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Abstract A proper h−colorable graphK is claimed to be equitably h−colorable if the vertex
set of K can be partioned into h independent color classes V1, V2, ..., Vh such that the condition∣∣∣|Vi′ | − ∣∣∣Vj′ ∣∣∣∣∣∣ ≤ 1 holds for all different pairs of (i

′
, j
′
). And the smallest integer h is called

equitable chromatic number of K [5, 7]. In this paper, we consider an equitable coloring of
extended corona product of two graphs K and H . In particular, we study the cases where K
and H are complete graphs, cycles and paths. We also discussed the probability mass function,
chromatic mean, and chromatic variance of these graph products.

1 Introduction

Many real world situations can coveniently be described by means of a diagram consisting of set
of points together with lines joining certain pairs of these points [1].

The syllabary of an equitable coloring was first initiated by W. Meyer in the year 1973 [8].
Tucker’s paper [14], in which nodes represent garbage collection routes and adjacency of two
such vertices when the corresponding routes should not be run on the same day. Then Meyer
come up with the solution that equal number of routes run on every day in a week.

The graph K is equitably colored with h colors, if the absolute differnce between thier color
classes are atmost one[6, 9]. The smallest integer h for which K is equitably h-colorable is
known as the equitable chromatic number of K and denoted by χ=(K). Since an equitable
coloring is a proper vertex coloring, we have

χ=(K) ≥ χ(K),

where χ(K) is the chromatic number of graph K.

2 Preliminaries

The corona K1 ◦K2 of two graphs K1 and K2 (where Ki has pi points and qi lines) is defined as
the graph K obtained by taking one copy of K1 and pi copies of K2, and then joining by a line
the i

′
th point of K1 to every point in the i

′
th copy of K2 [4].

The extended corona K1 • K2 of two graphs K1 and K2 is a graph obtained by taking the
corona K1 ◦ K2 and joining each vertex of i

′
th copy of K2 to every vertex of j

′
th copy of K2,

provided the vertices vi′ and vj′ are adjacent in K1 [2].
A path is a non-empty graph P = (V (P ), E(P )) of the form V (P ) = {a1, a2, ..., as} and

E(P ) = {a1a2, a2a3, ..., as−1as}. The number vertices of a path is its length [1, 3].
A cycle is a closed trail r ≥ 3, for which each vertices are distict(expect, of course first and

last) [3].
A complete graph Kq has q points and all two-element subsets of Kq as edges [3, 10].
Let {c1, c2, c3, . . . , ch} be a set of colors used in a proper h-coloring C of K and let θ(ci)

denote the number of times a particular color ci is assigned to nodes of K [6]. Let X be a
random variable (r.v) which denotes the color of an arbitrarily chosen vertex in K. Since the
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sum of all weights of colors of K is the order of K, the real valued function f(i) defined by

f(i) =


θ(ci)

|V (K)|
i = 1, 2, 3, ..., h;

0; elsewhere

is the probability mass function(p.m.f) of the X [11, 12, 13]. Here we say f(i) is the p.m.f of
the graph K with respect to the given coloring C.

The coloring mean [11, 12, 13] of a coloring C of a given graph K is denoted by µc(K) and
defined to be

µc(K) =

h∑
i=1

iθ(ci)

h∑
i=1

θ(ci)

The coloring variance [11, 12, 13] of a coloring C of a given graph K is denoted by σ2
c(K)

and defined to be

σ2
c(K) =

h∑
i=1

i2θ(ci)

h∑
i=1

θ(ci)

−


h∑
i=1

iθ(ci)

h∑
i=1

θ(ci)


2

The chromatic mean and variance corresponding to an equitable coloring of a graphK is defined
as follows [12]. A coloring mean of a graph K, with respect to a proper coloring C is said to be
an equitable chromatic mean or a χe chromatic mean of K, if C is the optimal (in the sense of
the number of colors) equitable coloring of K. The χe-chromatic mean of a graph K is denoted
by µχe

(K).

3 Results

Theorem 3.1. The equitable coloring of extended corona of complete graph(Kq) with complete
graph(Kp) is given by

χ=(Kq •Kp) = pq, for p, q ≥ 3

Proof. Let V (Kq) = {tw : 1 ≤ w ≤ q} and V (Kp)={t
′

w′
: 1 ≤ w

′ ≤ p}. Let V (Kq • Kp) =

{tw : 1 ≤ w ≤ q}
⋃

{t
′

ww′
: 1 ≤ w ≤ q, 1 ≤ w′ ≤ p} be the node set of Kq •Kp.

From the definition of Extended Corona, the graph Kq •Kp is obtained by taking corona of
Kq with Kp and joining each vertex of ith copy of Kp to every vertex of jth copy of Kp provided
that ti and tj are adjacent in Kq.

For 1 ≤ w ≤ q, grant the color w to the vertices tw in Kq. Now for q-copies of Kp and
for 2 ≤ w ≤ q, grant the color as w − 1 to t

′

w1 and when w = 1, the color q to t
′

w1. And for
1 ≤ w ≤ q, we have the color (w

′ − 1)q + w to t
′

ww′
where 2 ≤ w′ ≤ p.

Each color 1, 2, 3, ..., q cropped up twice, all the remaining color q + 1, q + 2, ..., pq cropped
once each respectively, and the absolute difference between the color classes is at most 1. The
resultant graph Kq •Kp is equitably colored. The upper bound,

χ=(Kq •Kp) ≤ pq, for p, q ≥ 3.

As above, we know that χ=(K) ≥ χ(K) and χ(Kq •Kp) = pq. And we have χ=(Kq •Kp) ≥
χ(Kq •Kp) = pq. The lower bound becomes,

χ=(Kq •Kp) ≥ pq, for p, q ≥ 3.

Therefore, the extended corona product of Kq with Kp graph is

χ=(Kq •Kp) = pq, for p, q ≥ 3.
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In χ=(Kq •Kp), we have θ(ci) = 2 for 1 ≤ i ≤ q and θ(ci) = 1 for q + 1 ≤ i ≤ pq.

Parameters of χ=(Kq •Kp)

• Probability Mass Function

f(i) =


2

q(p+ 1)
; if 1 ≤ i ≤ q

1
q(p+ 1)

; if q + 1 ≤ i ≤ pq

0; otherwise

• Coloring Mean

µχe
(Kq •Kp) =


q + 1

2
; if 1 ≤ i ≤ q

qp+ q + 1
2

; if q + 1 ≤ i ≤ pq

• Coloring Variance

σ2
χe
(Kq •Kp) =


q2 − 1

12
; if 1 ≤ i ≤ q

p3q2 − 3p2q2 + 3pq2 − p− q2 + 1
12(p− 1)

; if q + 1 ≤ i ≤ pq

Theorem 3.2. The equitable coloring of extended corona of complete graph(Kq) with path
graph(Ps) is given by

χ=(Kq • Ps) = 2q, for q ≥ 3, s ≥ 2

Proof. Let V (Kq) = {tw : 1 ≤ w ≤ q} and V (Ps)={hv : 1 ≤ v ≤ s}. Let V (Kq • Ps) =

{tw : 1 ≤ w ≤ q}
⋃

{t
′

wv : 1 ≤ w ≤ q, 1 ≤ v ≤ s} be the node set of Kq • Ps.
From the definition of Extended Corona, the graph Kq • Ps is obtained by taking corona of

Kq with Ps and joining each vertex of ith copy of Ps to every vertex of jth copy of Ps provided
that ti and tj are adjacent in Kq.

For 1 ≤ w ≤ q, we grant the color w to the vertices tw in Kq. Now for q-copies of Ps and
for 2 ≤ w ≤ q, grant the color as w − 1 to hw(2v) where 1 ≤ v ≤

⌊
s
2

⌋
. When w = 1 we have

the color q to hw(2v) 1 ≤ v ≤
⌊
s
2

⌋
. For 1 ≤ w ≤ q, grant the color as q + w to hw(2v−1) where

1 ≤ v ≤
⌈
s
2

⌉
.

If s is even, each color 1, 2, ..., q will crop up
(
s
2 + 1

)
and the color q + 1, q + 2, ..., 2q will

crop up s
2 respectively.

If s is odd, each color 1, 2, ..., 2q will crop up
⌈
s
2

⌉
respectively.

The absolute difference between the color classes is at most one. The resultant graph Kq •Ps
is equitably colored. The upper bound,

χ=(Kq • Ps) ≤ 2q, for s ≥ 2, q ≥ 3

As above, we know that χ=(K) ≥ χ(K) and χ(Kq • Ps) = 2q, and we have χ=(Kq • Ps) ≥
χ(Kq • Ps) = 2q. The lower bound becomes,

χ=(Kq • Ps) ≥ 2q, for s ≥ 2, q ≥ 3.

Therefore, the extended corona product of Kq with Ps is

χ=(Kq • Ps) = 2q, for s ≥ 2, q ≥ 3.
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Parameters of χ=(Kq • Ps)

• Probability Mass Function

(i) If s is odd

f(i) =


1
2q

; if 1 ≤ i ≤ 2q

0; otherwise

(ii) If s is even

f(i) =


s+ 2

2q(s+ 1)
; if 1 ≤ i ≤ q

s

2q(s+ 1)
; if q + 1 ≤ i ≤ 2q

0; otherwise

• Coloring Mean

(i) If s is odd

µχe(Kq • Ps) =
{

2q + 1
2

; if 1 ≤ i ≤ 2q

(ii) If s is even

µχe(Kq • Ps) =


q + 1

2
; if 1 ≤ i ≤ q

3q + 1
2

; if q + 1 ≤ i ≤ 2q

• Coloring Variance

(i) If s is odd

σ2
χe
(Kq • Ps) =

{
4q2 − 1

12
; if 1 ≤ i ≤ 2q

(ii) If s is even

σ2
χe
(Kq • Ps) =


q2 − 1

12
; if 1 ≤ i ≤ q

q2 − 1
12

; if q + 1 ≤ i ≤ 2q

Theorem 3.3. The equitable coloring of extended corona of path graph(Ps) with complete graph(Kq)
is given by

χ=(Ps •Kq) =

{
2q + 1; if s = 3, 4, 6; q ≥ 3
2(q + 1); if s = 5 & s ≥ 7; q ≥ 3

Proof. Let V (Ps)={hv : 1 ≤ v ≤ s} and V (Kq) = {tw : 1 ≤ w ≤ q}. Let V (Ps • Kq) =
{hv : 1 ≤ v ≤ s}

⋃
{tvw : 1 ≤ v ≤ s, 1 ≤ w ≤ q} be the node set of Ps •Kq.

From the definition of Extended Corona, the graph Ps •Kq is obtained by taking corona of
Ps with Kq and joining each vertex of ith copy of Kq to every vertex of jth copy of Kq provided
that hi and hj are adjacent in Ps.
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(i) Case 1: If q ≥ 3, s = 3, 4, 6
Subcase 1: When q ≥ 3, s = 3, 6
For 1 ≤ v ≤ s, we grant the color v to the vertices hv in Ps. Now for s-copies of Kq, grant

the color to 1 to t21 and t51, 2 to t31 and t61, 3 to t41 and t11. And again the color 4 to t(2v−1)2, 5
to t(2v−1)3, 6 to t(2v−1)4,...,q+ 2 to t(2v−1)q where 1 ≤ v ≤

⌈
s
2

⌉
respectively. Also the color q+ 3

to t(2v)2, q + 4 to t(2v)3,...,2q + 1 to t(2v)q where 1 ≤ v ≤
⌊
s
2

⌋
respectively.

Subcase 2: When q ≥ 3, s = 4
For the graph Ps •Kq, we have the color 1 to h1 & h4, 2 to h2, 3 to h3 and 1 to t21, 2 to t31,

3 to t41 & 3 to t11 respectively.
Now the copies of complete graph Kq, for 1 ≤ v ≤ 2 we have the color w+2 to t(2v−1)w and

the color q + w + 1 to t(2v)w where 2 ≤ w ≤ q respectively.

(ii) Case 2: If q ≥ 3, s = 5 & s ≥ 7
Subcase 1: When s ≡ 0, 1, 3 mod 4
In Ps •Kq, the nodes hv (1 ≤ v ≤ s) of Ps have the color 1 to hv (v ≡ 1 mod 4), 2 to hv

(v ≡ 2 mod 4), 3 to hv (v ≡ 3 mod 4), 4 to hv (v ≡ 0 mod 4) respectively. When 1 ≤ v ≤ s,
for the nodes tvw of s copies of Kq we grant the color 1 to tv1 (v ≡ 2 mod 4), 2 to tv1 (v ≡ 3
mod 4), 3 to tv1 (v ≡ 0 mod 4), 4 to tv1 (v ≡ 1 mod 4). For the remaining nodes 1 ≤ v ≤

⌈
s
2

⌉
,

we grant the color 5 to t(2v−1)2, 6 to t(2v−1)3, 7 to t(2v−1)4,..., q + 3 to t(2v−1)q respectiely. The
color q + 4 to t(2v)2, q + 5 to t(2v)3,..., 2(q + 1) to t(2v)q where 1 ≤ v ≤

⌊
s
2

⌋
.

Subcase 2: When s ≡ 2 mod 4
For 1 ≤ v ≤ s in Ps we grant the color 1 to hv (v ≡ 1 mod 4), 2 to hv (v ≡ 2 mod 4), 3 to

hv (v ≡ 3 mod 4), 4 to hv (v ≡ 0 mod 4) respectively. And when 1 ≤ v ≤ s− 1, we grant the
color 1 to tv1 (v ≡ 2 mod 4), 2 to tv1 (v ≡ 3 mod 4), 3 to tv1 (v ≡ 0 mod 4), 4 to tv1 (v ≡ 1
mod 4) and when v = s, the color 3 to tv1 (v ≡ 2 mod 4). Again for 1 ≤ v ≤

⌈
s
2

⌉
, we grant the

5 to t(2v−1)2, 6 to t(2v−1)3,..., q + 3 to t(2v−1)q and q + 4 to t(2v)2, q + 5 to t(2v)3,..., 2(q + 1) to
t(2v)q.

The absolute difference between the color classes is at most 1. The resultant graph Ps •Kq

is equitably colored. The upper bound,

χ=(Ps •Kq) ≤

{
2q + 1; if s = 3, 4, 6; q ≥ 3
2(q + 1); if s = 5 & s ≥ 7; q ≥ 3

As above, we know that χ=(K) ≥ χ(K) and χ(Ps • Kq) = 2q. And we have χ=(Ps • Kq ≥
χ(Ps •Kq) = 2q. The lower bound becomes,

χ=(Ps •Kq) ≥ 2q, for s ≥ 2, q ≥ 3.

Therefore, the extended corona product of Ps with Kq graph is

2q ≤ χ=(Ps •Kq) ≤

{
2q + 1; if s = 3, 4, 6; q ≥ 3
2(q + 1); if s = 5 & s ≥ 7; q ≥ 3

Parameters of χ=(Ps •Kq)

• Probability Mass Function
For s = 5 & s ≥ 7, q ≥ 3
(i) If s ≡ 0, 2 mod 4

f(i) =


1

2q + 2
; if 1 ≤ i ≤ 2q + 2

0; otherwise

(ii) If s ≡ 1 mod 4

f(i) =


s+ 1

2s(q + 1)
; if i = 1; 4 ≤ i ≤ q + 3

s− 1
2s(q + 1)

; if i = 2, 3; q + 4 ≤ i ≤ 2(q + 1)

0; otherwise
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(iii) If s ≡ 3 mod 4

f(i) =


s+ 1

2s(q + 1)
; if i = 1, 2; 5 ≤ i ≤ q + 3

s− 1
2s(q + 1)

; if i = 3, 4; q + 4 ≤ i ≤ 2(q + 1)

0; otherwise

• Coloring Mean
For s = 5 & s ≥ 7, q ≥ 3
(i) If s ≡ 0, 2 mod 4

µχe
(Ps •Kq) =

{
2q + 3

2
; if 1 ≤ i ≤ 2(q + 1)

(ii) If s ≡ 1 mod 4

µχe
(Ps •Kq) =


q2 + 7q + 2

2(q + 1)
; if i = 1; 4 ≤ i ≤ q + 3

3q2 + 3q + 4
2(q + 1)

; if i = 2, 3; q + 4 ≤ i ≤ 2(q + 1)

(iii) If s ≡ 3 mod 4

µχe(Ps •Kq) =


q2 + 7q − 2

2(q + 1)
; if i = 1, 2; 5 ≤ i ≤ q + 3

3q2 + 3q + 8
2(q + 1)

; if i = 3, 4; q + 4 ≤ i ≤ 2(q + 1)

• Coloring Variance
For s = 5 & s ≥ 7, q ≥ 3
(i) If s ≡ 0, 2 mod 4

σ2
χe
(Ps •Kq) =

{
(2q + 3)(2q + 1)

12
; if 1 ≤ i ≤ 2(q + 1)

(ii) If s ≡ 1 mod 4

σ2
χe
(Ps •Kq) =


q(q3 + 4q2 + 29q + 74)

12(q + 1)2 ; if i = 1; 4 ≤ i ≤ q + 3

q(q3 + 52q2 − 19q − 22)
12(q + 1)2 ; if i = 2, 3; q + 4 ≤ i ≤ 2(q + 1)

(iii) If s ≡ 3 mod 4

σ2
χe
(Ps •Kq) =


q4 + 4q3 + 53q2 + 98q − 144

12(q + 1)2 ; if i = 1, 2; 5 ≤ i ≤ q + 3

q(q3 + 52q2 − 91q + 50)
12(q + 1)2 ; if i = 3, 4; q + 4 ≤ i ≤ 2(q + 1)
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Theorem 3.4. The equitable coloring of extended corona of complete graph(Kq) with cycle
graph(Cr) graph for q, r ≥ 3 is given by

χ=(Kq • Cr) =

{
3q; if r is odd
2q; if r is even

Proof. Let V (Kq) = {tw : 1 ≤ w ≤ q} and V (Cr)={gu : 1 ≤ u ≤ r}. Let V (Kq • Cr) =
{tw : 1 ≤ w ≤ q}

⋃
{gwu : 1 ≤ w ≤ q, 1 ≤ u ≤ r} be the node set of Kq • Cr.

From the definition of Extended Corona, the graph Kq • Cr is obtained by taking corona of
Kq with Cr and joining each vertex of ith copy of Cr to every vertex of jth copy of Cr provided
that ti and tj are adjacent in Kq.

(i) Case 1: If r is even
For 1 ≤ w ≤ q − 1, we grant the color 2w to the vertices t(w+1) and the color 2q to t1 in Kq.

Now for q-copies of Cr and for 1 ≤ u ≤
⌈
r
2

⌉
, grant the color as 1 to g1(2u−1), 2 to g1(2u), 3 to

g2(2u−1), 4 to g2(2u),..., 2q − 1 to gq(2u−1), 2q to gq(2u).

(ii) Case 2: If r is odd
For 1 ≤ w ≤ q − 1, we grant the color 3w to the vertices t(w+1) and the color 3q to t1 in Kq.
Subcase 1: When r ≡ 0 mod 3
For 1 ≤ u ≤ r, we grant the colors 1 to g1u (u ≡ 1 mod 3), 2 to g1u (u ≡ 2 mod 3), 3 to

g1u (u ≡ 0 mod 3), 4 to g2u (u ≡ 1 mod 3), 5 to g2u (u ≡ 2 mod 3), 6 to g2u (u ≡ 0 mod 3),
...,3q − 2 to gqu (u ≡ 1 mod 3), 3q − 1 to gqu (u ≡ 2 mod 3) and 3q to gqu (u ≡ 0 mod 3)
respectively.

Subcase 2: When r ≡ 1 mod 3
For 1 ≤ u ≤ r−1, we grant the colors 1 to g1u (u ≡ 1 mod 3), 2 to g1u (u ≡ 2 mod 3), 3 to

g1u (u ≡ 0 mod 3), 4 to g2u (u ≡ 1 mod 3), 5 to g2u (u ≡ 2 mod 3), 6 to g2u (u ≡ 0 mod 3),
...,3q − 2 to gqu (u ≡ 1 mod 3), 3q − 1 to gqu (u ≡ 2 mod 3) and 3q to gqu (u ≡ 0 mod 3)
respectively. When u = r, we have the color 3w − 1 to gwu where 1 ≤ w ≤ q.

Subcase 3: When r ≡ 2 mod 3
For 1 ≤ u ≤ r, we grant the colors 1 to g1u (u ≡ 1 mod 3), 2 to g1u (u ≡ 2 mod 3), 3 to

g1u (u ≡ 0 mod 3), 4 to g2u (u ≡ 1 mod 3), 5 to g2u (u ≡ 2 mod 3), 6 to g2u (u ≡ 0 mod 3),
...,3q − 2 to gqu (u ≡ 1 mod 3), 3q − 1 to gqu (u ≡ 2 mod 3) and 3q to gqu (u ≡ 0 mod 3)
respectively.

When r is even, every color 1, 3, 5, ..., 2q− 1 crop up
(
r
2

)
times and the color 2, 4, ..., 2q will

crop up
(
r
2 + 1

)
.

When r is odd
(i) r ≡ 0 mod 3

The color 1, 2, 4, 5, 7, 8, ..., 3q−2, 3q−1 will crop up
(
r
3

)
times each and the color 3, 6, 9, ..., 3q

will crop up
(
r
3 + 1

)
times each.

(ii) r ≡ 1 mod 3
The color 1, 4, 7, 10, ..., 3q − 2 will crop up

⌊
r
3

⌋
times each and the color 2, 3, 5, 6, 9, ..., 3q −

1, 3q will crop up
⌈
r
3

⌉
times each.

(iii) r ≡ 2 mod 3
The color 1, 2, 3, ..., 3q will crop up

(
r+1

3

)
times each.

The absolute difference between the color classes is at most 1. The resultant graph Kq • Cr
is equitably colored. The upper bound,

χ=(Kq • Cr) ≤

{
3q; if r is odd
2q; if r is even

As above, we know that χ=(K) ≥ χ(K) and χ(Kq • Cr) = 2q. And we have χ=(Kq • Cr ≥
χ(Kq • Cr) = 2q. The lower bound becomes,

χ=(Kq • Cr) ≥ 2q, for q, r ≥ 3.
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Therefore, the extended corona product of Kq with Cr graph is

2q ≤ χ=(Kq • Cr) ≤

{
3q; if r is odd
2q; if r is even

Parameters of χ=(Kq • Cr)

• Probability Mass Function

(i) If r is even

f(i) =



r

2q(r + 1)
; if i is odd

r + 2
2q(r + 1)

; if i is when

0; otherwise

(ii) If r is odd

(a) r ≡ 0 mod 3

f(i) =



r + 3
3q(r + 1)

; if i = 3, 6, 9, ..., 3q

r

3q(r + 1)
; if i = 1, 2, 4, 5, ..., 3q − 2, 3q − 1

0; otherwise

(b) r ≡ 1 mod 3

f(i) =



r + 2
3q(r + 1)

; if i = 2, 3, 5, 6, ..., 3q − 1, 3q

r − 1
3q(r + 1)

; if i = 1, 4, 7, 10, ..., 3q − 2

0; otherwise

(c) r ≡ 2 mod 3

f(i) =


1
3q

; if 1 ≤ i ≤ 3q

0; otherwise

• Coloring Mean

(i) If r is even

µχe
(Kq • Cr) =

{
q; if i is odd
q + 1; if i is even

(ii) If s is odd

(a) r ≡ 0 mod 3

µχe(Kq • Cr) =


3q
2

; if i = 1, 2, 4, 5, ..., 3q − 2, 3q − 1

3(q + 1)
2

; if i = 3, 6, 9, ..., 3q
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(b) r ≡ 1 mod 3

µχe(Kq • Cr) =


3q − 1

2
; if i = 1, 4, 7, 9, ..., 3q − 2

3(q + 2)
2

; if i = 2, 3, 5, 6, ..., 3q − 1, 3q

(c) r ≡ 2 mod 3

µχe(Kq • Cr) =
{

3q + 1
2

; if i = 1, 2, 3, ..., 3q

• Coloring Variance

(i) If r is even

σ2
χe
(Ps •Kq) =


q2 − 1

3
; if i is odd

q2 − 1
3

; if i is even

(i) If r is even
(a) If r ≡ 0 mod 3

σ2
χe
(Kq • Cr) =


3q2 − 2

4
; if i = 1, 2, 4, 5, ..., 3q − 2, 3q − 1

3(q2 − 1)
4

; if i = 3, 6, 9, ..., 3q

(b) If r ≡ 1 mod 3

σ2
χe
(Kq • Cr) =


3(q2 − 1)

4
; if i = 1, 4, 7, 10, ..., 3q − 2

3q2 − 2
4

; if i = 2, 3, 5, 6, ..., 3q − 1, 3q

(c) If r ≡ 2 mod 3

σ2
χe
(Kq • Cr) =

{
9q2 − 1

12
; if 1 ≤ i ≤ 3q

Theorem 3.5. The equitable coloring of extended corona of cycle graph(Cr) with complete
graph(Kq) is given by
When r is even

χ=(Cr •Kq) = 2q, if q, r ≥ 3

When r is odd

χ=(Cr •Kq) =


3q; if r ≡ 0, 1 mod 3{

3q; if 3 ≤ r ≤ r −
⌊
r
3

⌋
3q + 1; if otherwise

if r ≡ 2 mod 3
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Proof. Let V (Cr)={gu : 1 ≤ u ≤ r} and V (Kq) = {tw : 1 ≤ w ≤ q}. Let V (Cr •Kq) =
{gu : 1 ≤ u ≤ r}

⋃
{tuw : 1 ≤ u ≤ r, 1 ≤ w ≤ q} be the node set of Cr •Kq.

From the definition of Extended Corona, the graph Cr • Kq is obtained by taking corona
of Cr with Kq and joining each vertex of ith copy of Kq to every vertex of jth copy of Kq

provided that gi and gj are adjacent in Cr.

(i) Case 1: If r is even

For 1 ≤ u ≤ r
2 , we grant the color w to t(2u−1)w and the color q + w to t(2u)w respectively

where 1 ≤ w ≤ q.
Subcase 1: When q ≥ r

2

For 1 ≤ u ≤ r
2 the nodes of Cr, we grant the color u to g(2u) and q + u to g2u−1.

Subcase 2: When q ≤ r
2

For 1 ≤ u ≤ r
2 , we grant the color 1, 2...q repeatedly to the nodes g2u and q + 1, ..., 2q to

the nodes g2u−1 respectively.

(ii) Case 2: If r is odd

Subcase 1: When r ≡ 0 mod 3

For 1 ≤ u ≤ r. If u ≡ 1 mod 3 we grant the color w to tuw, if u ≡ 2 mod 3 we grant the
color q + w to tuw, if u ≡ 0 mod 3 we grant the color 2q + w to tuw where 1 ≤ w ≤ q.
For the graph Cr and 1 ≤ u ≤ r

3 , we grant the colors 1, 2, ..., q repeatedly to gu (u ≡ 2
mod 3), the colors q+1, q+2, ..., 2q repeatedly to gu (u ≡ 0 mod 3), 2q+1, 2q+2, ..., 3q
repeatedly to gu (u ≡ 1 mod 3).

Subcase 2: When r ≡ 1 mod 3

For 1 ≤ u ≤ r − 1. If u ≡ 1 mod 3, we grant the colors w to tuw. if u ≡ 2 mod 3, we
grant the colors q + w to tuw, if u ≡ 0 mod 3, we grant the colors 2q + w to tuw where
1 ≤ w ≤ q. When u = r, we grant the color q + w to tuw where 1 ≤ w ≤ q.
In the subcase 2, each of the colors 1, 2, ..., q have been occured r−1

3 times and the col-
ors q + 1, ..., 2q have been occured r+2

3 in the copies of Kq. While the left over colors
2q + 1, 2q + 2, ..., 3q has occured r−1

3 times each in copies of Kq. So, when coloring the
nodes of Cr, one must use the colors 1, 2, ..., 2q first for gu where 1 ≤ u ≤ r and without
altering the equitable coloring condition.

Subcase 3: When r ≡ 2 mod 3
(a) If 3 ≤ q ≤ r −

⌊
r
3

⌋
For 1 ≤ u ≤ r and u ≡ 1 mod 3, we grant the color w to tuw, u ≡ 2 mod 3 we grant the
color q + w to tuw and u ≡ 0 mod 3 we grant the color 2q + w to tuw where 1 ≤ w ≤ q.
By above, each of the colors 1, 2, ..., 2q have been occured r+1

3 times in the copies of Kq.
While the left over colors 2q+1, 2q+2, ..., 3q has occured r−2

3 times each in copies of Kq.
So, when coloring the nodes of Cr, one must use the colors 2q + 1, 2q + 2, ..., 3q first for
gu where 1 ≤ u ≤ r and without altering the equitable coloring condition.

(b) Otherwise
For 1 ≤ u ≤ r and u ≡ 1 mod 3, we grant the color w to tuw and u ≡ 2 mod 3 we grant
the color q+w to tuwand u ≡ 0 mod 3 we grant the color 2q+w to tuw where 1 ≤ w ≤ q.
For 1 ≤ u ≤ r. We grant the color 2q + 1, 2q + 2, ..., 3q to the nodes gu where u ≡ 1, 2
mod 3. When u ≡ 0 mod 3, we have the color 3q + 1.

The absolute difference between the color classes is at most 1. The resultant graph Cr •Kq

is equitably colored. The upper bound, When r is even

χ=(Cr •Kq) ≤ 2q, if q, r ≥ 3
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When r is odd

χ=(Cr •Kq) ≤


3q; if r ≡ 0, 1 mod 3{

3q; if 3 ≤ r ≤ r −
⌊
r
3

⌋
3q + 1; if otherwise

if r ≡ 2 mod 3

As above, we know that χ=(K) ≥ χ(K) and χ(Cr •Kq) = 2q. And we have χ=(Cr •Kq ≥
χ(Cr •Kq) = 2q. The lower bound becomes,

χ=(Cr •Kq) ≥ 2q, for s ≥ 2, q ≥ 3.

Therefore, the extended corona product of Cr with Kq graph is
When r is even

χ=(Cr •Kq) = 2q, if q, r ≥ 3

When r is odd

2q ≤ χ=(Cr •Kq) ≤


3q; if r ≡ 0, 1 mod 3{

3q; if 3 ≤ r ≤ r −
⌊
r
3

⌋
3q + 1; if otherwise

if r ≡ 2 mod 3

Conclusion
Finding p.m.f , mean, variance of equitable coloring of Cr •Kq has so many cases in it. It’s

a tedious process for generalizing the occurence of each color because in some case, we colored
randomly for some vertices. Hence, this part alone is an open problem to the reader.
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