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Abstract Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The
Subdivision graph S(G) of a graph G is the graph acquired by inserting a new vertex into every
edge of G. The para-line graph of G is the line graph of the subdivision graph of G, which
is symbolized by L(S(G)). An r-dynamic coloring of a graph G is a proper coloring c of the
vertices such that |c(N(v))| ≥ min {r, d(v)}, for each v ∈ V (G). The r-dynamic chromatic
number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In
this paper, we acquired the r-dynamic chromatic number of para-line graph of the some standard
graphs.

1 Introduction

The conception of r-dynamic chromatic number was first initiated by Montgomery [14]. It is
also consider under the name r- hued [15], [16]. The r- dynamic coloring is a generalization of
the vertex coloring for which r = 1. An r-dynamic coloring of a graph G is a proper coloring
and it maps c from V (G) to the set of colors such that (i) if uv ∈ E(G), then c(u) 6= c(v), and
(ii) for each vertex v ∈ V (G), |c(N(v))| ≥ min {r, d(v)}, whereN(v) denotes the set of vertices
adjacent to v, d(v) its degree and r is a positive integer. The r-dynamic chromatic number of
a graph G, written χr(G), is the minimum k such that G has an r-dynamic proper k-coloring.
In this paper we speculate only the graphs which are simple, finite, loopless and connected. For
all terms and definition which are not precisely described in this paper, we cite to [3]. The r-
dynamic chromatic number has been studied by many researcher, specifically in [1], [2], [4], [6],
[7], [8], [9], [10], [11], [12], [13], [17].

2 Preliminaries

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The Subdivision
graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G.
The line graph [5] of G denoted by L(G) is the graph whose vertex set is the edge set of G.
Two vertices of L(G) are adjacent whenever the corresponding edges of G are adjacent. The
para-line graph [18] of G is the line graph of the subdivision graph of G, which is denoted by
L(S(G)). An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that
|c(N(v))| ≥ min {r, d(v)}, for each v ∈ V (G). Para-line graphs are requisitioned in structural
chemistry.

3 Results

Lemma 3.1. [13] χr(G) ≥ min {r,∆(G)}+ 1

In this section, we determine the r-dynamic chromatic number of para-line graph of path, cy-
cle, complete graph, complete bipartite graph, fan graph, bistar graph, tadpole graph and lollipop
graph. Firstly we will find the lower bounds of r-dynamic chromatic number of the graphs and
we prove our theorems.
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Lemma 3.2. Let L(S(Pn)) be the Para-line graph of a Path graph Pn. The lower bound of
r-Dynamic Chromatic number of L(S(Pn)) is

χr(L(S(Pn))) ≥

{
2; r = 1,
3; r ≥ 2.

Proof. The vertex and edge set of Path graph is represented as follows.

V (Pn) = {ui : 1 ≤ i ≤ n} .
E (Pn) = {uiui+1 : 1 ≤ i ≤ n− 1} .

Let V (S(Pn)) = {ui, vj : 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1} where vi are the new vertices inserted on
the edge uiui+1 of Pn. The vertex set of the graph L(S(Pn)) is represented as V (L(S(Pn))) ={
eii, fi(i+1) : 1 ≤ i ≤ n− 1

}
, where eii are the vertices corresponding to the edge uivi and fij

are the vertices corresponding to the edge viuj .
For r = 1, based on the Lemma 2.1, we have χr(G) ≥ min {r,∆(G)}+ 1 such that
χr(L(S(Pn))) ≥ min {r,∆(L(S(Pn)))}+ 1 = r + 1 = 2.
For r ≥ 2, from the Lemma 2.1, we obtain χr(L(S(Pn))) ≥ min {r,∆(L(S(Pn)))} + 1 =
∆(L(S(Pn))) + 1 = 2 + 1 = 3. It concludes the proof.

Theorem 3.3. Let n ≥ 2, the r-Dynamic Chromatic number of L(S(Pn)) is

χr=1(L(S(Pn))) = 2.

χr≥2(L(S(Pn))) = 3.

Proof. The maximum and the minimum degrees of the graph L(S(Pn)) are obtained as
∆(L(S(Pn))) = 2 and δ(L(S(Pn))) = 1, respectively.
Case 1: r = 1
Proceeding from the Lemma 3.1, the lower bound is

χr(L(S(Pn))) ≥ 2.

To exhibit the upper bound, we describe a map c : V (L(S(Pn)))→ {c1, c2} as follows.

c(e11, f12, e22, f23, . . . , e(n−1)(n−1), f(n−1)n) = {c1, c2, c1, c2, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr=1(L(S(Pn))) ≤ 2.
Thus, χr=1(L(S(Pn))) = 2.
Case 2: r ≥ 2
Proceeding from the Lemma 3.1, the lower bound is

χr(L(S(Pn))) ≥ 3.

To exhibit the upper bound, we describe a map c : V (L(S(Pn)))→ {c1, c2, c3} as follows.

c(e11, f12, e22, f23, . . . , e(n−1)(n−1), f(n−1)n) = {c1, c2, c3, c1, c2, c3, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Pn))) ≤ 3.
Thus, χr≥(L(S(Pn))) = 3. It conforms the proof.

Lemma 3.4. Let L(S(Cn)) be the Para-line graph of a Cycle graph Cn.
The lower bound of r-Dynamic Chromatic number of L(S(Cn)) is

χr(L(S(Cn))) ≥

{
2; r = 1,
3; r ≥ 2.



ON r-DYNAMIC COLORING OF PARA-LINE GRAPH 14

Proof. The vertex and edge set of Cycle graph is represented as follows.

V (Cn) = {ui : 1 ≤ i ≤ n} .
E (Cn) = {uiui+1, unu1 : 1 ≤ i ≤ n− 1} .

Let V (S(Cn)) = {ui, vi : 1 ≤ i ≤ n} where {vi : 1 ≤ i ≤ n− 1} are the new vertices inserted
on the edge uiui+1 and vn is the new vertex inserted on the edge unu1 ofCn. Let V (L(S(Cn))) ={
eii, fi(i+1) : 1 ≤ i ≤ n− 1

}
∪ {enn, fn1}, where eii are the vertices corresponding to the edge

uivi and fij are the vertices corresponding to the edge viuj .
For r = 1, from the Lemma 2.1, we have χr(G) ≥ min {r,∆(G)}+1 such that χr(L(S(Cn))) ≥
min {r,∆(L(S(Cn)))}+ 1 = r + 1 = 2.
For r ≥ 2, from the Lemma 2.1, we obtain χr(L(S(Cn))) ≥ min {r,∆(L(S(Cn)))} + 1 =
∆(L(S(Cn))) + 1 = 2 + 1 = 3. It concludes the proof.

Theorem 3.5. Let n ≥ 3, the r-Dynamic Chromatic number of L(S(Cn)) is

χr=1(L(S(Cn))) = 2.

χr≥2(L(S(Cn))) =

{
3; 2n ≡ 0(mod 3),
4; 2n ≡ 1, 2(mod 3).

Proof. The maximum and the minimum degrees of the graph L(S(Cn)) are obtained as
∆(L(S(Cn))) = δ(L(S(Cn))) = 2.
Case 1: r = 1
In reference to the Lemma 3.3, the lower bound is

χr(L(S(Cn))) ≥ 2.

To exhibit the upper bound, we describe a map c : V (L(S(Cn)))→ {c1, c2} as follows.

c(e11, f12, e22, f23, . . . , enn, fn1) = {c1, c2, c1, c2, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Cn))) ≤ 2.
Thus, χr=1(L(S(Cn))) = 2.
Case 2: r ≥ 2
Subcase(i): 2n ≡ 0 (mod 3)
In reference to the Lemma 3.3, the lower bound is

χr(L(S(Cn))) ≥ 3.

To expose the upper bound, we describe a map c : V (L(S(Cn)))→ {c1, c2, c3} as follows.

c(e11, f12, e22, f23, . . . , enn, fn1) = {c1, c2, c3, c1, c2, c3, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Cn))) ≤ 3.
Thus, χr=2(L(S(Cn))) = 3, 2n ≡ 0 (mod 3).
Subcase(ii): 2n ≡ 1, 2 (mod 3)
In reference to the Lemma 3.3, the lower bound is

χr(L(S(Cn))) ≥ 3.

To exhibit the upper bound, we describe a map c : V (L(S(Cn)))→ {c1, c2, c3, c4} as follows.
For 2n ≡ 1(mod 3),

c(e11, f12, . . . , enn, fn1) = {c1, c2, c3, c1, c2, c3, . . . , c1, c2, c3, c4}

For 2n ≡ 2(mod 3),

c(e11, f12, . . . , enn, fn1) = {c1, c2, c3, c4, c1, c2, c3, c4, c1, c2, c3, . . . , c1, c2, c3}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Cn))) ≤ 4.
Thus, χr≥2(L(S(Cn))) = 4, 2n ≡ 1, 2 (mod 3). It conforms the proof.
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Lemma 3.6. Let L(S(Kn)) be the Para-line graph of a Complete graph Kn. The lower bound
of r-Dynamic Chromatic number of L(S(Kn)) is

χr(L(S(Kn))) ≥

{
n− 1; 1 ≤ r ≤ ∆(L(S(Kn)))− 1,
∆ + 1; r ≥ ∆(L(S(Kn))).

Proof. The vertex and edge set of Complete graph is represented as follows.

V (Kn) = {ui : 1 ≤ i ≤ n} .
E (Kn) = {uiuj : 1 ≤ i, j ≤ n, i < j} .

Let V (S(Kn)) = {ui, vij : 1 ≤ i, j ≤ n, i < j} where vij are the new vertices inserted on the
edge uiuj of Kn. The vertex set of the graph L(S(Cn)) is represented as
V (L(S(Kn))) = {ei,ij , ej,ij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, i 6= j}, where ei,ij are the vertices cor-
responding to the edges uivij(i < j) and ej,ij are the vertices corresponding to the edges
ujvij(i > j).
Clearly the vertices {ei,ij : 1 ≤ i ≤ n, 2 ≤ j ≤ n} induces a clique of order Kn−1 in L(S(Kn)).
For 1 ≤ r ≤ ∆(L(S(Kn))) − 1, χr(L(S(Kn))) ≥ n − 1. For r ≥ ∆(L(S(Kn))), based on the
Lemma 2.1, we obtain χr(L(S(Kn))) ≥ min {r,∆(L(S(Kn)))} + 1 = ∆(L(S(Kn))) + 1. It
concludes the proof.

Theorem 3.7. Let n ≥ 6, the r-Dynamic Chromatic number of L(S(Kn)) is

χr(L(S(Kn))) =

{
n− 1; 1 ≤ r ≤ ∆− 1,
n; r ≥ ∆.

Proof. The maximum and the minimum degrees of the graph L(S(Kn)) are obtained as
∆(L(S(Kn))) = δ(L(S(Kn))) = n− 1.
Case 1: 1 ≤ r ≤ ∆− 1
In reference to the Lemma 3.5, the lower bound is

χr(L(S(Kn))) ≥ n− 1.

To exhibit the upper bound, we describe a map c : V (L(S(Kn))) → {c1, c2, . . . , cn−1} as
follows.

c(e1,12, e1,13, . . . , e1,1n) = {c1, c2, . . . , cn−1}
c(e2,12, e2,23, . . . , e2,2n) = {c2, c3, . . . , cn−1, c1}

Proceeding in the same manner we define,

c(en−1,1(n−1), en−1,2(n−1), . . . , en−1,(n−1)n) = {cn−1, c1, c2, . . . , cn−2}

c(en,1n, en,2n, . . . , en,(n−1)n) = {c1, c2, . . . , cn−1}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Kn))) ≤ n− 1.
Thus, χ1≤r≤∆−1(L(S(Kn))) = n− 1.
Case 2: r ≥ ∆

In reference to the Lemma 3.5, the lower bound is

χr(L(S(Kn))) ≥ n.

To exhibit the upper bound, we describe a map c : V (L(S(Kn)))→ {c1, c2, . . . , cn} as follows.

c(e1,12, e1,13, . . . , e1,1n) = {c1, c2, . . . , cn−1}
c(e2,12, e2,23, . . . , e2,2n) = {cn, c2, c3, . . . , cn−1}
c(e3,13, e3,23, . . . , e3,3n) = {cn, c1, c3, . . . , cn−1}

Proceeding in the same manner we define,

c(en,1n, en,2n, . . . , en,(n−1)n) = {cn, c1, c2, . . . , cn−2}
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It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Kn))) ≤ n.
Thus, χr≥∆(L(S(Kn))) = n. It conforms the proof.

Lemma 3.8. Let L(S(Km,n)) be the Para-line graph of a Complete bipartite graph Km,n. The
lower bound of r-Dynamic Chromatic number of L(S(Km,n)) is

χr(L(S(Km,n))) ≥

{
n; 1 ≤ r ≤ ∆(L(S(Km,n)))− 1,
∆ + 1; r ≥ ∆(L(S(Km,n))).

Proof. The vertex and edge set of Complete bipartite graph is represented as follows.

V (Km,n) = {xi, yj : 1 ≤ i ≤ m,m+ 1 ≤ j ≤ m+ n} .
E (Km,n) = {xiyj : 1 ≤ i ≤ m,m+ 1 ≤ j ≤ m+ n} .

Let V (S(Km,n)) = {xi, yj , vij} where vij are the new vertices inserted on the edge xiyj of
Km,n. The vertex set of the graph L(S(Km,n)) is represented as
V (L(S(Km,n))) = {ei,ij ∪ ej,ij : 1 ≤ i ≤ m,m+ 1 ≤ j ≤ m+ n}.
Clearly the vertices {ei,ij : 1 ≤ i ≤ m,m+ 1 ≤ j ≤ m+ n} induces a clique of order Kn in
L(S(Km,n)).
For 1 ≤ r ≤ ∆(L(S(Km,n)))− 1, we have χr(L(S(Km,n))) ≥ n.
For r ≥ ∆(L(S(Km,n))), based on the Lemma 2.1, we obtain
χr(L(S(Km,n))) ≥ min {r,∆(L(S(Km,n)))} + 1 = ∆(L(S(Km,n))) + 1. It concludes the
proof.

Theorem 3.9. Let m,n ≥ 3, m < n, the r-Dynamic Chromatic number of L(S(Km,n)) is

χr(L(S(Km,n))) =

{
n; 1 ≤ r ≤ ∆− 1,
m+ n; r ≥ ∆.

Proof. The maximum and the minimum degrees of the graph L(S(Km,n)) are obtained as
∆(L(S(Km,n))) = n and δ(L(S(Km,n))) = m.
Case 1: 1 ≤ r ≤ ∆− 1
In reference to the Lemma 3.7, the lower bound is

χr(L(S(Km,n))) ≥ n.

To exhibit the upper bound, we describe a map c : V (L(S(Km,n))) → {c1, c2, . . . , cn} as fol-
lows.

c(ei,i(m+1), ei,i(m+2), . . . , ei,i(m+n)) = {c1, c2, . . . , cn} , for 1 ≤ i ≤ m.

c(e(m+1),1(m+1), e(m+1),2(m+1), . . . , e(m+1),m(m+1)) = {c2, c3, . . . , cm+1}

c(e(m+2),1(m+2), e(m+2),2(m+2), . . . , e(m+2),m(m+2)) = {c1, c3, c4, . . . , cm+1}

Proceeding in the same manner we define,

c(e(m+n),1(m+n), e(m+n),2(m+n), . . . , e(m+n),m(m+n)) = {c1, c2, . . . , cm}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Km,n))) ≤ n.
Thus, χ1≤r≤∆−1(L(S(Km,n))) = n.
Case 2: r ≥ ∆

From the the Lemma 3.7, the lower bound is

χr(L(S(Km,n))) ≥ ∆ + 1 = n+ 1.

To exhibit the upper bound, we describe a map c : V (L(S(Km,n))) → {c1, c2, . . . , cm+n} as
follows.

c(ei,i(m+1), ei,i(m+2), . . . , ei,i(m+n)) = {c1, c2, . . . , cn} , for 1 ≤ i ≤ m.

c(ej,1j , ej,2j , . . . , ej,mj) = {cm+1, cm+2, . . . , cm+n} , for m+ 1 ≤ j ≤ m+ n.
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It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Km,n))) ≤ m+ n.
Thus, χr≥∆−1(L(S(Km,n))) = m+ n.
It completes the proof.

Lemma 3.10. Let L(S(Bm,n)) be the Para-line graph of a Bistar graph Bm,n. The lower bound
of r-Dynamic Chromatic number of L(S(Bm,n)) is

χr(L(S(Bm,n))) ≥

{
n+ 1; 1 ≤ r ≤ ∆(L(S(Bm,n)))− 1,
∆ + 1; r ≥ ∆(L(S(Bm,n))).

Proof. The vertex and edge set of Bistar graph is represented as follows.

V (Bm,n) = {ui, vj : 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1} .
E (Bm,n) = {u1v1, u1ui, v1vj : 2 ≤ i ≤ m, 2 ≤ j ≤ n} .

The vertex set of subdivision graph of Bistar graph is represented as
V (S(Bm,n)) = {ui, vj , u1j , v1k, w11} where u1j are the new vertices inserted on the edge u1uj ,
v1j are the new vertices inserted on the edge v1vj and w11 is the new vertex inserted on the edge
u1v1 of Bm,n.
The vertex set of Para-line graph of Bistar graph L(S(Bm,n)) is represented as
V (L(S(Bm,n))) = {e1,1j : 1 ≤ j ≤ m+ 1} ∪ {ej,1j : 2 ≤ j ≤ m+ 1}
∪ {f1,1k : 1 ≤ k ≤ n+ 1} ∪ {fk,1k : 2 ≤ k ≤ n+ 1}, where e1,11 is the vertex corresponding to
the edges u1w11, e1,1j are the vertices corresponding to the edges u1u1j , ej,1j are the vertices
corresponding to the edges uju1j . Similarly f1,11 is the vertex corresponding to the edges v1w11,
f1,1j are the vertices corresponding to the edges v1v1j , fj,1j are the vertices corresponding to the
edges vjv1j .
For 1 ≤ r ≤ δ(L(S(Bm,n))), the vertices V = {f1,1j : 2 ≤ j ≤ n+ 1} induce a clique of order
Kn + 1 in L(S(Bm,n)). Thus, we have χr(L(S(Bm,n))) ≥ n+ 1.
For r ≥ ∆(L(S(Bm,n))), based on the Lemma 2.1, we obtain
χr(L(S(Bm,n))) ≥ min {r,∆(L(S(Bm,n)))}+ 1 = ∆(L(S(Bm,n))) + 1.
It concludes the proof.

Theorem 3.11. Let m ≥ 3, m < n, the r-Dynamic Chromatic number of L(S(Bm,n)) is

χr(L(S(Bm,n))) =

{
n+ 1; 1 ≤ r ≤ ∆− 1,
n+ 2; r ≥ ∆.

Proof. The maximum and the minimum degrees of the graph L(S(Bm,n)) are obtained
∆(L(S(Bm,n))) = n+ 1 and δ(L(S(Bm,n))) = 1.
Case 1: 1 ≤ r ≤ ∆− 1
In reference to the Lemma 3.9, the lower bound is

χr(L(S(Bm,n))) ≥ n+ 1.

To exhibit the upper bound, we describe a map c : V (L(S(Bm,n))) → {c1, c2, . . . , cn+1} as
follows.

c(f1,1j) = cj , for 1 ≤ j ≤ n+ 1.

c(e1,1j) = cj+1, for 1 ≤ j ≤ m+ 1.

c(ei,1i) = c1, for 2 ≤ i ≤ m+ 1.

c(fj,1j) = c1, 2 ≤ j ≤ n+ 1.

For 2 ≤ i ≤ m+ 1 and 2 ≤ j ≤ n+ 1,
It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Bm,n))) ≤ n+ 1.
Thus, χ1≤r≤∆−1(L(S(Bm,n))) = n+ 1.
Case 2: r ≥ ∆

In reference to the Lemma 3.9, the lower bound is
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χr(L(S(Bm,n))) ≥ n+ 2.

To exhibit the upper bound, we describe a map c : V (L(S(Bm,n))) → {c1, c2, . . . , cn+2} as
follows.

c(f1,1j) = cj , for 1 ≤ j ≤ n+ 1.

c(e1,11, e1,12, . . . , e1,1(m+1)) = {cn+2, c2, c3, . . . , cm+1}

c(ei,1i) = c1, for 2 ≤ i ≤ m+ 1.

c(fj,1j) = cn+2, for 2 ≤ j ≤ n+ 1.

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Bm,n))) ≤ n+ 2.
Thus, χr≥∆(L(S(Bm,n))) = n+ 2.
It completes the proof.

Lemma 3.12. Let L(S(Tm,n)) be the Para-line graph of a Tadpole graph Tm,n. The lower bound
of r-Dynamic Chromatic number of L(S(Tm,n)) is

χr(L(S(Tm,n))) ≥

{
3; r = 1and 2,
4; r ≥ 3.

Proof. The vertex and edge set of Tadpole graph is represented as follows.

V (Tm,n) = {ui : 1 ≤ i ≤ m+ n} .
E (Tm,n) = {uiui+1, umu1, ujuj+1 : 1 ≤ i ≤ m− 1,m ≤ j ≤ m+ n− 1} .

Let V (S(Tm,n)) = {ui, vij , i < j} where vij are the new vertices inserted on the edge uiuj . The
vertex set of Para-line graph of Tadpole graph L(S(Tm,n)) is represented as
V (L(S(Tm,n))) = {ei,jk}, where ei,jk are the vertex corresponding to the edges uivjk of Tm,n.
For r = 1 and 2, the vertices V = {em,(m−1)m, em,1m, em,m(m+1)} induce a clique of order K3
in L(S(Tm,n)). Thus, χr(L(S(Tm,n))) ≥ 3 .
For r ≥ 3, based on the Lemma 2.1, we obtain
χr(L(S(Tm,n))) ≥ min {r,∆(L(S(Tm,n)))} + 1 = ∆(L(S(Tm,n))) + 1 = 3 + 1 = 4. It
concludes the proof.

Theorem 3.13. Let m > 4, n ≥ 3, the r-Dynamic Chromatic number of L(S(Tm,n)) is

χr=1,2(L(S(Tm,n))) = 3.

χr≥3(L(S(Tm,n))) = 4.

Proof. The maximum and the minimum degrees of the graph L(S(Tm,n)) are obtained as
∆(L(S(Tm,n))) = 3 and δ(L(S(Tm,n))) = 1.
Case 1: r = 1 and 2
In reference to the Lemma 3.11, the lower bound is

χr(L(S(Tm,n))) ≥ 3.

To exhibit the upper bound, we describe a map c : V (L(S(Tm,n)))→ {c1, c2, c3} as follows.

c(e1,12, e2,12, . . . , em,(m−1)m, em,1m, e1,1m) = {c1, c2, c1, c2, . . . , c1, c2}

c(em,m(m+1), em+1,m(m+1), . . . , e(m+n),(m+n−1)(m+n)) = {c3, c1, c2, c1, c2, . . . , }

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Tm,n))) ≤ 3.
Thus, χr=1,2(L(S(Tm,n))) = 3.
Case 2: r ≥ 3
In reference to the Lemma 3.11, the lower bound is

χr(L(S(Tm,n))) ≥ 4.
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To exhibit the upper bound, we describe a map c : V (L(S(Tm,n)))→ {c1, c2, c3, c4} as follows.

c(e1,12, e2,12, . . . , em,1m, e1,1m) =

{
c1, c2, c3, c1, c2, c3, . . . , c1, c2, c3; 2n ≡ 0 (mod 3)
c1, c2, c3, c4, c1, c2, c3, . . . , c1, c2, c3; 2n ≡ 1 (mod 3)

For 2n ≡ 2(mod 3)

c(e1,12, e2,12, . . . , em,1m, e1,1m) = {c1, c2, c3, c4, c1, c2, c3, c4, c1, c2, c3, . . . , c1, c2, c3}

For 2n ≡ 0(mod 3)

c(em,m(m+1), em+1,m(m+1), . . . , e(m+n),(m+n−1)(m+n)) = {c4, c3, c2, c4, c3, c2, . . .}

For 2n ≡ 1, 2(mod 3)

c(em,m(m+1), em+1,m(m+1), . . . , e(m+n),(m+n−1)(m+n)) = {c4, c1, c2, c4, c1, c2, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Tm,n))) ≤ 4.
Thus, χr≥3(L(S(Tm,n))) = 4. It conforms the proof.

Lemma 3.14. Let L(S(Lm,n)) be the Para-line graph of a Lollipop graph Lm,n. The lower
bound of r-Dynamic Chromatic number of L(S(Lm,n)) is

χr(L(S(Lm,n))) ≥

{
m; 1 ≤ r ≤ ∆(L(S(Lm,n)))− 1,
∆ + 1; r ≥ ∆(L(S(Lm,n))).

Proof. The vertex and edge set of Lollipop graph is represented as follows.

V (Lm,n) = {ui : 1 ≤ i ≤ m+ n} .
E (Lm,n) = {uiuj : 1 ≤ i, j ≤ m, i < j} ∪ {uiui+1 : m ≤ i ≤ m+ n− 1} .

Let V (S(Lm,n)) = {ui, vij , i < j} where vij are the new vertices inserted on the edge uiuj
of Lm,n. The vertex set of Para-line graph of Lollipop graph L(S(Lm,n)) is represented as
V (L(S(Lm,n))) = {ei,jk}, where ei,jk are the vertex corresponding to the edges uivjk.
For 1 ≤ r ≤ δ(L(S(Lm,n))− 1, the vertices V = {em,im, em,m(m+1) : 1 ≤ i ≤ m− 1} induce a
clique of order Km in L(S(Lm,n)). Thus, χr(L(S(Lm,n))) ≥ m.
For r ≥ ∆(L(S(Lm,n))), based on the Lemma 2.1, we obtain
χr(L(S(Lm,n))) ≥ min {r,∆(L(S(Lm,n)))}+1 = ∆(L(S(Lm,n)))+1. It concludes the proof.

Theorem 3.15. Let m ≥ 5, n ≥ 3, the r-Dynamic Chromatic number of L(S(Lm,n)) is

χr(L(S(Lm,n))) =

{
m; 1 ≤ r ≤ ∆(L(S(Lm,n)))− 1,
m+ 1; r ≥ ∆(L(S(Lm,n))).

Proof. The maximum and the minimum degrees of the graph L(S(Lm,n)) are obtained as
∆(L(S(Lm,n))) = m and δ(L(S(Lm,n))) = 1.
Case 1: 1 ≤ r ≤ ∆(L(S(Lm,n)))− 1
In reference to the Lemma 3.13, the lower bound is

χr(L(S(Lm,n))) ≥ m.

To exhibit the upper bound, we describe a map c : V (L(S(Lm,n))) → {c1, c2, . . . , cm} as
follows.

c(e1,12, e1,13, . . . , e1,1m) = {c1, c2, . . . , cm−1}
c(e2,12, e2,23, . . . , e2,2m) = {c2, c3, . . . , cm−1, c1}

Proceeding in the same manner finally we define,

c(em,1m, em,2m, . . . , em,(m−1)m) = {c1, c2, . . . , cm−1}

c(em,m(m+1), em+1,m(m+1), . . . , e(m+n),(m+n−1)(m+n)) = {cm, c1, c2, cm, c1, c2, . . . , }
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It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Lm,n))) ≤ m. Thus, χ1≤r≤∆−1(L(S(Lm,n))) = m.
Case 2: r ≥ ∆

In reference to the Lemma 3.13, the lower bound is

χr(L(S(Lm,n))) ≥ m+ 1.

To exhibit the upper bound, we describe a map c : V (L(S(Lm,n)))) → {c1, c2, . . . , cm+1} as
follows.

c(e1,12, e1,13, . . . , e1,1m) = {c1, c2, . . . , cm−1}
c(e2,12, e2,23, . . . , e2,2m) = {cm, c2, c3, . . . , cm−1}

Proceeding in the same manner finally we define

c(em,1m, em,2m, . . . , em,(m−1)m) = {cm, c1, c2, . . . , cm−2}

c(em,m(m+1), em+1,m(m+1), . . . , e(m+n),(m+n−1)(m+n)) = {cm+1, cm−1, c1, cm+1, cm−1, c1, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(Lm,n))) ≤ m+ 1. Thus, χr≥∆(L(S(Lm,n))) = m+ 1.

Lemma 3.16. Let L(S(F1,n)) be the Para-line graph of a Fan graph F1,n. The lower bound of
r-Dynamic Chromatic number of L(S(F1,n)) is

χr(L(S(F1,n))) ≥

{
n; 1 ≤ r ≤ ∆− 1,
∆ + 1; r ≥ ∆.

Proof. The vertex and edge set of Fan graph is represented as follows.

V (F1,n) = {ui : 1 ≤ i ≤ n+ 1} .
E (F1,n) = {u1ui : 2 ≤ i ≤ n+ 1} ∪ {uiui+1 : 2 ≤ i ≤ n− 1} .

Let V (S(F1,n)) = {ui, vij , i < j} where vij are the new vertices inserted on the edge uiuj of
F1,n. The vertex set of Para-line graph of Fan graphL(S(F1,n)) is represented as V (L(S(F1,n))) =
{e1,1j , ej,1j : 2 ≤ j ≤ n+ 1} ∪

{
ej,j(j+1), e(j+1),j(j+1) : 2 ≤ j ≤ n

}
.

For 1 ≤ r ≤ δ(L(S(F1,n)), the vertices V = {e1,1j : 2 ≤ j ≤ n+ 1} induce a clique of order Kn

in L(S(F1,n)). Thus, χr(L(S(F1,n))) ≥ n .
For r ≥ ∆(L(S(F1,n))), based on the Lemma 2.1, we obtain
χr(L(S(F1,n))) ≥ min {r,∆(L(S(F1,n)))}+1 = ∆(L(S(F1,n)))+1. It concludes the proof.

Theorem 3.17. Let n ≥ 6, the r-Dynamic Chromatic number of L(S(F1,n)) is

χr(L(S(F1,n))) =

{
n; 1 ≤ r ≤ ∆− 1,
n+ 1; r ≥ ∆.

Proof. The maximum and the minimum degrees of the graph L(S(F1,n)) are obtained as
∆(L(S(F1,n))) = n and δ(L(S(F1,n))) = 2.
Case 1: 1 ≤ r ≤ ∆(L(S(F1,n)))− 1
From the Lemma 3.15, the lower bound is

χr(L(S(F1,n))) ≥ n.

To exhibit the upper bound, we describe a map c : V (L(S(F1,n)))→ {c1, c2, . . . , cn} as follows.

c(e1,12, e1,13, . . . , e1,1(n+1)) = {c1, c2, . . . , cn}

c(ej,1j) = cn, for 2 ≤ j ≤ n.
c(en+1,1(n+1)) = c1

c(e2,23, e3,23, . . . , en,n(n+1), e(n+1),n(n+1)) = {c2, c3, . . . , cn−1, c2, c3, c4, c2, c3, c4, . . .}
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It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(F1,n))) ≤ n.
Thus, χ1≤r≤∆−1(L(S(F1,n))) = n.
Case 2: r ≥ ∆(L(S(F1,n)))
Based on the Lemma 3.15, the lower bound is

χr(L(S(F1,n))) ≥ ∆ + 1 = n+ 1.

To exhibit the upper bound, we describe a map c : V (L(S(F1,n))) → {c1, c2, . . . , cn+1} as
follows.

c(e1,12, e1,13, . . . , e1,1(n+1)) = {c1, c2, . . . , cn}

c(ej,1j) = cn+1, for 2 ≤ j ≤ n+ 1.

c(e2,23, e3,23, . . . , en,n(n+1), e(n+1),n(n+1)) = {c2, c3, c4, . . . , cn, c1, c2, c3, c1, c2, c3, . . .}

It is easy to explicit that c is a r-Dynamic Coloring.
Hence, χr(L(S(F1,n))) ≤ n+ 1.
Thus, χr≥∆(L(S(F1,n))) = n+ 1. It conforms the proof.
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