)))\} + 1 = \Delta(L(S(K_n))) + 1$. It concludes the proof.

Theorem 3.7. Let $n \ge 6$, the *r*-Dynamic Chromatic number of $L(S(K_n))$ is

$$\chi_r(L(S(K_n))) = \begin{cases} n-1; & 1 \le r \le \Delta - 1, \\ n; & r \ge \Delta. \end{cases}$$

Proof. The maximum and the minimum degrees of the graph $L(S(K_n))$ are obtained as $\Delta(L(S(K_n))) = \delta(L(S(K_n))) = n - 1$. **Case 1:** $1 \le r \le \Delta - 1$

In reference to the Lemma 3.5, the lower bound is

$$\chi_r(L(S(K_n))) \ge n - 1.$$

To exhibit the upper bound, we describe a map $c : V(L(S(K_n))) \rightarrow \{c_1, c_2, \ldots, c_{n-1}\}$ as follows.

$$c(e_{1,12}, e_{1,13}, \dots, e_{1,1n}) = \{c_1, c_2, \dots, c_{n-1}\}$$
$$c(e_{2,12}, e_{2,23}, \dots, e_{2,2n}) = \{c_2, c_3, \dots, c_{n-1}, c_1\}$$

Proceeding in the same manner we define,

$$c(e_{n-1,1(n-1)}, e_{n-1,2(n-1)}, \dots, e_{n-1,(n-1)n}) = \{c_{n-1}, c_1, c_2, \dots, c_{n-2}\}$$
$$c(e_{n,1n}, e_{n,2n}, \dots, e_{n,(n-1)n}) = \{c_1, c_2, \dots, c_{n-1}\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(K_n))) \leq n-1$. Thus, $\chi_{1 \leq r \leq \Delta-1}(L(S(K_n))) = n-1$. **Case 2:** $r \geq \Delta$ In reference to the Lemma 3.5, the lower bound is

$$\chi_r(L(S(K_n))) \ge n.$$

To exhibit the upper bound, we describe a map $c : V(L(S(K_n))) \to \{c_1, c_2, \ldots, c_n\}$ as follows.

$$c(e_{1,12}, e_{1,13}, \dots, e_{1,1n}) = \{c_1, c_2, \dots, c_{n-1}\}$$
$$c(e_{2,12}, e_{2,23}, \dots, e_{2,2n}) = \{c_n, c_2, c_3, \dots, c_{n-1}\}$$
$$c(e_{3,13}, e_{3,23}, \dots, e_{3,3n}) = \{c_n, c_1, c_3, \dots, c_{n-1}\}$$

Proceeding in the same manner we define,

$$c(e_{n,1n}, e_{n,2n}, \dots, e_{n,(n-1)n}) = \{c_n, c_1, c_2, \dots, c_{n-2}\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(K_n))) \leq n$. Thus, $\chi_{r>\Lambda}(L(S(K_n))) = n$. It conforms the proof.

Lemma 3.8. Let $L(S(K_{m,n}))$ be the Para-line graph of a Complete bipartite graph $K_{m,n}$. The lower bound of r-Dynamic Chromatic number of $L(S(K_{m,n}))$ is

$$\chi_r(L(S(K_{m,n}))) \ge \begin{cases} n; & 1 \le r \le \Delta(L(S(K_{m,n}))) - 1, \\ \Delta + 1; & r \ge \Delta(L(S(K_{m,n}))). \end{cases}$$

Proof. The vertex and edge set of Complete bipartite graph is represented as follows.

$$V(K_{m,n}) = \{x_i, y_j : 1 \le i \le m, m+1 \le j \le m+n\}.$$

$$E(K_{m,n}) = \{x_i y_j : 1 \le i \le m, m+1 \le j \le m+n\}.$$

Let $V(S(K_{m,n})) = \{x_i, y_j, v_{ij}\}$ where v_{ij} are the new vertices inserted on the edge $x_i y_j$ of $K_{m,n}$. The vertex set of the graph $L(S(K_{m,n}))$ is represented as

 $V(L(S(K_{m,n}))) = \{e_{i,ij} \cup e_{j,ij} : 1 \le i \le m, m+1 \le j \le m+n\}.$ Clearly the vertices $\{e_{i,ij}: 1 \le i \le m, m+1 \le j \le m+n\}$ induces a clique of order K_n in $L(S(K_{m,n})).$ For $1 \leq r \leq \Delta(L(S(K_{m,n}))) - 1$, we have $\chi_r(L(S(K_{m,n}))) \geq n$. For $r \ge \Delta(L(S(K_{m,n}))))$, based on the Lemma 2.1, we obtain

 $\chi_r(L(S(K_{m,n}))) \ge \min\{r, \Delta(L(S(K_{m,n})))\} + 1 = \Delta(L(S(K_{m,n}))) + 1)$. It concludes the proof.

Theorem 3.9. Let $m, n \ge 3$, m < n, the r-Dynamic Chromatic number of $L(S(K_{m,n}))$ is

$$\chi_r(L(S(K_{m,n}))) = \begin{cases} n; & 1 \le r \le \Delta - 1, \\ m+n; & r \ge \Delta. \end{cases}$$

Proof. The maximum and the minimum degrees of the graph $L(S(K_{m,n}))$ are obtained as $\Delta(L(S(K_{m,n}))) = n \text{ and } \delta(L(S(K_{m,n}))) = m.$ Case 1: $1 \le r \le \Delta - 1$

In reference to the Lemma 3.7, the lower bound is

$$\chi_r(L(S(K_{m,n}))) \ge n.$$

To exhibit the upper bound, we describe a map $c: V(L(S(K_{m,n}))) \to \{c_1, c_2, \ldots, c_n\}$ as follows.

$$c(e_{i,i(m+1)}, e_{i,i(m+2)}, \dots, e_{i,i(m+n)}) = \{c_1, c_2, \dots, c_n\}, \text{ for } 1 \le i \le m.$$

$$c(e_{(m+1),1(m+1)}, e_{(m+1),2(m+1)}, \dots, e_{(m+1),m(m+1)}) = \{c_2, c_3, \dots, c_{m+1}\}$$

$$c(e_{(m+2),1(m+2)}, e_{(m+2),2(m+2)}, \dots, e_{(m+2),m(m+2)}) = \{c_1, c_3, c_4, \dots, c_{m+1}\}$$

Proceeding in the same manner we define,

$$c(e_{(m+n),1(m+n)}, e_{(m+n),2(m+n)}, \dots, e_{(m+n),m(m+n)}) = \{c_1, c_2, \dots, c_m\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(K_{m,n}))) \leq n$. Thus, $\chi_{1 \le r \le \Delta - 1}(L(S(K_{m,n}))) = n.$ Case 2: $r \ge \Delta$ From the the Lemma 3.7, the lower bound is

 χ

$$_{r}(L(S(K_{m,n}))) \ge \Delta + 1 = n + 1.$$

To exhibit the upper bound, we describe a map $c: V(L(S(K_{m,n}))) \to \{c_1, c_2, \ldots, c_{m+n}\}$ as follows.

$$c(e_{i,i(m+1)}, e_{i,i(m+2)}, \dots, e_{i,i(m+n)}) = \{c_1, c_2, \dots, c_n\}, \text{ for } 1 \le i \le m.$$
$$c(e_{j,1j}, e_{j,2j}, \dots, e_{j,mj}) = \{c_{m+1}, c_{m+2}, \dots, c_{m+n}\}, \text{ for } m+1 \le j \le m+n.$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(K_{m,n}))) \leq m + n$. Thus, $\chi_{r \ge \Delta - 1}(L(S(K_{m,n}))) = m + n.$ It completes the proof.

Lemma 3.10. Let $L(S(B_{m,n}))$ be the Para-line graph of a Bistar graph $B_{m,n}$. The lower bound of r-Dynamic Chromatic number of $L(S(B_{m,n}))$ is

$$\chi_r(L(S(B_{m,n}))) \ge \begin{cases} n+1; & 1 \le r \le \Delta(L(S(B_{m,n}))) - 1, \\ \Delta + 1; & r \ge \Delta(L(S(B_{m,n}))). \end{cases}$$

Proof. The vertex and edge set of Bistar graph is represented as follows.

$$V(B_{m,n}) = \{u_i, v_j : 1 \le i \le m+1, 1 \le j \le n+1\}.$$

$$E(B_{m,n}) = \{u_1v_1, u_1u_i, v_1v_j : 2 \le i \le m, 2 \le j \le n\}.$$

The vertex set of subdivision graph of Bistar graph is represented as

 $V(S(B_{m,n})) = \{u_i, v_j, u_{1j}, v_{1k}, w_{11}\}$ where u_{1j} are the new vertices inserted on the edge u_1u_j , v_{1i} are the new vertices inserted on the edge v_1v_1 and w_{11} is the new vertex inserted on the edge u_1v_1 of $B_{m,n}$.

The vertex set of Para-line graph of Bistar graph $L(S(B_{m,n}))$ is represented as

 $V(L(S(B_{m,n}))) = \{e_{1,1j} : 1 \le j \le m+1\} \cup \{e_{j,1j} : 2 \le j \le m+1\} \cup \{f_{1,1k} : 1 \le k \le n+1\} \cup \{f_{k,1k} : 2 \le k \le n+1\}, \text{ where } e_{1,11} \text{ is the vertex corresponding to}$ the edges u_1w_{11} , $e_{1,1i}$ are the vertices corresponding to the edges u_1u_{1i} , $e_{i,1i}$ are the vertices corresponding to the edges $u_j u_{1j}$. Similarly $f_{1,11}$ is the vertex corresponding to the edges $v_1 w_{11}$, $f_{1,1j}$ are the vertices corresponding to the edges v_1v_{1j} , $f_{j,1j}$ are the vertices corresponding to the edges $v_j v_{1j}$.

For $1 \le r \le \delta(L(S(B_{m,n})))$, the vertices $V = \{f_{1,1j} : 2 \le j \le n+1\}$ induce a clique of order $K_n + 1$ in $L(S(B_{m,n}))$. Thus, we have $\chi_r(L(S(B_{m,n}))) \ge n + 1$.

For $r \ge \Delta(L(S(B_{m,n})))$, based on the Lemma 2.1, we obtain $\chi_r(L(S(B_{m,n}))) \ge \min\{r, \Delta(L(S(B_{m,n})))\} + 1 = \Delta(L(S(B_{m,n}))) + 1.$ It concludes the proof.

Theorem 3.11. Let $m \ge 3$, m < n, the r-Dynamic Chromatic number of $L(S(B_{m,n}))$ is

$$\chi_r(L(S(B_{m,n}))) = \begin{cases} n+1; & 1 \le r \le \Delta - 1, \\ n+2; & r \ge \Delta. \end{cases}$$

Proof. The maximum and the minimum degrees of the graph $L(S(B_{m,n}))$ are obtained $\Delta(L(S(B_{m,n}))) = n + 1 \text{ and } \delta(L(S(B_{m,n}))) = 1.$ Case 1: $1 \le r \le \Delta - 1$

In reference to the Lemma 3.9, the lower bound is

$$\chi_r(L(S(B_{m,n}))) \ge n+1.$$

To exhibit the upper bound, we describe a map $c: V(L(S(B_{m,n}))) \rightarrow \{c_1, c_2, \ldots, c_{n+1}\}$ as follows. 10 1 / . /

$$c(f_{1,1j}) = c_j, \text{ for } 1 \le j \le n+1.$$

$$c(e_{1,1j}) = c_{j+1}, \text{ for } 1 \le j \le m+1.$$

$$c(e_{i,1i}) = c_1, \text{ for } 2 \le i \le m+1.$$

$$c(f_{j,1j}) = c_1, 2 \le j \le n+1.$$

For $2 \le i \le m+1$ and $2 \le j \le n+1$, It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(B_{m,n}))) \le n + 1$. Thus, $\chi_{1 < r < \Delta - 1}(L(S(B_{m,n}))) = n + 1.$ Case 2: $r > \Delta$

In reference to the Lemma 3.9, the lower bound is

$$\chi_r(L(S(B_{m,n}))) \ge n+2$$

To exhibit the upper bound, we describe a map $c : V(L(S(B_{m,n}))) \to \{c_1, c_2, \ldots, c_{n+2}\}$ as follows.

$$c(f_{1,1j}) = c_j, \text{ for } 1 \le j \le n+1.$$

$$c(e_{1,11}, e_{1,12}, \dots, e_{1,1(m+1)}) = \{c_{n+2}, c_2, c_3, \dots, c_{m+1}\}$$

$$c(e_{i,1i}) = c_1, \text{ for } 2 \le i \le m+1.$$

$$c(f_{j,1j}) = c_{n+2}, \text{ for } 2 \le j \le n+1.$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(B_{m,n}))) \leq n+2$. Thus, $\chi_{r \geq \Delta}(L(S(B_{m,n}))) = n+2$. It completes the proof.

Lemma 3.12. Let $L(S(T_{m,n}))$ be the Para-line graph of a Tadpole graph $T_{m,n}$. The lower bound of *r*-Dynamic Chromatic number of $L(S(T_{m,n}))$ is

$$\chi_r(L(S(T_{m,n}))) \ge \begin{cases} 3; & r = 1 \text{ and } 2; \\ 4; & r \ge 3. \end{cases}$$

Proof. The vertex and edge set of Tadpole graph is represented as follows.

$$V(T_{m,n}) = \{u_i : 1 \le i \le m+n\}.$$

$$E(T_{m,n}) = \{u_i u_{i+1}, u_m u_1, u_j u_{j+1} : 1 \le i \le m-1, m \le j \le m+n-1\}.$$

Let $V(S(T_{m,n})) = \{u_i, v_{ij}, i < j\}$ where v_{ij} are the new vertices inserted on the edge $u_i u_j$. The vertex set of Para-line graph of Tadpole graph $L(S(T_{m,n}))$ is represented as

 $V(L(S(T_{m,n}))) = \{e_{i,jk}\}$, where $e_{i,jk}$ are the vertex corresponding to the edges $u_i v_{jk}$ of $T_{m,n}$. For r = 1 and 2, the vertices $V = \{e_{m,(m-1)m}, e_{m,1m}, e_{m,m(m+1)}\}$ induce a clique of order K_3 in $L(S(T_{m,n}))$. Thus, $\chi_r(L(S(T_{m,n}))) \ge 3$.

For $r \ge 3$, based on the Lemma 2.1, we obtain $\chi_r(L(S(T_{m,n}))) \ge \min\{r, \Delta(L(S(T_{m,n})))\} + 1 = \Delta(L(S(T_{m,n}))) + 1 = 3 + 1 = 4$. It concludes the proof.

Theorem 3.13. Let $m > 4, n \ge 3$, the r-Dynamic Chromatic number of $L(S(T_{m,n}))$ is

$$\chi_{r=1,2}(L(S(T_{m,n}))) = 3.$$

 $\chi_{r>3}(L(S(T_{m,n}))) = 4.$

Proof. The maximum and the minimum degrees of the graph $L(S(T_{m,n}))$ are obtained as $\Delta(L(S(T_{m,n}))) = 3$ and $\delta(L(S(T_{m,n}))) = 1$. **Case 1:** r = 1 and 2

In reference to the Lemma 3.11, the lower bound is

$$\chi_r(L(S(T_{m,n}))) \ge 3$$

To exhibit the upper bound, we describe a map $c : V(L(S(T_{m,n}))) \to \{c_1, c_2, c_3\}$ as follows.

$$c(e_{1,12}, e_{2,12}, \dots, e_{m,(m-1)m}, e_{m,1m}, e_{1,1m}) = \{c_1, c_2, c_1, c_2, \dots, c_1, c_2\}$$
$$c(e_{m,m(m+1)}, e_{m+1,m(m+1)}, \dots, e_{(m+n),(m+n-1)(m+n)}) = \{c_3, c_1, c_2, c_1, c_2, \dots, \}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(T_{m,n}))) \leq 3$. Thus, $\chi_{r=1,2}(L(S(T_{m,n}))) = 3$. **Case 2:** $r \geq 3$

In reference to the Lemma 3.11, the lower bound is

$$\chi_r(L(S(T_{m,n}))) \ge 4$$

To exhibit the upper bound, we describe a map $c : V(L(S(T_{m,n}))) \to \{c_1, c_2, c_3, c_4\}$ as follows.

$$c(e_{1,12}, e_{2,12}, \dots, e_{m,1m}, e_{1,1m}) = \begin{cases} c_1, c_2, c_3, c_1, c_2, c_3, \dots, c_1, c_2, c_3; & 2n \equiv 0 \pmod{3} \\ c_1, c_2, c_3, c_4, c_1, c_2, c_3, \dots, c_1, c_2, c_3; & 2n \equiv 1 \pmod{3} \end{cases}$$

For $2n \equiv 2 \pmod{3}$

$$c(e_{1,12}, e_{2,12}, \dots, e_{m,1m}, e_{1,1m}) = \{c_1, c_2, c_3, c_4, c_1, c_2, c_3, c_4, c_1, c_2, c_3, \dots, c_1, c_2, c_3\}$$

For $2n \equiv 0 \pmod{3}$

$$\mathbf{c}(\mathbf{e}_{m,m(m+1)}, e_{m+1,m(m+1)}, \dots, e_{(m+n),(m+n-1)(m+n)}) = \{c_4, c_3, c_2, c_4, c_3, c_2, \dots\}$$

For $2n \equiv 1, 2 \pmod{3}$

$$\mathsf{c}(\mathsf{e}_{m,m(m+1)}, e_{m+1,m(m+1)}, \dots, e_{(m+n),(m+n-1)(m+n)}) = \{c_4, c_1, c_2, c_4, c_1, c_2, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(T_{m,n}))) \leq 4$. Thus, $\chi_{r\geq 3}(L(S(T_{m,n}))) = 4$. It conforms the proof.

Lemma 3.14. Let $L(S(L_{m,n}))$ be the Para-line graph of a Lollipop graph $L_{m,n}$. The lower bound of r-Dynamic Chromatic number of $L(S(L_{m,n}))$ is

$$\chi_r(L(S(L_{m,n}))) \ge \begin{cases} m; & 1 \le r \le \Delta(L(S(L_{m,n}))) - 1, \\ \Delta + 1; & r \ge \Delta(L(S(L_{m,n}))). \end{cases}$$

Proof. The vertex and edge set of Lollipop graph is represented as follows.

$$V(L_{m,n}) = \{u_i : 1 \le i \le m+n\}.$$

$$E(L_{m,n}) = \{u_i u_j : 1 \le i, j \le m, i < j\} \cup \{u_i u_{i+1} : m \le i \le m+n-1\}.$$

Let $V(S(L_{m,n})) = \{u_i, v_{ij}, i < j\}$ where v_{ij} are the new vertices inserted on the edge $u_i u_j$ of $L_{m,n}$. The vertex set of Para-line graph of Lollipop graph $L(S(L_{m,n}))$ is represented as $V(L(S(L_{m,n}))) = \{e_{i,jk}\}$, where $e_{i,jk}$ are the vertex corresponding to the edges $u_i v_{jk}$. For $1 \le r \le \delta(L(S(L_{m,n})) - 1$, the vertices $V = \{e_{m,im}, e_{m,m(m+1)} : 1 \le i \le m - 1\}$ induce a clique of order K_m in $L(S(L_{m,n}))$. Thus, $\chi_r(L(S(L_{m,n}))) \ge m$. For $r \ge \Delta(L(S(L_{m,n})))$, based on the Lemma 2.1, we obtain $\chi_r(L(S(L_{m,n}))) \ge min \{r, \Delta(L(S(L_{m,n})))\} + 1 = \Delta(L(S(L_{m,n}))) + 1$. It concludes the proof.

Theorem 3.15. Let $m \ge 5, n \ge 3$, the r-Dynamic Chromatic number of $L(S(L_{m,n}))$ is

$$\chi_r(L(S(L_{m,n}))) = \begin{cases} m; & 1 \le r \le \Delta(L(S(L_{m,n}))) - 1, \\ m+1; & r \ge \Delta(L(S(L_{m,n}))). \end{cases}$$

Proof. The maximum and the minimum degrees of the graph $L(S(L_{m,n}))$ are obtained as $\Delta(L(S(L_{m,n}))) = m$ and $\delta(L(S(L_{m,n}))) = 1$. **Case 1:** $1 \le r \le \Delta(L(S(L_{m,n}))) - 1$

In reference to the Lemma 3.13, the lower bound is

$$\chi_r(L(S(L_{m,n}))) \ge m$$

To exhibit the upper bound, we describe a map $c : V(L(S(L_{m,n}))) \to \{c_1, c_2, ..., c_m\}$ as follows. $c(e_{1,12}, e_{1,13}, ..., e_{1,1m}) = \{c_1, c_2, ..., c_{m-1}\}$

$$c(e_{2,12}, e_{2,23}, \dots, e_{2,2m}) = \{c_2, c_3, \dots, c_{m-1}, c_1\}$$

Proceeding in the same manner finally we define,

$$c(e_{m,1m}, e_{m,2m}, \dots, e_{m,(m-1)m}) = \{c_1, c_2, \dots, c_{m-1}\}$$
$$c(e_{m,m(m+1)}, e_{m+1,m(m+1)}, \dots, e_{(m+n),(m+n-1)(m+n)}) = \{c_m, c_1, c_2, c_m, c_1, c_2, \dots, \}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(L_{m,n}))) \le m$. Thus, $\chi_{1 \le r \le \Delta - 1}(L(S(L_{m,n}))) = m$. Case 2: $r \ge \Delta$ In reference to the Lemma 3.13, the lower bound is

$$\chi_r(L(S(L_{m,n}))) \ge m + 1.$$

To exhibit the upper bound, we describe a map $c : V(L(S(L_{m,n})))) \to \{c_1, c_2, \ldots, c_{m+1}\}$ as follows.

$$c(e_{1,12}, e_{1,13}, \dots, e_{1,1m}) = \{c_1, c_2, \dots, c_{m-1}\}$$
$$c(e_{2,12}, e_{2,23}, \dots, e_{2,2m}) = \{c_m, c_2, c_3, \dots, c_{m-1}\}$$

Proceeding in the same manner finally we define

$$c(e_{m,1m}, e_{m,2m}, \dots, e_{m,(m-1)m}) = \{c_m, c_1, c_2, \dots, c_{m-2}\}$$
$$c(e_{m,m(m+1)}, e_{m+1,m(m+1)}, \dots, e_{(m+n),(m+n-1)(m+n)}) = \{c_{m+1}, c_{m-1}, c_1, c_{m+1}, c_{m-1}, c_1, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(L_{m,n}))) \le m + 1$. Thus, $\chi_{r \ge \Delta}(L(S(L_{m,n}))) = m + 1$.

Lemma 3.16. Let $L(S(F_{1,n}))$ be the Para-line graph of a Fan graph $F_{1,n}$. The lower bound of *r*-Dynamic Chromatic number of $L(S(F_{1,n}))$ is

$$\chi_r(L(S(F_{1,n}))) \ge \begin{cases} n; & 1 \le r \le \Delta - 1, \\ \Delta + 1; & r \ge \Delta. \end{cases}$$

Proof. The vertex and edge set of Fan graph is represented as follows.

$$V(F_{1,n}) = \{u_i : 1 \le i \le n+1\}.$$

$$E(F_{1,n}) = \{u_1u_i : 2 \le i \le n+1\} \cup \{u_iu_{i+1} : 2 \le i \le n-1\}.$$

Let $V(S(F_{1,n})) = \{u_i, v_{ij}, i < j\}$ where v_{ij} are the new vertices inserted on the edge $u_i u_j$ of $F_{1,n}$. The vertex set of Para-line graph of Fan graph $L(S(F_{1,n}))$ is represented as $V(L(S(F_{1,n}))) =$ $\{e_{1,1j}, e_{j,1j} : 2 \le j \le n+1\} \cup \{e_{j,j(j+1)}, e_{(j+1),j(j+1)} : 2 \le j \le n\}.$ For $1 \le r \le \delta(L(S(F_{1,n})))$, the vertices $V = \{e_{1,1j} : 2 \le j \le n+1\}$ induce a clique of order K_n in $L(S(F_{1,n}))$. Thus, $\chi_r(L(S(F_{1,n}))) \ge n$.

For
$$r \ge \Delta(L(S(F_{1,n})))$$
, thus, $\chi_r(L(S(F_{1,n}))) \ge n$.
For $r \ge \Delta(L(S(F_{1,n})))$, based on the Lemma 2.1, we obtain
 $\chi_r(L(S(F_{1,n}))) \ge \min \{r, \Delta(L(S(F_{1,n})))\} + 1 = \Delta(L(S(F_{1,n}))) + 1$. It concludes the proof. \Box

Theorem 3.17. Let $n \ge 6$, the *r*-Dynamic Chromatic number of $L(S(F_{1,n}))$ is

$$\chi_r(L(S(F_{1,n}))) = \begin{cases} n; & 1 \le r \le \Delta - 1, \\ n+1; & r \ge \Delta. \end{cases}$$

Proof. The maximum and the minimum degrees of the graph $L(S(F_{1,n}))$ are obtained as $\Delta(L(S(F_{1,n}))) = n \text{ and } \delta(L(S(F_{1,n}))) = 2.$ **Case 1:** $1 \le r \le \Delta(L(S(F_{1,n}))) - 1$

From the Lemma 3.15, the lower bound is

c

$$\chi_r(L(S(F_{1,n}))) \ge n.$$

To exhibit the upper bound, we describe a map $c : V(L(S(F_{1,n}))) \to \{c_1, c_2, \ldots, c_n\}$ as follows.

$$c(e_{1,12}, e_{1,13}, \dots, e_{1,1(n+1)}) = \{c_1, c_2, \dots, c_n\}$$

$$c(e_{j,1j}) = c_n, \text{ for } 2 \le j \le n.$$

$$c(e_{n+1,1(n+1)}) = c_1$$

$$(e_{2,23}, e_{3,23}, \dots, e_{n,n(n+1)}, e_{(n+1),n(n+1)}) = \{c_2, c_3, \dots, c_{n-1}, c_2, c_3, c_4, c_2, c_3, c_4, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(F_{1,n}))) \leq n$. Thus, $\chi_{1 \leq r \leq \Delta-1}(L(S(F_{1,n}))) = n$. **Case 2:** $r \geq \Delta(L(S(F_{1,n})))$ Based on the Lemma 3.15, the lower bound is

$$\chi_r(L(S(F_{1,n}))) \ge \Delta + 1 = n + 1.$$

To exhibit the upper bound, we describe a map $c : V(L(S(F_{1,n}))) \rightarrow \{c_1, c_2, \ldots, c_{n+1}\}$ as follows.

$$c(e_{1,12}, e_{1,13}, \dots, e_{1,1(n+1)}) = \{c_1, c_2, \dots, c_n\}$$
$$c(e_{j,1j}) = c_{n+1}, \text{ for } 2 \le j \le n+1.$$
$$c(e_{2,23}, e_{3,23}, \dots, e_{n,n(n+1)}, e_{(n+1),n(n+1)}) = \{c_2, c_3, c_4, \dots, c_n, c_1, c_2, c_3, c_1, c_2, c_3, \dots\}$$

It is easy to explicit that c is a r-Dynamic Coloring. Hence, $\chi_r(L(S(F_{1,n}))) \leq n+1$. Thus, $\chi_{r>\Delta}(L(S(F_{1,n}))) = n+1$. It conforms the proof.

References

- Agustin I H, Dafik, Hatsya A Y, On r-Dynamic Coloring of Some Graph Operation, International Journal of Combinatorics, 02(01) 22–30 (2016).
- [2] Arika Indah Kristiana, Dafik, M. Imam Utoyo, Ika Hesti Agustin, On r-Dynamic Chromatic Number of the Corronation of Path and Several Graphs, International Journal of Advanced Engineering Research and Science, Vol-4, Issue-4, (2017).
- [3] J.A. Bondy and U.S.R. Murty, Graph theory with applications, New York: Macmillan Ltd. Press, (1976).
- [4] A. Dehghan and A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Discrete Applied Mathematics, 160 2142–2146 (2012).
- [5] F. Harary, Graph Theory, Narosa Publishing home, New Delhi (1969).
- [6] W.Gao, M.F.Nadeem, S.Zafar, Z.Zahid, M.R.Farahani, On the Para-line graphs of certain nanostructures based on topological indices, UPB Scientific Bulletin, Series B: chemistry and Material science, October (2017).
- [7] Gary Chartrand and Ping Zhang, Chromatic Graph Theory, CRC Press, London, (2009).
- [8] D. Gernert, *Inequalities between the domination number and the chromatic number of a graph*, Discrete Mathematics, 76 151–153 (1986).
- [9] Ika Hesti Agustin Dafik, A.Y.Harsya, *On r-dynamic coloring of some graph operations*, Indonesian Journal of combinatorics (1) 22–30 (2016).
- [10] R. W. Irving and D. F. Manlove, *The b-chromatic number of a graph*, Discrete Applied Mathematics, 91, 127–141 (1999).
- [11] R. Kang, T. Muller, O. Suil and D. B. West, On r-dynamic coloring of grids, Discrete Applied Mathematics, 186, 286–290 (2015).
- [12] S.J.Kim and W.J Park, List dynamic coloring of sparse graphs, Combinatorial optimization and applications, Lect. Notes Comput. Sci. 6831, 156–162 (2011).
- [13] H.J. Lai, B. Montgomery, Dynamic coloring of graph, Department of Mathematics, West Virginia University, (2002).
- [14] B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
- [15] Song H.M, Fan S.H, Chen Y, Sun L, Lai H.J, On r-hued coloring of K₄- minor free graphs, Discrete Math. 47–52 (2014).
- [16] Song H.M, Lai H.J, Wu J.L, On r-hued coloring of planar graphs with girth atleast 6, Discrete Appl. Math. 198, 251–263 (2016).
- [17] A.Taherkhani. On r-Dynamic chromatic Number of Graphs, Discrete Applied Mathematics, 201, 222–227 (2016).
- [18] Xiujun Zhang, Zohaib Zahid, Sohail Zafar, Mohammad R. Farahani, Muhammad F. Nadeem, *Study of the Para-line graphs of certain polyphenyl chains using topological indices*, International Journal of Biochemistry and Biotechnology, November (2017).

Author information

G.Nandini, Department of Mathematics, SNS College of Technology, Coimbatore 641035, India. E-mail: nandiniap2006@gmail.com

M.Venkatachalam, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641029, India.

E-mail: venkatmaths@gmail.com

Dafik, Department of Mathematics Education, Jember 68121, Indonesia. E-mail: d.dafik@unej.ac.id

Received : December 31, 2020 Accepted : March 25, 2021