ON EQUITABLE COLORING OF EXTENTED CORONA OF SOME GRAPHS

M. Barani, M.Venkatachalam and K.Rajalakshmi
Communicated by E. Prakash

MSC 2010 Classifications: 05C15.
Keywords and phrases: Equitable coloring, Extented Corona, Cycle graph, Path graph and Complete graph.

Abstract

A proper h-colorable graph K is claimed to be equitably h-colorable if the vertex set of K can be partioned into h independent color classes $V_{1}, V_{2}, \ldots, V_{h}$ such that the condition $\left|\left|V_{i^{\prime}}\right|-\left|V_{j^{\prime}}\right|\right| \leq 1$ holds for all different pairs of $\left(i^{\prime}, j^{\prime}\right)$. And the smallest integer h is called equitable chromatic number of $K[5,7]$. In this paper, we consider an equitable coloring of extended corona product of two graphs K and H. In particular, we study the cases where K and H are complete graphs, cycles and paths. We also discussed the probability mass function, chromatic mean, and chromatic variance of these graph products.

1 Introduction

Many real world situations can coveniently be described by means of a diagram consisting of set of points together with lines joining certain pairs of these points [1].

The syllabary of an equitable coloring was first initiated by W. Meyer in the year 1973 [8]. Tucker's paper [14], in which nodes represent garbage collection routes and adjacency of two such vertices when the corresponding routes should not be run on the same day. Then Meyer come up with the solution that equal number of routes run on every day in a week.

The graph K is equitably colored with h colors, if the absolute differnce between thier color classes are atmost one[6,9]. The smallest integer h for which K is equitably h-colorable is known as the equitable chromatic number of K and denoted by $\chi_{=}(K)$. Since an equitable coloring is a proper vertex coloring, we have

$$
\chi_{=}(K) \geq \chi(K)
$$

where $\chi(K)$ is the chromatic number of graph K.

2 Preliminaries

The corona $K_{1} \circ K_{2}$ of two graphs K_{1} and K_{2} (where K_{i} has p_{i} points and q_{i} lines) is defined as the graph K obtained by taking one copy of K_{1} and p_{i} copies of K_{2}, and then joining by a line the i th point of K_{1} to every point in the i th copy of K_{2} [4].

The extended corona $K_{1} \bullet K_{2}$ of two graphs K_{1} and K_{2} is a graph obtained by taking the corona $K_{1} \circ K_{2}$ and joining each vertex of i^{\prime} th copy of K_{2} to every vertex of j^{\prime} th copy of K_{2}, provided the vertices $v_{i^{\prime}}$ and $v_{j^{\prime}}$ are adjacent in K_{1} [2].

A path is a non-empty graph $P=(V(P), E(P))$ of the form $V(P)=\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ and $E(P)=\left\{a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{s-1} a_{s}\right\}$. The number vertices of a path is its length $[1,3]$.

A cycle is a closed trail $r \geq 3$, for which each vertices are distict(expect, of course first and last) [3].

A complete graph K_{q} has q points and all two-element subsets of K_{q} as edges [3, 10].
Let $\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{h}\right\}$ be a set of colors used in a proper h-coloring \mathcal{C} of K and let $\theta\left(c_{i}\right)$ denote the number of times a particular color c_{i} is assigned to nodes of K [6]. Let X be a random variable (r.v) which denotes the color of an arbitrarily chosen vertex in K. Since the
sum of all weights of colors of K is the order of K, the real valued function $f(i)$ defined by

$$
f(i)= \begin{cases}\frac{\theta\left(c_{i}\right)}{|V(K)|} & i=1,2,3, \ldots, h \\ 0 ; & \text { elsewhere }\end{cases}
$$

is the probability mass function(p.m.f) of the $X[11,12,13]$. Here we say $f(i)$ is the $p . m . f$ of the graph K with respect to the given coloring \mathcal{C}.

The coloring mean $[11,12,13]$ of a coloring \mathcal{C} of a given graph K is denoted by $\mu_{c}(K)$ and defined to be

$$
\mu_{c}(K)=\frac{\sum_{i=1}^{h} i \theta\left(c_{i}\right)}{\sum_{i=1}^{h} \theta\left(c_{i}\right)}
$$

The coloring variance $[11,12,13]$ of a coloring \mathcal{C} of a given graph K is denoted by $\sigma_{c}^{2}(K)$ and defined to be

$$
\sigma_{c}^{2}(K)=\frac{\sum_{i=1}^{h} i^{2} \theta\left(c_{i}\right)}{\sum_{i=1}^{h} \theta\left(c_{i}\right)}-\left(\frac{\sum_{i=1}^{h} i \theta\left(c_{i}\right)}{\sum_{i=1}^{h} \theta\left(c_{i}\right)}\right)^{2}
$$

The chromatic mean and variance corresponding to an equitable coloring of a graph K is defined as follows [12]. A coloring mean of a graph K, with respect to a proper coloring \mathcal{C} is said to be an equitable chromatic mean or a χ_{e} chromatic mean of K, if \mathcal{C} is the optimal (in the sense of the number of colors) equitable coloring of K. The χ_{e}-chromatic mean of a graph K is denoted by $\mu_{\chi_{e}}(K)$.

3 Results

Theorem 3.1. The equitable coloring of extended corona of complete graph $\left(K_{q}\right)$ with complete $\operatorname{graph}\left(K_{p}\right)$ is given by

$$
\chi_{=}\left(K_{q} \bullet K_{p}\right)=p q, \text { for } p, q \geq 3
$$

Proof. Let $V\left(K_{q}\right)=\left\{t_{w}: 1 \leq w \leq q\right\}$ and $V\left(K_{p}\right)=\left\{t_{w^{\prime}}^{\prime}: 1 \leq w^{\prime} \leq p\right\}$. Let $V\left(K_{q} \bullet K_{p}\right)=$ $\left\{t_{w}: 1 \leq w \leq q\right\} \bigcup\left\{\mathfrak{t}_{w w^{\prime}}^{\prime}: 1 \leq w \leq q, 1 \leq w^{\prime} \leq p\right\}$ be the node set of $K_{q} \bullet K_{p}$.

From the definition of Extended Corona, the graph $K_{q} \bullet K_{p}$ is obtained by taking corona of K_{q} with K_{p} and joining each vertex of $i^{\text {th }}$ copy of K_{p} to every vertex of $j^{\text {th }}$ copy of K_{p} provided that t_{i} and t_{j} are adjacent in K_{q}.

For $1 \leq w \leq q$, grant the color w to the vertices t_{w} in K_{q}. Now for q-copies of K_{p} and for $2 \leq w \leq q$, grant the color as $w-1$ to $t_{w 1}^{\prime}$ and when $w=1$, the color q to $t_{w 1}^{\prime}$. And for $1 \leq w \leq q$, we have the color $\left(w^{\prime}-1\right) q+w$ to $t_{w w^{\prime}}^{\prime}$ where $2 \leq w^{\prime} \leq p$.

Each color $1,2,3, \ldots, q$ cropped up twice, all the remaining color $q+1, q+2, \ldots, p q$ cropped once each respectively, and the absolute difference between the color classes is at most 1 . The resultant graph $K_{q} \bullet K_{p}$ is equitably colored. The upper bound,

$$
\chi=\left(K_{q} \bullet K_{p}\right) \leq p q, \text { for } p, q \geq 3 .
$$

As above, we know that $\chi_{=}(K) \geq \chi(K)$ and $\chi\left(K_{q} \bullet K_{p}\right)=p q$. And we have $\chi_{=}\left(K_{q} \bullet K_{p}\right) \geq$ $\chi\left(K_{q} \bullet K_{p}\right)=p q$. The lower bound becomes,

$$
\chi=\left(K_{q} \bullet K_{p}\right) \geq p q, \text { for } p, q \geq 3 .
$$

Therefore, the extended corona product of K_{q} with K_{p} graph is

$$
\chi=\left(K_{q} \bullet K_{p}\right)=p q, \text { for } p, q \geq 3
$$

In $\chi_{=}\left(K_{q} \bullet K_{p}\right)$, we have $\theta\left(c_{i}\right)=2$ for $1 \leq i \leq q$ and $\theta\left(c_{i}\right)=1$ for $q+1 \leq i \leq p q$.
Parameters of $\chi=\left(K_{q} \bullet K_{p}\right)$

- Probability Mass Function

$$
f(i)= \begin{cases}\frac{2}{q(p+1)} ; & \text { if } 1 \leq i \leq q \\ \frac{1}{q(p+1)} ; & \text { if } q+1 \leq i \leq p q \\ 0 ; & \text { otherwise }\end{cases}
$$

- Coloring Mean

$$
\mu_{\chi_{e}}\left(K_{q} \bullet K_{p}\right)= \begin{cases}\frac{q+1}{2} ; & \text { if } 1 \leq i \leq q \\ \frac{q p+q+1}{2} ; & \text { if } q+1 \leq i \leq p q\end{cases}
$$

- Coloring Variance

$$
\sigma_{\chi_{e}}^{2}\left(K_{q} \bullet K_{p}\right)= \begin{cases}\frac{q^{2}-1}{12} ; & \text { if } 1 \leq i \leq q \\ \frac{p^{3} q^{2}-3 p^{2} q^{2}+3 p q^{2}-p-q^{2}+1}{12(p-1)} ; & \text { if } \quad q+1 \leq i \leq p q\end{cases}
$$

Theorem 3.2. The equitable coloring of extended corona of complete graph $\left(K_{q}\right)$ with path $\operatorname{graph}\left(P_{s}\right)$ is given by

$$
\chi_{=}\left(K_{q} \bullet P_{s}\right)=2 q, \text { for } q \geq 3, s \geq 2
$$

Proof. Let $V\left(K_{q}\right)=\left\{t_{w}: 1 \leq w \leq q\right\}$ and $V\left(P_{s}\right)=\left\{h_{v}: 1 \leq v \leq s\right\}$. Let $V\left(K_{q} \bullet P_{s}\right)=$ $\left\{t_{w}: 1 \leq w \leq q\right\} \bigcup\left\{\mathbf{t}_{w v}^{\prime}: 1 \leq w \leq q, 1 \leq v \leq s\right\}$ be the node set of $K_{q} \bullet P_{s}$.

From the definition of Extended Corona, the graph $K_{q} \bullet P_{s}$ is obtained by taking corona of K_{q} with P_{s} and joining each vertex of $i^{t h}$ copy of P_{s} to every vertex of $j^{t h}$ copy of P_{s} provided that t_{i} and t_{j} are adjacent in K_{q}.

For $1 \leq w \leq q$, we grant the color w to the vertices t_{w} in K_{q}. Now for q-copies of P_{s} and for $2 \leq w \leq q$, grant the color as $w-1$ to $h_{w(2 v)}$ where $1 \leq v \leq\left\lfloor\frac{s}{2}\right\rfloor$. When $w=1$ we have the color q to $h_{w(2 v)} 1 \leq v \leq\left\lfloor\frac{s}{2}\right\rfloor$. For $1 \leq w \leq q$, grant the color as $q+w$ to $h_{w(2 v-1)}$ where $1 \leq v \leq\left\lceil\frac{s}{2}\right\rceil$.

If s is even, each color $1,2, \ldots, q$ will crop up $\left(\frac{s}{2}+1\right)$ and the color $q+1, q+2, \ldots, 2 q$ will crop up $\frac{s}{2}$ respectively.

If s is odd, each color $1,2, \ldots, 2 q$ will crop up $\left\lceil\frac{s}{2}\right\rceil$ respectively.
The absolute difference between the color classes is at most one. The resultant graph $K_{q} \bullet P_{s}$ is equitably colored. The upper bound,

$$
\chi_{=}\left(K_{q} \bullet P_{s}\right) \leq 2 q, \text { for } s \geq 2, q \geq 3
$$

As above, we know that $\chi_{=}(K) \geq \chi(K)$ and $\chi\left(K_{q} \bullet P_{s}\right)=2 q$, and we have $\chi_{=}\left(K_{q} \bullet P_{s}\right) \geq$ $\chi\left(K_{q} \bullet P_{s}\right)=2 q$. The lower bound becomes,

$$
\chi=\left(K_{q} \bullet P_{s}\right) \geq 2 q, \text { for } s \geq 2, q \geq 3 .
$$

Therefore, the extended corona product of K_{q} with P_{s} is

$$
\chi=\left(K_{q} \bullet P_{s}\right)=2 q, \text { for } s \geq 2, q \geq 3 .
$$

Parameters of $\chi_{=}\left(K_{q} \bullet P_{s}\right)$

- Probability Mass Function
(i) If s is $o d d$

$$
f(i)=\left\{\begin{array}{lc}
\frac{1}{2 q} ; & \text { if } 1 \leq i \leq 2 q \\
0 ; & \text { otherwise }
\end{array}\right.
$$

(ii) If s is even

$$
f(i)= \begin{cases}\frac{s+2}{2 q(s+1)} ; & \text { if } \quad 1 \leq i \leq q \\ \frac{s}{2 q(s+1)} ; & \text { if } \quad q+1 \leq i \leq 2 q \\ 0 ; & \text { otherwise }\end{cases}
$$

- Coloring Mean

(i) If s is $o d d$

$$
\mu_{\chi_{e}}\left(K_{q} \bullet P_{s}\right)=\left\{\frac{2 q+1}{2} ; \quad \text { if } \quad 1 \leq i \leq 2 q\right.
$$

(ii) If s is even

$$
\mu_{\chi_{e}}\left(K_{q} \bullet P_{s}\right)= \begin{cases}\frac{q+1}{2} ; & \text { if } 1 \leq i \leq q \\ \frac{3 q+1}{2} ; & \text { if } \quad q+1 \leq i \leq 2 q\end{cases}
$$

- Coloring Variance
(i) If s is odd

$$
\sigma_{\chi_{e}}^{2}\left(K_{q} \bullet P_{s}\right)=\left\{\frac{4 q^{2}-1}{12} ; \quad \text { if } \quad 1 \leq i \leq 2 q\right.
$$

(ii) If s is even

$$
\sigma_{\chi_{e}}^{2}\left(K_{q} \bullet P_{s}\right)= \begin{cases}\frac{q^{2}-1}{12} ; & \text { if } \quad 1 \leq i \leq q \\ \frac{q^{2}-1}{12} ; & \text { if } \quad q+1 \leq i \leq 2 q\end{cases}
$$

Theorem 3.3. The equitable coloring of extended corona of path graph $\left(P_{s}\right)$ with complete $\operatorname{graph}\left(K_{q}\right)$ is given by

$$
\chi_{=}\left(P_{s} \bullet K_{q}\right)= \begin{cases}2 q+1 ; & \text { if } s=3,4,6 ; q \geq 3 \\ 2(q+1) ; & \text { if } s=5 \& s \geq 7 ; q \geq 3\end{cases}
$$

Proof. Let $V\left(P_{s}\right)=\left\{h_{v}: 1 \leq v \leq s\right\}$ and $V\left(K_{q}\right)=\left\{t_{w}: 1 \leq w \leq q\right\}$. Let $V\left(P_{s} \bullet K_{q}\right)=$ $\left\{h_{v}: 1 \leq v \leq s\right\} \bigcup\left\{\mathbf{t}_{v w}: 1 \leq v \leq s, 1 \leq w \leq q\right\}$ be the node set of $P_{s} \bullet K_{q}$.

From the definition of Extended Corona, the graph $P_{s} \bullet K_{q}$ is obtained by taking corona of P_{s} with K_{q} and joining each vertex of $i^{t h}$ copy of K_{q} to every vertex of $j^{t h}$ copy of K_{q} provided that h_{i} and h_{j} are adjacent in P_{s}.
(i) Case 1: If $q \geq 3, s=3,4,6$

Subcase 1: When $q \geq 3, s=3,6$
For $1 \leq v \leq s$, we grant the color v to the vertices h_{v} in P_{s}. Now for s-copies of K_{q}, grant the color to 1 to t_{21} and $t_{51}, 2$ to t_{31} and $t_{61}, 3$ to t_{41} and t_{11}. And again the color 4 to $t_{(2 v-1) 2}, 5$ to $t_{(2 v-1) 3}, 6$ to $t_{(2 v-1) 4}, \ldots, q+2$ to $t_{(2 v-1) q}$ where $1 \leq v \leq\left\lceil\frac{s}{2}\right\rceil$ respectively. Also the color $q+3$ to $t_{(2 v) 2}, q+4$ to $t_{(2 v) 3}, \ldots, 2 q+1$ to $t_{(2 v) q}$ where $1 \leq v \leq\left\lfloor\frac{s}{2}\right\rfloor$ respectively.

Subcase 2: When $q \geq 3, s=4$
For the graph $P_{s} \bullet K_{q}$, we have the color 1 to $h_{1} \& h_{4}, 2$ to $h_{2}, 3$ to h_{3} and 1 to $t_{21}, 2$ to t_{31}, 3 to $t_{41} \& 3$ to t_{11} respectively.

Now the copies of complete graph K_{q}, for $1 \leq v \leq 2$ we have the color $w+2$ to $t_{(2 v-1) w}$ and the color $q+w+1$ to $t_{(2 v) w}$ where $2 \leq w \leq q$ respectively.
(ii) Case 2: If $q \geq 3, s=5 \& s \geq 7$

Subcase 1: When $s \equiv 0,1,3 \bmod 4$
In $P_{s} \bullet K_{q}$, the nodes $h_{v}(1 \leq v \leq s)$ of P_{s} have the color 1 to $h_{v}(v \equiv 1 \bmod 4), 2$ to h_{v} $(v \equiv 2 \bmod 4), 3$ to $h_{v}(v \equiv 3 \bmod 4), 4$ to $h_{v}(v \equiv 0 \bmod 4)$ respectively. When $1 \leq v \leq s$, for the nodes $t_{v w}$ of s copies of K_{q} we grant the color 1 to $t_{v 1}(v \equiv 2 \bmod 4), 2$ to $t_{v 1}(v \equiv 3$ $\bmod 4), 3$ to $t_{v 1}(v \equiv 0 \bmod 4), 4$ to $t_{v 1}(v \equiv 1 \bmod 4)$. For the remaining nodes $1 \leq v \leq\left\lceil\frac{s}{2}\right\rceil$, we grant the color 5 to $t_{(2 v-1) 2}, 6$ to $t_{(2 v-1) 3}, 7$ to $t_{(2 v-1) 4}, \ldots, q+3$ to $t_{(2 v-1) q}$ respectiely. The color $q+4$ to $t_{(2 v) 2}, q+5$ to $t_{(2 v) 3}, \ldots, 2(q+1)$ to $t_{(2 v) q}$ where $1 \leq v \leq\left\lfloor\frac{s}{2}\right\rfloor$.

Subcase 2: When $s \equiv 2 \bmod 4$
For $1 \leq v \leq s$ in P_{s} we grant the color 1 to $h_{v}(v \equiv 1 \bmod 4), 2$ to $h_{v}(v \equiv 2 \bmod 4), 3$ to $h_{v}(v \equiv 3 \bmod 4), 4$ to $h_{v}(v \equiv 0 \bmod 4)$ respectively. And when $1 \leq v \leq s-1$, we grant the color 1 to $t_{v 1}(v \equiv 2 \bmod 4), 2$ to $t_{v 1}(v \equiv 3 \bmod 4), 3$ to $t_{v 1}(v \equiv 0 \bmod 4), 4$ to $t_{v 1}(v \equiv 1$ $\bmod 4)$ and when $v=s$, the color 3 to $t_{v 1}(v \equiv 2 \bmod 4)$. Again for $1 \leq v \leq\left\lceil\frac{s}{2}\right\rceil$, we grant the 5 to $t_{(2 v-1) 2}, 6$ to $t_{(2 v-1) 3}, \ldots, q+3$ to $t_{(2 v-1) q}$ and $q+4$ to $t_{(2 v) 2}, q+5$ to $t_{(2 v) 3}, \ldots, 2(q+1)$ to $t_{(2 v) q}$.

The absolute difference between the color classes is at most 1 . The resultant graph $P_{s} \bullet K_{q}$ is equitably colored. The upper bound,

$$
\chi_{=}\left(P_{s} \bullet K_{q}\right) \leq \begin{cases}2 q+1 ; & \text { if } s=3,4,6 ; q \geq 3 \\ 2(q+1) ; & \text { if } s=5 \& s \geq 7 ; q \geq 3\end{cases}
$$

As above, we know that $\chi_{=}(K) \geq \chi(K)$ and $\chi\left(P_{s} \bullet K_{q}\right)=2 q$. And we have $\chi_{=}\left(P_{s} \bullet K_{q} \geq\right.$ $\chi\left(P_{s} \bullet K_{q}\right)=2 q$. The lower bound becomes,

$$
\chi=\left(P_{s} \bullet K_{q}\right) \geq 2 q, \text { for } s \geq 2, q \geq 3 .
$$

Therefore, the extended corona product of P_{s} with K_{q} graph is
$2 q \leq \chi_{=}\left(P_{s} \bullet K_{q}\right) \leq \begin{cases}2 q+1 ; & \text { if } s=3,4,6 ; q \geq 3 \\ 2(q+1) ; & \text { if } s=5 \& s \geq 7 ; q \geq 3\end{cases}$
Parameters of $\chi_{=}\left(P_{s} \bullet K_{q}\right)$

- Probability Mass Function

For $s=5 \& s \geq 7, q \geq 3$
(i) If $s \equiv 0,2 \bmod 4$

$$
f(i)= \begin{cases}\frac{1}{2 q+2} ; & \text { if } 1 \leq i \leq 2 q+2 \\ 0 ; & \text { otherwise }\end{cases}
$$

(ii) If $s \equiv 1 \bmod 4$

$$
f(i)= \begin{cases}\frac{s+1}{2 s(q+1)} ; & \text { if } \quad i=1 ; 4 \leq i \leq q+3 \\ \frac{s-1}{2 s(q+1)} ; & \text { if } i=2,3 ; q+4 \leq i \leq 2(q+1) \\ 0 ; & \text { otherwise }\end{cases}
$$

(iii) If $s \equiv 3 \bmod 4$

$$
f(i)= \begin{cases}\frac{s+1}{2 s(q+1)} ; & \text { if } \quad i=1,2 ; 5 \leq i \leq q+3 \\ \frac{s-1}{2 s(q+1)} ; & \text { if } i=3,4 ; q+4 \leq i \leq 2(q+1) \\ 0 ; & \text { otherwise }\end{cases}
$$

- Coloring Mean

For $s=5 \& s \geq 7, q \geq 3$
(i) If $s \equiv 0,2 \bmod 4$

$$
\mu_{\chi_{e}}\left(P_{s} \bullet K_{q}\right)=\left\{\frac{2 q+3}{2} ; \quad \text { if } \quad 1 \leq i \leq 2(q+1)\right.
$$

(ii) If $s \equiv 1 \bmod 4$

$$
\mu_{\chi_{e}}\left(P_{s} \bullet K_{q}\right)= \begin{cases}\frac{q^{2}+7 q+2}{2(q+1)} ; & \text { if } i=1 ; 4 \leq i \leq q+3 \\ \frac{3 q^{2}+3 q+4}{2(q+1)} ; & \text { if } i=2,3 ; q+4 \leq i \leq 2(q+1)\end{cases}
$$

(iii) If $s \equiv 3 \bmod 4$

$$
\mu_{\chi_{e}}\left(P_{s} \bullet K_{q}\right)= \begin{cases}\frac{q^{2}+7 q-2}{2(q+1)} ; & \text { if } i=1,2 ; 5 \leq i \leq q+3 \\ \frac{3 q^{2}+3 q+8}{2(q+1)} ; & \text { if } i=3,4 ; q+4 \leq i \leq 2(q+1)\end{cases}
$$

- Coloring Variance

For $s=5 \& s \geq 7, q \geq 3$
(i) If $s \equiv 0,2 \bmod 4$

$$
\sigma_{\chi_{e}}^{2}\left(P_{s} \bullet K_{q}\right)=\left\{\frac{(2 q+3)(2 q+1)}{12} ; \quad \text { if } 1 \leq i \leq 2(q+1)\right.
$$

(ii) If $s \equiv 1 \bmod 4$

$$
\sigma_{\chi_{e}}^{2}\left(P_{s} \bullet K_{q}\right)= \begin{cases}\frac{q\left(q^{3}+4 q^{2}+29 q+74\right)}{12(q+1)^{2}} ; & \text { if } i=1 ; 4 \leq i \leq q+3 \\ \frac{q\left(q^{3}+52 q^{2}-19 q-22\right)}{12(q+1)^{2}} ; & \text { if } \quad i=2,3 ; q+4 \leq i \leq 2(q+1)\end{cases}
$$

(iii) If $s \equiv 3 \bmod 4$

$$
\sigma_{\chi e}^{2}\left(P_{s} \bullet K_{q}\right)= \begin{cases}\frac{q^{4}+4 q^{3}+53 q^{2}+98 q-144}{12(q+1)^{2}} ; & \text { if } i=1,2 ; 5 \leq i \leq q+3 \\ \frac{q\left(q^{3}+52 q^{2}-91 q+50\right)}{12(q+1)^{2}} ; & \text { if } i=3,4 ; q+4 \leq i \leq 2(q+1)\end{cases}
$$

Theorem 3.4. The equitable coloring of extended corona of complete graph $\left(K_{q}\right)$ with cycle graph $\left(C_{r}\right)$ graph for $q, r \geq 3$ is given by

$$
\chi=\left(K_{q} \bullet C_{r}\right)= \begin{cases}3 q ; & \text { if } r \text { is odd } \\ 2 q ; & \text { if } r \text { is even }\end{cases}
$$

Proof. Let $V\left(K_{q}\right)=\left\{t_{w}: 1 \leq w \leq q\right\}$ and $V\left(C_{r}\right)=\left\{g_{u}: 1 \leq u \leq r\right\}$. Let $V\left(K_{q} \bullet C_{r}\right)=$ $\left\{t_{w}: 1 \leq w \leq q\right\} \bigcup\left\{\mathrm{g}_{w u}: 1 \leq w \leq q, 1 \leq u \leq r\right\}$ be the node set of $K_{q} \bullet C_{r}$.

From the definition of Extended Corona, the graph $K_{q} \bullet C_{r}$ is obtained by taking corona of K_{q} with C_{r} and joining each vertex of $i^{t h}$ copy of C_{r} to every vertex of $j^{t h}$ copy of C_{r} provided that t_{i} and t_{j} are adjacent in K_{q}.
(i) Case 1: If r is even

For $1 \leq w \leq q-1$, we grant the color $2 w$ to the vertices $t_{(w+1)}$ and the color $2 q$ to t_{1} in K_{q}. Now for q-copies of C_{r} and for $1 \leq u \leq\left\lceil\frac{r}{2}\right\rceil$, grant the color as 1 to $g_{1(2 u-1)}, 2$ to $g_{1(2 u)}, 3$ to $g_{2(2 u-1)}, 4$ to $g_{2(2 u)}, \ldots, 2 q-1$ to $g_{q(2 u-1)}, 2 q$ to $g_{q(2 u)}$.
(ii) Case 2: If r is odd

For $1 \leq w \leq q-1$, we grant the color $3 w$ to the vertices $t_{(w+1)}$ and the color $3 q$ to t_{1} in K_{q}.
Subcase 1: When $r \equiv 0 \bmod 3$
For $1 \leq u \leq r$, we grant the colors 1 to $g_{1 u}(u \equiv 1 \bmod 3), 2$ to $g_{1 u}(u \equiv 2 \bmod 3), 3$ to $g_{1 u}(u \equiv 0 \bmod 3), 4$ to $g_{2 u}(u \equiv 1 \bmod 3), 5$ to $g_{2 u}(u \equiv 2 \bmod 3), 6$ to $g_{2 u}(u \equiv 0 \bmod 3)$, $\ldots, 3 q-2$ to $g_{q u}(u \equiv 1 \bmod 3), 3 q-1$ to $g_{q u}(u \equiv 2 \bmod 3)$ and $3 q$ to $g_{q u}(u \equiv 0 \bmod 3)$ respectively.

Subcase 2: When $r \equiv 1 \bmod 3$
For $1 \leq u \leq r-1$, we grant the colors 1 to $g_{1 u}(u \equiv 1 \bmod 3), 2$ to $g_{1 u}(u \equiv 2 \bmod 3), 3$ to $g_{1 u}(u \equiv 0 \bmod 3), 4$ to $g_{2 u}(u \equiv 1 \bmod 3), 5$ to $g_{2 u}(u \equiv 2 \bmod 3), 6$ to $g_{2 u}(u \equiv 0 \bmod 3)$, $\ldots, 3 q-2$ to $g_{q u}(u \equiv 1 \bmod 3), 3 q-1$ to $g_{q u}(u \equiv 2 \bmod 3)$ and $3 q$ to $g_{q u}(u \equiv 0 \bmod 3)$ respectively. When $u=r$, we have the color $3 w-1$ to $g_{w u}$ where $1 \leq w \leq q$.

Subcase 3: When $r \equiv 2 \bmod 3$
For $1 \leq u \leq r$, we grant the colors 1 to $g_{1 u}(u \equiv 1 \bmod 3), 2$ to $g_{1 u}(u \equiv 2 \bmod 3), 3$ to $g_{1 u}(u \equiv 0 \bmod 3), 4$ to $g_{2 u}(u \equiv 1 \bmod 3), 5$ to $g_{2 u}(u \equiv 2 \bmod 3), 6$ to $g_{2 u}(u \equiv 0 \bmod 3)$, $\ldots, 3 q-2$ to $g_{q u}(u \equiv 1 \bmod 3), 3 q-1$ to $g_{q u}(u \equiv 2 \bmod 3)$ and $3 q$ to $g_{q u}(u \equiv 0 \bmod 3)$ respectively.

When r is even, every color $1,3,5, \ldots, 2 q-1$ crop up $\left(\frac{r}{2}\right)$ times and the color $2,4, \ldots, 2 q$ will crop up $\left(\frac{r}{2}+1\right)$.

When r is odd
(i) $r \equiv 0 \bmod 3$

The color $1,2,4,5,7,8, \ldots, 3 q-2,3 q-1$ will crop up $\left(\frac{r}{3}\right)$ times each and the color $3,6,9, \ldots, 3 q$ will crop up $\left(\frac{r}{3}+1\right)$ times each.
(ii) $r \equiv 1 \bmod 3$

The color $1,4,7,10, \ldots, 3 q-2$ will crop up $\left\lfloor\frac{r}{3}\right\rfloor$ times each and the color $2,3,5,6,9, \ldots, 3 q-$ $1,3 q$ will crop up $\left\lceil\frac{r}{3}\right\rceil$ times each.
(iii) $r \equiv 2 \bmod 3$

The color $1,2,3, \ldots, 3 q$ will crop up $\left(\frac{r+1}{3}\right)$ times each.
The absolute difference between the color classes is at most 1 . The resultant graph $K_{q} \bullet C_{r}$ is equitably colored. The upper bound,

$$
\chi=\left(K_{q} \bullet C_{r}\right) \leq \begin{cases}3 q ; & \text { if } r \text { is odd } \\ 2 q ; & \text { if } r \text { is even }\end{cases}
$$

As above, we know that $\chi_{=}(K) \geq \chi(K)$ and $\chi\left(K_{q} \bullet C_{r}\right)=2 q$. And we have $\chi_{=}\left(K_{q} \bullet C_{r} \geq\right.$ $\chi\left(K_{q} \bullet C_{r}\right)=2 q$. The lower bound becomes,

$$
\chi=\left(K_{q} \bullet C_{r}\right) \geq 2 q, \text { for } q, r \geq 3
$$

Therefore, the extended corona product of K_{q} with C_{r} graph is

$$
2 q \leq \chi=\left(K_{q} \bullet C_{r}\right) \leq \begin{cases}3 q ; & \text { if } r \text { is odd } \\ 2 q ; & \text { if } r \text { is even }\end{cases}
$$

Parameters of $\chi_{=}\left(K_{q} \bullet C_{r}\right)$

- Probability Mass Function
(i) If r is even

$$
f(i)=\left\{\begin{array}{lc}
\frac{r}{2 q(r+1)} ; & \text { if } i \text { is odd } \\
\frac{r+2}{2 q(r+1)} ; & \text { if } i \text { is when } \\
0 ; & \text { otherwise }
\end{array}\right.
$$

(ii) If r is $o d d$
(a) $r \equiv 0 \bmod 3$

$$
f(i)= \begin{cases}\frac{r+3}{3 q(r+1)} ; & \text { if } i=3,6,9, \ldots, 3 q \\ \frac{r}{3 q(r+1)} ; & \text { if } i=1,2,4,5, \ldots, 3 q-2,3 q-1 \\ 0 ; & \text { otherwise }\end{cases}
$$

(b) $r \equiv 1 \bmod 3$

$$
f(i)= \begin{cases}\frac{r+2}{3 q(r+1)} ; & \text { if } \quad i=2,3,5,6, \ldots, 3 q-1,3 q \\ \frac{r-1}{3 q(r+1)} ; & \text { if } \quad i=1,4,7,10, \ldots, 3 q-2 \\ 0 ; & \text { otherwise }\end{cases}
$$

(c) $r \equiv 2 \bmod 3$

$$
f(i)=\left\{\begin{array}{lc}
\frac{1}{3 q} ; & \text { if } 1 \leq i \leq 3 q \\
0 ; & \text { otherwise }
\end{array}\right.
$$

- Coloring Mean
(i) If r is even

$$
\mu_{\chi_{e}}\left(K_{q} \bullet C_{r}\right)= \begin{cases}q ; & \text { if } i \text { is odd } \\ q+1 ; & \text { if } i \text { is even }\end{cases}
$$

(ii) If s is $o d d$
(a) $r \equiv 0 \bmod 3$

$$
\mu_{\chi_{e}}\left(K_{q} \bullet C_{r}\right)= \begin{cases}\frac{3 q}{2} ; & \text { if } i=1,2,4,5, \ldots, 3 q-2,3 q-1 \\ \frac{3(q+1)}{2} ; & \text { if } i=3,6,9, \ldots, 3 q\end{cases}
$$

(b) $r \equiv 1 \bmod 3$

$$
\mu_{\chi_{e}}\left(K_{q} \bullet C_{r}\right)= \begin{cases}\frac{3 q-1}{2} ; & \text { if } i=1,4,7,9, \ldots, 3 q-2 \\ \frac{3(q+2)}{2} ; & \text { if } i=2,3,5,6, \ldots, 3 q-1,3 q\end{cases}
$$

(c) $r \equiv 2 \bmod 3$

$$
\mu_{\chi_{e}}\left(K_{q} \bullet C_{r}\right)=\left\{\frac{3 q+1}{2} ; \quad \text { if } \quad i=1,2,3, \ldots, 3 q\right.
$$

- Coloring Variance
(i) If r is even

$$
\sigma_{\chi_{e}}^{2}\left(P_{s} \bullet K_{q}\right)= \begin{cases}\frac{q^{2}-1}{3} ; & \text { if } i \text { is odd } \\ \frac{q^{2}-1}{3} ; & \text { if } i \text { is even }\end{cases}
$$

(i) If r is even
(a) If $r \equiv 0 \bmod 3$

$$
\sigma_{\chi_{e}}^{2}\left(K_{q} \bullet C_{r}\right)= \begin{cases}\frac{3 q^{2}-2}{4} ; & \text { if } i=1,2,4,5, \ldots, 3 q-2,3 q-1 \\ \frac{3\left(q^{2}-1\right)}{4} ; & \text { if } i=3,6,9, \ldots, 3 q\end{cases}
$$

(b) If $r \equiv 1 \bmod 3$

$$
\sigma_{\chi_{e}}^{2}\left(K_{q} \bullet C_{r}\right)= \begin{cases}\frac{3\left(q^{2}-1\right)}{4} ; & \text { if } i=1,4,7,10, \ldots, 3 q-2 \\ \frac{3 q^{2}-2}{4} ; & \text { if } i=2,3,5,6, \ldots, 3 q-1,3 q\end{cases}
$$

(c) If $r \equiv 2 \bmod 3$

$$
\sigma_{\chi_{e}}^{2}\left(K_{q} \bullet C_{r}\right)=\left\{\frac{9 q^{2}-1}{12} ; \quad \text { if } \quad 1 \leq i \leq 3 q\right.
$$

Theorem 3.5. The equitable coloring of extended corona of cycle graph $\left(C_{r}\right)$ with complete $\operatorname{graph}\left(K_{q}\right)$ is given by
When r is even

$$
\chi_{=}\left(C_{r} \bullet K_{q}\right)=2 q, \text { if } q, r \geq 3
$$

When r is odd

$$
\chi_{=}\left(C_{r} \bullet K_{q}\right)= \begin{cases}3 q ; & \text { if } r \equiv 0,1 \bmod 3 \\ 3 q ; & \text { if } 3 \leq r \leq r-\left\lfloor\frac{r}{3}\right\rfloor \\ 3 q+1 ; & \text { if otherwise } r \equiv 2 \bmod 3\end{cases}
$$

Proof. Let $V\left(C_{r}\right)=\left\{g_{u}: 1 \leq u \leq r\right\}$ and $V\left(K_{q}\right)=\left\{t_{w}: 1 \leq w \leq q\right\}$. Let $V\left(C_{r} \bullet K_{q}\right)=$ $\left\{g_{u}: 1 \leq u \leq r\right\} \bigcup\left\{\mathbf{t}_{u w}: 1 \leq u \leq r, 1 \leq w \leq q\right\}$ be the node set of $C_{r} \bullet K_{q}$.
From the definition of Extended Corona, the graph $C_{r} \bullet K_{q}$ is obtained by taking corona of C_{r} with K_{q} and joining each vertex of $i^{t h}$ copy of K_{q} to every vertex of $j^{t h}$ copy of K_{q} provided that g_{i} and g_{j} are adjacent in C_{r}.
(i) Case 1: If r is even

For $1 \leq u \leq \frac{r}{2}$, we grant the color w to $t_{(2 u-1) w}$ and the color $q+w$ to $t_{(2 u) w}$ respectively where $1 \leq w \leq q$.
Subcase 1: When $q \geq \frac{r}{2}$
For $1 \leq u \leq \frac{r}{2}$ the nodes of C_{r}, we grant the color u to $g_{(2 u)}$ and $q+u$ to $g_{2 u-1}$.
Subcase 2: When $q \leq \frac{r}{2}$
For $1 \leq u \leq \frac{r}{2}$, we grant the color $1,2 \ldots q$ repeatedly to the nodes $g_{2 u}$ and $q+1, \ldots, 2 q$ to the nodes $g_{2 u-1}$ respectively.
(ii) Case 2: If r is $o d d$

Subcase 1: When $r \equiv 0 \bmod 3$
For $1 \leq u \leq r$. If $u \equiv 1 \bmod 3$ we grant the color w to $t_{u w}$, if $u \equiv 2 \bmod 3$ we grant the color $q+w$ to $t_{u w}$, if $u \equiv 0 \bmod 3$ we grant the color $2 q+w$ to $t_{u w}$ where $1 \leq w \leq q$.
For the graph C_{r} and $1 \leq u \leq \frac{r}{3}$, we grant the colors $1,2, \ldots, q$ repeatedly to $g_{u}(u \equiv 2$ $\bmod 3$), the colors $q+1, q+2, \ldots, 2 q$ repeatedly to $g_{u}(u \equiv 0 \bmod 3), 2 q+1,2 q+2, \ldots, 3 q$ repeatedly to $g_{u}(u \equiv 1 \bmod 3)$.

Subcase 2: When $r \equiv 1 \bmod 3$
For $1 \leq u \leq r-1$. If $u \equiv 1 \bmod 3$, we grant the colors w to $t_{u w}$. if $u \equiv 2 \bmod 3$, we grant the colors $q+w$ to $t_{u w}$, if $u \equiv 0 \bmod 3$, we grant the colors $2 q+w$ to $t_{u w}$ where $1 \leq w \leq q$. When $u=r$, we grant the color $q+w$ to $t_{u w}$ where $1 \leq w \leq q$.
In the subcase 2 , each of the colors $1,2, \ldots, q$ have been occured $\frac{r-1}{3}$ times and the colors $q+1, \ldots, 2 q$ have been occured $\frac{r+2}{3}$ in the copies of K_{q}. While the left over colors $2 q+1,2 q+2, \ldots, 3 q$ has occured $\frac{r-1}{3}$ times each in copies of K_{q}. So, when coloring the nodes of C_{r}, one must use the colors $1,2, \ldots, 2 q$ first for g_{u} where $1 \leq u \leq r$ and without altering the equitable coloring condition.

Subcase 3: When $r \equiv 2 \bmod 3$
(a) If $3 \leq q \leq r-\left\lfloor\frac{r}{3}\right\rfloor$

For $1 \leq u \leq r$ and $u \equiv 1 \bmod 3$, we grant the color w to $t_{u w}, u \equiv 2 \bmod 3$ we grant the color $q+w$ to $t_{u w}$ and $u \equiv 0 \bmod 3$ we grant the color $2 q+w$ to $t_{u w}$ where $1 \leq w \leq q$.
By above, each of the colors $1,2, \ldots, 2 q$ have been occured $\frac{r+1}{3}$ times in the copies of K_{q}. While the left over colors $2 q+1,2 q+2, \ldots, 3 q$ has occured $\frac{r-2}{3}$ times each in copies of K_{q}. So, when coloring the nodes of C_{r}, one must use the colors $2 q+1,2 q+2, \ldots, 3 q$ first for g_{u} where $1 \leq u \leq r$ and without altering the equitable coloring condition.

(b) Otherwise

For $1 \leq u \leq r$ and $u \equiv 1 \bmod 3$, we grant the color w to $t_{u w}$ and $u \equiv 2 \bmod 3$ we grant the color $q+w$ to $t_{u w}$ and $u \equiv 0 \bmod 3$ we grant the color $2 q+w$ to $t_{u w}$ where $1 \leq w \leq q$.
For $1 \leq u \leq r$. We grant the color $2 q+1,2 q+2, \ldots, 3 q$ to the nodes g_{u} where $u \equiv 1,2$ $\bmod 3$. When $u \equiv 0 \bmod 3$, we have the color $3 q+1$.
The absolute difference between the color classes is at most 1 . The resultant graph $C_{r} \bullet K_{q}$ is equitably colored. The upper bound, When r is even

$$
\chi_{=}\left(C_{r} \bullet K_{q}\right) \leq 2 q, \text { if } q, r \geq 3
$$

When r is odd

$$
\chi=\left(C_{r} \bullet K_{q}\right) \leq \begin{cases}3 q ; & \text { if } r \equiv 0,1 \bmod 3 \\ 3 q ; & \text { if } 3 \leq r \leq r-\left\lfloor\frac{r}{3}\right\rfloor \\ 3 q+1 ; & \text { if otherwise } r \equiv 2 \bmod 3\end{cases}
$$

As above, we know that $\chi_{=}(K) \geq \chi(K)$ and $\chi\left(C_{r} \bullet K_{q}\right)=2 q$. And we have $\chi_{=}\left(C_{r} \bullet K_{q} \geq\right.$ $\chi\left(C_{r} \bullet K_{q}\right)=2 q$. The lower bound becomes,

$$
\chi=\left(C_{r} \bullet K_{q}\right) \geq 2 q, \text { for } s \geq 2, q \geq 3
$$

Therefore, the extended corona product of C_{r} with K_{q} graph is
When r is even

$$
\chi_{=}\left(C_{r} \bullet K_{q}\right)=2 q, \text { if } q, r \geq 3
$$

When r is odd

$$
2 q \leq \chi=\left(C_{r} \bullet K_{q}\right) \leq \begin{cases}3 q ; & \text { if } r \equiv 0,1 \bmod 3 \\ 3 q ; & \text { if } 3 \leq r \leq r-\left\lfloor\frac{r}{3}\right\rfloor \\ 3 q+1 ; & \text { if otherwise } r \equiv 2 \bmod 3\end{cases}
$$

Conclusion

Finding p.m.f, mean, variance of equitable coloring of $C_{r} \bullet K_{q}$ has so many cases in it. It's a tedious process for generalizing the occurence of each color because in some case, we colored randomly for some vertices. Hence, this part alone is an open problem to the reader.

References

[1] J. A. Bondy and U. S. R. Murthy, Graphs with Applications, SIAM Review, Vol 21 (1979).
[2] Chandrashekar Adiga, Rakshith B.R and K.N. Sudha Krishna, Spectra of Extended Neighbourhood Corona and Extended Corona of two Graphs, Electronic Journal of Graph Theory and Applications 4(1)(2016) 101110.
[3] Dieter Jungnickel, Graphs, Networks and Algorithms, Springer- Verlag Berlin Heidelberg, Edition 4 (2013) 615-676.
[4] R. Frucht , F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), 322âĂŞ325.
[5] H. Furmanczyk, Equitable coloring of Graph products, Opuscula Mathematica, Vol 26. No.1, (2006).
[6] E. Kubicka, The chromatic sum of a graph: History and recent developments, Int. J. Math. Math. Sci., 30,(2004), 1563-1573.
[7] Lih KW. (2013) Equitable Coloring of Graphs. In: Pardalos P., Du DZ., Graham R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY.
[8] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920âĂŞ922.
[9] Praveena, K., Venkatachalam, M., Equitable coloring on subdivision vertex join of cycle Cm with path Pn. Notes on Number Theory and Discrete Mathematics, 25(2) (2019), 190-198.
[10] Reinhard Diestel, Garph Theory, Springer- Verlag, Vol 173, Edition 5 (2017).
[11] N. K. Sudev, K. P. Chithra and J. Kok, Certain chromatic sums of some cycle related graph classes, Discrete Math. Algorithms Appl., 8(3)(2016), 1-24.
[12] Sudev N. K., Chithra K. P., Satheesh S. and Kok J., On certain parameters of equitable coloring of graphs, Discrete Math. Algorithm Appl. 9(4) (2017).
[13] N. K. Sudev, S. Satheesh, K. P. Chithra and J. Kok, On Certain Coloring Parameters of Graphs, International J.Math. Combin. Vol.3(2018), 87-98.
[14] A.C. Tucker, Perfect graphs and an application to optimizing municipal services. SIAM Rev Vol 15 (1973) 585âĂŞ590 .

Author information
M. Barani, Department of Science and Humanities, Dhanalakshmi Srinivasan College of Engineering, Coimbatore 641105, India.
E-mail: baranibe2013@gmail.com
M.Venkatachalam, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641029., India.
E-mail: venkatmaths@gmail.com
K.Rajalakshmi, Department of Science and Humanities, Sri Krishna College of Engineering and Technology, Coimbatore 641 008., India.
E-mail: rajalakshmikandhasamy@gmail.com

Received : December 23, 2020
Accepted : April 1, 2021

